You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1334 lines
51KB

  1. \input texinfo @c -*- texinfo -*-
  2. @settitle ffmpeg Documentation
  3. @titlepage
  4. @center @titlefont{ffmpeg Documentation}
  5. @end titlepage
  6. @top
  7. @contents
  8. @chapter Synopsis
  9. ffmpeg [@var{global_options}] @{[@var{input_file_options}] -i @file{input_file}@} ... @{[@var{output_file_options}] @file{output_file}@} ...
  10. @chapter Description
  11. @c man begin DESCRIPTION
  12. ffmpeg is a very fast video and audio converter that can also grab from
  13. a live audio/video source. It can also convert between arbitrary sample
  14. rates and resize video on the fly with a high quality polyphase filter.
  15. ffmpeg reads from an arbitrary number of input "files" (which can be regular
  16. files, pipes, network streams, grabbing devices, etc.), specified by the
  17. @code{-i} option, and writes to an arbitrary number of output "files", which are
  18. specified by a plain output filename. Anything found on the command line which
  19. cannot be interpreted as an option is considered to be an output filename.
  20. Each input or output file can in principle contain any number of streams of
  21. different types (video/audio/subtitle/attachment/data). Allowed number and/or
  22. types of streams can be limited by the container format. Selecting, which
  23. streams from which inputs go into output, is done either automatically or with
  24. the @code{-map} option (see the Stream selection chapter).
  25. To refer to input files in options, you must use their indices (0-based). E.g.
  26. the first input file is @code{0}, the second is @code{1} etc. Similarly, streams
  27. within a file are referred to by their indices. E.g. @code{2:3} refers to the
  28. fourth stream in the third input file. See also the Stream specifiers chapter.
  29. As a general rule, options are applied to the next specified
  30. file. Therefore, order is important, and you can have the same
  31. option on the command line multiple times. Each occurrence is
  32. then applied to the next input or output file.
  33. Exceptions from this rule are the global options (e.g. verbosity level),
  34. which should be specified first.
  35. Do not mix input and output files -- first specify all input files, then all
  36. output files. Also do not mix options which belong to different files. All
  37. options apply ONLY to the next input or output file and are reset between files.
  38. @itemize
  39. @item
  40. To set the video bitrate of the output file to 64kbit/s:
  41. @example
  42. ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi
  43. @end example
  44. @item
  45. To force the frame rate of the output file to 24 fps:
  46. @example
  47. ffmpeg -i input.avi -r 24 output.avi
  48. @end example
  49. @item
  50. To force the frame rate of the input file (valid for raw formats only)
  51. to 1 fps and the frame rate of the output file to 24 fps:
  52. @example
  53. ffmpeg -r 1 -i input.m2v -r 24 output.avi
  54. @end example
  55. @end itemize
  56. The format option may be needed for raw input files.
  57. @c man end DESCRIPTION
  58. @chapter Detailed description
  59. @c man begin DETAILED DESCRIPTION
  60. The transcoding process in @command{ffmpeg} for each output can be described by
  61. the following diagram:
  62. @example
  63. _______ ______________ _________ ______________ ________
  64. | | | | | | | | | |
  65. | input | demuxer | encoded data | decoder | decoded | encoder | encoded data | muxer | output |
  66. | file | ---------> | packets | ---------> | frames | ---------> | packets | -------> | file |
  67. |_______| |______________| |_________| |______________| |________|
  68. @end example
  69. @command{ffmpeg} calls the libavformat library (containing demuxers) to read
  70. input files and get packets containing encoded data from them. When there are
  71. multiple input files, @command{ffmpeg} tries to keep them synchronized by
  72. tracking lowest timestamp on any active input stream.
  73. Encoded packets are then passed to the decoder (unless streamcopy is selected
  74. for the stream, see further for a description). The decoder produces
  75. uncompressed frames (raw video/PCM audio/...) which can be processed further by
  76. filtering (see next section). After filtering the frames are passed to the
  77. encoder, which encodes them and outputs encoded packets again. Finally those are
  78. passed to the muxer, which writes the encoded packets to the output file.
  79. @section Filtering
  80. Before encoding, @command{ffmpeg} can process raw audio and video frames using
  81. filters from the libavfilter library. Several chained filters form a filter
  82. graph. @command{ffmpeg} distinguishes between two types of filtergraphs -
  83. simple and complex.
  84. @subsection Simple filtergraphs
  85. Simple filtergraphs are those that have exactly one input and output, both of
  86. the same type. In the above diagram they can be represented by simply inserting
  87. an additional step between decoding and encoding:
  88. @example
  89. _________ __________ ______________
  90. | | | | | |
  91. | decoded | simple filtergraph | filtered | encoder | encoded data |
  92. | frames | -------------------> | frames | ---------> | packets |
  93. |_________| |__________| |______________|
  94. @end example
  95. Simple filtergraphs are configured with the per-stream @option{-filter} option
  96. (with @option{-vf} and @option{-af} aliases for video and audio respectively).
  97. A simple filtergraph for video can look for example like this:
  98. @example
  99. _______ _____________ _______ _____ ________
  100. | | | | | | | | | |
  101. | input | ---> | deinterlace | ---> | scale | ---> | fps | ---> | output |
  102. |_______| |_____________| |_______| |_____| |________|
  103. @end example
  104. Note that some filters change frame properties but not frame contents. E.g. the
  105. @code{fps} filter in the example above changes number of frames, but does not
  106. touch the frame contents. Another example is the @code{setpts} filter, which
  107. only sets timestamps and otherwise passes the frames unchanged.
  108. @subsection Complex filtergraphs
  109. Complex filtergraphs are those which cannot be described as simply a linear
  110. processing chain applied to one stream. This is the case e.g. when the graph has
  111. more than one input and/or output, or when output stream type is different from
  112. input. They can be represented with the following diagram:
  113. @example
  114. _________
  115. | |
  116. | input 0 |\ __________
  117. |_________| \ | |
  118. \ _________ /| output 0 |
  119. \ | | / |__________|
  120. _________ \| complex | /
  121. | | | |/
  122. | input 1 |---->| filter |\
  123. |_________| | | \ __________
  124. /| graph | \ | |
  125. / | | \| output 1 |
  126. _________ / |_________| |__________|
  127. | | /
  128. | input 2 |/
  129. |_________|
  130. @end example
  131. Complex filtergraphs are configured with the @option{-filter_complex} option.
  132. Note that this option is global, since a complex filtergraph by its nature
  133. cannot be unambiguously associated with a single stream or file.
  134. A trivial example of a complex filtergraph is the @code{overlay} filter, which
  135. has two video inputs and one video output, containing one video overlaid on top
  136. of the other. Its audio counterpart is the @code{amix} filter.
  137. @section Stream copy
  138. Stream copy is a mode selected by supplying the @code{copy} parameter to the
  139. @option{-codec} option. It makes @command{ffmpeg} omit the decoding and encoding
  140. step for the specified stream, so it does only demuxing and muxing. It is useful
  141. for changing the container format or modifying container-level metadata. The
  142. diagram above will in this case simplify to this:
  143. @example
  144. _______ ______________ ________
  145. | | | | | |
  146. | input | demuxer | encoded data | muxer | output |
  147. | file | ---------> | packets | -------> | file |
  148. |_______| |______________| |________|
  149. @end example
  150. Since there is no decoding or encoding, it is very fast and there is no quality
  151. loss. However it might not work in some cases because of many factors. Applying
  152. filters is obviously also impossible, since filters work on uncompressed data.
  153. @c man end DETAILED DESCRIPTION
  154. @chapter Stream selection
  155. @c man begin STREAM SELECTION
  156. By default ffmpeg includes only one stream of each type (video, audio, subtitle)
  157. present in the input files and adds them to each output file. It picks the
  158. "best" of each based upon the following criteria; for video it is the stream
  159. with the highest resolution, for audio the stream with the most channels, for
  160. subtitle it's the first subtitle stream. In the case where several streams of
  161. the same type rate equally, the lowest numbered stream is chosen.
  162. You can disable some of those defaults by using @code{-vn/-an/-sn} options. For
  163. full manual control, use the @code{-map} option, which disables the defaults just
  164. described.
  165. @c man end STREAM SELECTION
  166. @chapter Options
  167. @c man begin OPTIONS
  168. @include avtools-common-opts.texi
  169. @section Main options
  170. @table @option
  171. @item -f @var{fmt} (@emph{input/output})
  172. Force input or output file format. The format is normally auto detected for input
  173. files and guessed from file extension for output files, so this option is not
  174. needed in most cases.
  175. @item -i @var{filename} (@emph{input})
  176. input file name
  177. @item -y (@emph{global})
  178. Overwrite output files without asking.
  179. @item -n (@emph{global})
  180. Do not overwrite output files but exit if file exists.
  181. @item -c[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  182. @itemx -codec[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  183. Select an encoder (when used before an output file) or a decoder (when used
  184. before an input file) for one or more streams. @var{codec} is the name of a
  185. decoder/encoder or a special value @code{copy} (output only) to indicate that
  186. the stream is not to be re-encoded.
  187. For example
  188. @example
  189. ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT
  190. @end example
  191. encodes all video streams with libx264 and copies all audio streams.
  192. For each stream, the last matching @code{c} option is applied, so
  193. @example
  194. ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT
  195. @end example
  196. will copy all the streams except the second video, which will be encoded with
  197. libx264, and the 138th audio, which will be encoded with libvorbis.
  198. @item -t @var{duration} (@emph{output})
  199. Stop writing the output after its duration reaches @var{duration}.
  200. @var{duration} may be a number in seconds, or in @code{hh:mm:ss[.xxx]} form.
  201. @item -fs @var{limit_size} (@emph{output})
  202. Set the file size limit, expressed in bytes.
  203. @item -ss @var{position} (@emph{input/output})
  204. When used as an input option (before @code{-i}), seeks in this input file to
  205. @var{position}. When used as an output option (before an output filename),
  206. decodes but discards input until the timestamps reach @var{position}. This is
  207. slower, but more accurate.
  208. @var{position} may be either in seconds or in @code{hh:mm:ss[.xxx]} form.
  209. @item -itsoffset @var{offset} (@emph{input})
  210. Set the input time offset in seconds.
  211. @code{[-]hh:mm:ss[.xxx]} syntax is also supported.
  212. The offset is added to the timestamps of the input files.
  213. Specifying a positive offset means that the corresponding
  214. streams are delayed by @var{offset} seconds.
  215. @item -timestamp @var{time} (@emph{output})
  216. Set the recording timestamp in the container.
  217. The syntax for @var{time} is:
  218. @example
  219. now|([(YYYY-MM-DD|YYYYMMDD)[T|t| ]]((HH:MM:SS[.m...])|(HHMMSS[.m...]))[Z|z])
  220. @end example
  221. If the value is "now" it takes the current time.
  222. Time is local time unless 'Z' or 'z' is appended, in which case it is
  223. interpreted as UTC.
  224. If the year-month-day part is not specified it takes the current
  225. year-month-day.
  226. @item -metadata[:metadata_specifier] @var{key}=@var{value} (@emph{output,per-metadata})
  227. Set a metadata key/value pair.
  228. An optional @var{metadata_specifier} may be given to set metadata
  229. on streams or chapters. See @code{-map_metadata} documentation for
  230. details.
  231. This option overrides metadata set with @code{-map_metadata}. It is
  232. also possible to delete metadata by using an empty value.
  233. For example, for setting the title in the output file:
  234. @example
  235. ffmpeg -i in.avi -metadata title="my title" out.flv
  236. @end example
  237. To set the language of the first audio stream:
  238. @example
  239. ffmpeg -i INPUT -metadata:s:a:1 language=eng OUTPUT
  240. @end example
  241. @item -target @var{type} (@emph{output})
  242. Specify target file type (@code{vcd}, @code{svcd}, @code{dvd}, @code{dv},
  243. @code{dv50}). @var{type} may be prefixed with @code{pal-}, @code{ntsc-} or
  244. @code{film-} to use the corresponding standard. All the format options
  245. (bitrate, codecs, buffer sizes) are then set automatically. You can just type:
  246. @example
  247. ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg
  248. @end example
  249. Nevertheless you can specify additional options as long as you know
  250. they do not conflict with the standard, as in:
  251. @example
  252. ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg
  253. @end example
  254. @item -dframes @var{number} (@emph{output})
  255. Set the number of data frames to record. This is an alias for @code{-frames:d}.
  256. @item -frames[:@var{stream_specifier}] @var{framecount} (@emph{output,per-stream})
  257. Stop writing to the stream after @var{framecount} frames.
  258. @item -q[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  259. @itemx -qscale[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  260. Use fixed quality scale (VBR). The meaning of @var{q} is
  261. codec-dependent.
  262. @anchor{filter_option}
  263. @item -filter[:@var{stream_specifier}] @var{filter_graph} (@emph{output,per-stream})
  264. Create the filter graph specified by @var{filter_graph} and use it to
  265. filter the stream.
  266. @var{filter_graph} is a description of the filter graph to apply to
  267. the stream, and must have a single input and a single output of the
  268. same type of the stream. In the filter graph, the input is associated
  269. to the label @code{in}, and the output to the label @code{out}. See
  270. the ffmpeg-filters manual for more information about the filtergraph
  271. syntax.
  272. See the @ref{filter_complex_option,,-filter_complex option} if you
  273. want to create filter graphs with multiple inputs and/or outputs.
  274. @item -pre[:@var{stream_specifier}] @var{preset_name} (@emph{output,per-stream})
  275. Specify the preset for matching stream(s).
  276. @item -stats (@emph{global})
  277. Print encoding progress/statistics. On by default.
  278. @item -progress @var{url} (@emph{global})
  279. Send program-friendly progress information to @var{url}.
  280. Progress information is written approximately every second and at the end of
  281. the encoding process. It is made of "@var{key}=@var{value}" lines. @var{key}
  282. consists of only alphanumeric characters. The last key of a sequence of
  283. progress information is always "progress".
  284. @item -stdin
  285. Enable interaction on standard input. On by default unless standard input is
  286. used as an input. To explicitly disable interaction you need to specify
  287. @code{-nostdin}.
  288. Disabling interaction on standard input is useful, for example, if
  289. ffmpeg is in the background process group. Roughly the same result can
  290. be achieved with @code{ffmpeg ... < /dev/null} but it requires a
  291. shell.
  292. @item -debug_ts (@emph{global})
  293. Print timestamp information. It is off by default. This option is
  294. mostly useful for testing and debugging purposes, and the output
  295. format may change from one version to another, so it should not be
  296. employed by portable scripts.
  297. See also the option @code{-fdebug ts}.
  298. @item -attach @var{filename} (@emph{output})
  299. Add an attachment to the output file. This is supported by a few formats
  300. like Matroska for e.g. fonts used in rendering subtitles. Attachments
  301. are implemented as a specific type of stream, so this option will add
  302. a new stream to the file. It is then possible to use per-stream options
  303. on this stream in the usual way. Attachment streams created with this
  304. option will be created after all the other streams (i.e. those created
  305. with @code{-map} or automatic mappings).
  306. Note that for Matroska you also have to set the mimetype metadata tag:
  307. @example
  308. ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv
  309. @end example
  310. (assuming that the attachment stream will be third in the output file).
  311. @item -dump_attachment[:@var{stream_specifier}] @var{filename} (@emph{input,per-stream})
  312. Extract the matching attachment stream into a file named @var{filename}. If
  313. @var{filename} is empty, then the value of the @code{filename} metadata tag
  314. will be used.
  315. E.g. to extract the first attachment to a file named 'out.ttf':
  316. @example
  317. ffmpeg -dump_attachment:t:0 out.ttf INPUT
  318. @end example
  319. To extract all attachments to files determined by the @code{filename} tag:
  320. @example
  321. ffmpeg -dump_attachment:t "" INPUT
  322. @end example
  323. Technical note -- attachments are implemented as codec extradata, so this
  324. option can actually be used to extract extradata from any stream, not just
  325. attachments.
  326. @end table
  327. @section Video Options
  328. @table @option
  329. @item -vframes @var{number} (@emph{output})
  330. Set the number of video frames to record. This is an alias for @code{-frames:v}.
  331. @item -r[:@var{stream_specifier}] @var{fps} (@emph{input/output,per-stream})
  332. Set frame rate (Hz value, fraction or abbreviation).
  333. As an input option, ignore any timestamps stored in the file and instead
  334. generate timestamps assuming constant frame rate @var{fps}.
  335. As an output option, duplicate or drop input frames to achieve constant output
  336. frame rate @var{fps}.
  337. @item -s[:@var{stream_specifier}] @var{size} (@emph{input/output,per-stream})
  338. Set frame size.
  339. As an input option, this is a shortcut for the @option{video_size} private
  340. option, recognized by some demuxers for which the frame size is either not
  341. stored in the file or is configurable -- e.g. raw video or video grabbers.
  342. As an output option, this inserts the @code{scale} video filter to the
  343. @emph{end} of the corresponding filtergraph. Please use the @code{scale} filter
  344. directly to insert it at the beginning or some other place.
  345. The format is @samp{wxh} (default - same as source).
  346. @item -aspect[:@var{stream_specifier}] @var{aspect} (@emph{output,per-stream})
  347. Set the video display aspect ratio specified by @var{aspect}.
  348. @var{aspect} can be a floating point number string, or a string of the
  349. form @var{num}:@var{den}, where @var{num} and @var{den} are the
  350. numerator and denominator of the aspect ratio. For example "4:3",
  351. "16:9", "1.3333", and "1.7777" are valid argument values.
  352. @item -croptop @var{size}
  353. @item -cropbottom @var{size}
  354. @item -cropleft @var{size}
  355. @item -cropright @var{size}
  356. All the crop options have been removed. Use -vf
  357. crop=width:height:x:y instead.
  358. @item -padtop @var{size}
  359. @item -padbottom @var{size}
  360. @item -padleft @var{size}
  361. @item -padright @var{size}
  362. @item -padcolor @var{hex_color}
  363. All the pad options have been removed. Use -vf
  364. pad=width:height:x:y:color instead.
  365. @item -vn (@emph{output})
  366. Disable video recording.
  367. @item -vcodec @var{codec} (@emph{output})
  368. Set the video codec. This is an alias for @code{-codec:v}.
  369. @item -pass[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  370. Select the pass number (1 or 2). It is used to do two-pass
  371. video encoding. The statistics of the video are recorded in the first
  372. pass into a log file (see also the option -passlogfile),
  373. and in the second pass that log file is used to generate the video
  374. at the exact requested bitrate.
  375. On pass 1, you may just deactivate audio and set output to null,
  376. examples for Windows and Unix:
  377. @example
  378. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
  379. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null
  380. @end example
  381. @item -passlogfile[:@var{stream_specifier}] @var{prefix} (@emph{output,per-stream})
  382. Set two-pass log file name prefix to @var{prefix}, the default file name
  383. prefix is ``ffmpeg2pass''. The complete file name will be
  384. @file{PREFIX-N.log}, where N is a number specific to the output
  385. stream
  386. @item -vlang @var{code}
  387. Set the ISO 639 language code (3 letters) of the current video stream.
  388. @item -vf @var{filter_graph} (@emph{output})
  389. Create the filter graph specified by @var{filter_graph} and use it to
  390. filter the stream.
  391. This is an alias for @code{-filter:v}, see the @ref{filter_option,,-filter option}.
  392. @end table
  393. @section Advanced Video Options
  394. @table @option
  395. @item -pix_fmt[:@var{stream_specifier}] @var{format} (@emph{input/output,per-stream})
  396. Set pixel format. Use @code{-pix_fmts} to show all the supported
  397. pixel formats.
  398. If the selected pixel format can not be selected, ffmpeg will print a
  399. warning and select the best pixel format supported by the encoder.
  400. If @var{pix_fmt} is prefixed by a @code{+}, ffmpeg will exit with an error
  401. if the requested pixel format can not be selected, and automatic conversions
  402. inside filter graphs are disabled.
  403. If @var{pix_fmt} is a single @code{+}, ffmpeg selects the same pixel format
  404. as the input (or graph output) and automatic conversions are disabled.
  405. @item -sws_flags @var{flags} (@emph{input/output})
  406. Set SwScaler flags.
  407. @item -vdt @var{n}
  408. Discard threshold.
  409. @item -rc_override[:@var{stream_specifier}] @var{override} (@emph{output,per-stream})
  410. Rate control override for specific intervals, formatted as "int,int,int"
  411. list separated with slashes. Two first values are the beginning and
  412. end frame numbers, last one is quantizer to use if positive, or quality
  413. factor if negative.
  414. @item -deinterlace
  415. Deinterlace pictures.
  416. This option is deprecated since the deinterlacing is very low quality.
  417. Use the yadif filter with @code{-filter:v yadif}.
  418. @item -ilme
  419. Force interlacing support in encoder (MPEG-2 and MPEG-4 only).
  420. Use this option if your input file is interlaced and you want
  421. to keep the interlaced format for minimum losses.
  422. The alternative is to deinterlace the input stream with
  423. @option{-deinterlace}, but deinterlacing introduces losses.
  424. @item -psnr
  425. Calculate PSNR of compressed frames.
  426. @item -vstats
  427. Dump video coding statistics to @file{vstats_HHMMSS.log}.
  428. @item -vstats_file @var{file}
  429. Dump video coding statistics to @var{file}.
  430. @item -top[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  431. top=1/bottom=0/auto=-1 field first
  432. @item -dc @var{precision}
  433. Intra_dc_precision.
  434. @item -vtag @var{fourcc/tag} (@emph{output})
  435. Force video tag/fourcc. This is an alias for @code{-tag:v}.
  436. @item -qphist (@emph{global})
  437. Show QP histogram
  438. @item -vbsf @var{bitstream_filter}
  439. Deprecated see -bsf
  440. @item -force_key_frames[:@var{stream_specifier}] @var{time}[,@var{time}...] (@emph{output,per-stream})
  441. Force key frames at the specified timestamps, more precisely at the first
  442. frames after each specified time.
  443. If one of the times is "@code{chapters}[@var{delta}]", it is expanded into
  444. the time of the beginning of all chapters in the file, shifted by
  445. @var{delta}, expressed as a time in seconds.
  446. This option can be useful to ensure that a seek point is present at a
  447. chapter mark or any other designated place in the output file.
  448. For example, to insert a key frame at 5 minutes, plus key frames 0.1 second
  449. before the beginning of every chapter:
  450. @example
  451. -force_key_frames 0:05:00,chapters-0.1
  452. @end example
  453. @item -copyinkf[:@var{stream_specifier}] (@emph{output,per-stream})
  454. When doing stream copy, copy also non-key frames found at the
  455. beginning.
  456. @end table
  457. @section Audio Options
  458. @table @option
  459. @item -aframes @var{number} (@emph{output})
  460. Set the number of audio frames to record. This is an alias for @code{-frames:a}.
  461. @item -ar[:@var{stream_specifier}] @var{freq} (@emph{input/output,per-stream})
  462. Set the audio sampling frequency. For output streams it is set by
  463. default to the frequency of the corresponding input stream. For input
  464. streams this option only makes sense for audio grabbing devices and raw
  465. demuxers and is mapped to the corresponding demuxer options.
  466. @item -aq @var{q} (@emph{output})
  467. Set the audio quality (codec-specific, VBR). This is an alias for -q:a.
  468. @item -ac[:@var{stream_specifier}] @var{channels} (@emph{input/output,per-stream})
  469. Set the number of audio channels. For output streams it is set by
  470. default to the number of input audio channels. For input streams
  471. this option only makes sense for audio grabbing devices and raw demuxers
  472. and is mapped to the corresponding demuxer options.
  473. @item -an (@emph{output})
  474. Disable audio recording.
  475. @item -acodec @var{codec} (@emph{input/output})
  476. Set the audio codec. This is an alias for @code{-codec:a}.
  477. @item -sample_fmt[:@var{stream_specifier}] @var{sample_fmt} (@emph{output,per-stream})
  478. Set the audio sample format. Use @code{-sample_fmts} to get a list
  479. of supported sample formats.
  480. @item -af @var{filter_graph} (@emph{output})
  481. Create the filter graph specified by @var{filter_graph} and use it to
  482. filter the stream.
  483. This is an alias for @code{-filter:a}, see the @ref{filter_option,,-filter option}.
  484. @end table
  485. @section Advanced Audio options:
  486. @table @option
  487. @item -atag @var{fourcc/tag} (@emph{output})
  488. Force audio tag/fourcc. This is an alias for @code{-tag:a}.
  489. @item -absf @var{bitstream_filter}
  490. Deprecated, see -bsf
  491. @item -guess_layout_max @var{channels} (@emph{input,per-stream})
  492. If some input channel layout is not known, try to guess only if it
  493. corresponds to at most the specified number of channels. For example, 2
  494. tells to @command{ffmpeg} to recognize 1 channel as mono and 2 channels as
  495. stereo but not 6 channels as 5.1. The default is to always try to guess. Use
  496. 0 to disable all guessing.
  497. @end table
  498. @section Subtitle options:
  499. @table @option
  500. @item -slang @var{code}
  501. Set the ISO 639 language code (3 letters) of the current subtitle stream.
  502. @item -scodec @var{codec} (@emph{input/output})
  503. Set the subtitle codec. This is an alias for @code{-codec:s}.
  504. @item -sn (@emph{output})
  505. Disable subtitle recording.
  506. @item -sbsf @var{bitstream_filter}
  507. Deprecated, see -bsf
  508. @end table
  509. @section Advanced Subtitle options:
  510. @table @option
  511. @item -fix_sub_duration
  512. Fix subtitles durations. For each subtitle, wait for the next packet in the
  513. same stream and adjust the duration of the first to avoid overlap. This is
  514. necessary with some subtitles codecs, especially DVB subtitles, because the
  515. duration in the original packet is only a rough estimate and the end is
  516. actually marked by an empty subtitle frame. Failing to use this option when
  517. necessary can result in exaggerated durations or muxing failures due to
  518. non-monotonic timestamps.
  519. Note that this option will delay the output of all data until the next
  520. subtitle packet is decoded: it may increase memory consumption and latency a
  521. lot.
  522. @end table
  523. @section Advanced options
  524. @table @option
  525. @item -map [-]@var{input_file_id}[:@var{stream_specifier}][,@var{sync_file_id}[:@var{stream_specifier}]] | @var{[linklabel]} (@emph{output})
  526. Designate one or more input streams as a source for the output file. Each input
  527. stream is identified by the input file index @var{input_file_id} and
  528. the input stream index @var{input_stream_id} within the input
  529. file. Both indices start at 0. If specified,
  530. @var{sync_file_id}:@var{stream_specifier} sets which input stream
  531. is used as a presentation sync reference.
  532. The first @code{-map} option on the command line specifies the
  533. source for output stream 0, the second @code{-map} option specifies
  534. the source for output stream 1, etc.
  535. A @code{-} character before the stream identifier creates a "negative" mapping.
  536. It disables matching streams from already created mappings.
  537. An alternative @var{[linklabel]} form will map outputs from complex filter
  538. graphs (see the @option{-filter_complex} option) to the output file.
  539. @var{linklabel} must correspond to a defined output link label in the graph.
  540. For example, to map ALL streams from the first input file to output
  541. @example
  542. ffmpeg -i INPUT -map 0 output
  543. @end example
  544. For example, if you have two audio streams in the first input file,
  545. these streams are identified by "0:0" and "0:1". You can use
  546. @code{-map} to select which streams to place in an output file. For
  547. example:
  548. @example
  549. ffmpeg -i INPUT -map 0:1 out.wav
  550. @end example
  551. will map the input stream in @file{INPUT} identified by "0:1" to
  552. the (single) output stream in @file{out.wav}.
  553. For example, to select the stream with index 2 from input file
  554. @file{a.mov} (specified by the identifier "0:2"), and stream with
  555. index 6 from input @file{b.mov} (specified by the identifier "1:6"),
  556. and copy them to the output file @file{out.mov}:
  557. @example
  558. ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov
  559. @end example
  560. To select all video and the third audio stream from an input file:
  561. @example
  562. ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT
  563. @end example
  564. To map all the streams except the second audio, use negative mappings
  565. @example
  566. ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT
  567. @end example
  568. Note that using this option disables the default mappings for this output file.
  569. @item -map_channel [@var{input_file_id}.@var{stream_specifier}.@var{channel_id}|-1][:@var{output_file_id}.@var{stream_specifier}]
  570. Map an audio channel from a given input to an output. If
  571. @var{output_file_id}.@var{stream_specifier} is not set, the audio channel will
  572. be mapped on all the audio streams.
  573. Using "-1" instead of
  574. @var{input_file_id}.@var{stream_specifier}.@var{channel_id} will map a muted
  575. channel.
  576. For example, assuming @var{INPUT} is a stereo audio file, you can switch the
  577. two audio channels with the following command:
  578. @example
  579. ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT
  580. @end example
  581. If you want to mute the first channel and keep the second:
  582. @example
  583. ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT
  584. @end example
  585. The order of the "-map_channel" option specifies the order of the channels in
  586. the output stream. The output channel layout is guessed from the number of
  587. channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac"
  588. in combination of "-map_channel" makes the channel gain levels to be updated if
  589. input and output channel layouts don't match (for instance two "-map_channel"
  590. options and "-ac 6").
  591. You can also extract each channel of an input to specific outputs; the following
  592. command extracts two channels of the @var{INPUT} audio stream (file 0, stream 0)
  593. to the respective @var{OUTPUT_CH0} and @var{OUTPUT_CH1} outputs:
  594. @example
  595. ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1
  596. @end example
  597. The following example splits the channels of a stereo input into two separate
  598. streams, which are put into the same output file:
  599. @example
  600. ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg
  601. @end example
  602. Note that currently each output stream can only contain channels from a single
  603. input stream; you can't for example use "-map_channel" to pick multiple input
  604. audio channels contained in different streams (from the same or different files)
  605. and merge them into a single output stream. It is therefore not currently
  606. possible, for example, to turn two separate mono streams into a single stereo
  607. stream. However splitting a stereo stream into two single channel mono streams
  608. is possible.
  609. If you need this feature, a possible workaround is to use the @emph{amerge}
  610. filter. For example, if you need to merge a media (here @file{input.mkv}) with 2
  611. mono audio streams into one single stereo channel audio stream (and keep the
  612. video stream), you can use the following command:
  613. @example
  614. ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv
  615. @end example
  616. @item -map_metadata[:@var{metadata_spec_out}] @var{infile}[:@var{metadata_spec_in}] (@emph{output,per-metadata})
  617. Set metadata information of the next output file from @var{infile}. Note that
  618. those are file indices (zero-based), not filenames.
  619. Optional @var{metadata_spec_in/out} parameters specify, which metadata to copy.
  620. A metadata specifier can have the following forms:
  621. @table @option
  622. @item @var{g}
  623. global metadata, i.e. metadata that applies to the whole file
  624. @item @var{s}[:@var{stream_spec}]
  625. per-stream metadata. @var{stream_spec} is a stream specifier as described
  626. in the @ref{Stream specifiers} chapter. In an input metadata specifier, the first
  627. matching stream is copied from. In an output metadata specifier, all matching
  628. streams are copied to.
  629. @item @var{c}:@var{chapter_index}
  630. per-chapter metadata. @var{chapter_index} is the zero-based chapter index.
  631. @item @var{p}:@var{program_index}
  632. per-program metadata. @var{program_index} is the zero-based program index.
  633. @end table
  634. If metadata specifier is omitted, it defaults to global.
  635. By default, global metadata is copied from the first input file,
  636. per-stream and per-chapter metadata is copied along with streams/chapters. These
  637. default mappings are disabled by creating any mapping of the relevant type. A negative
  638. file index can be used to create a dummy mapping that just disables automatic copying.
  639. For example to copy metadata from the first stream of the input file to global metadata
  640. of the output file:
  641. @example
  642. ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3
  643. @end example
  644. To do the reverse, i.e. copy global metadata to all audio streams:
  645. @example
  646. ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv
  647. @end example
  648. Note that simple @code{0} would work as well in this example, since global
  649. metadata is assumed by default.
  650. @item -map_chapters @var{input_file_index} (@emph{output})
  651. Copy chapters from input file with index @var{input_file_index} to the next
  652. output file. If no chapter mapping is specified, then chapters are copied from
  653. the first input file with at least one chapter. Use a negative file index to
  654. disable any chapter copying.
  655. @item -benchmark (@emph{global})
  656. Show benchmarking information at the end of an encode.
  657. Shows CPU time used and maximum memory consumption.
  658. Maximum memory consumption is not supported on all systems,
  659. it will usually display as 0 if not supported.
  660. @item -benchmark_all (@emph{global})
  661. Show benchmarking information during the encode.
  662. Shows CPU time used in various steps (audio/video encode/decode).
  663. @item -timelimit @var{duration} (@emph{global})
  664. Exit after ffmpeg has been running for @var{duration} seconds.
  665. @item -dump (@emph{global})
  666. Dump each input packet to stderr.
  667. @item -hex (@emph{global})
  668. When dumping packets, also dump the payload.
  669. @item -re (@emph{input})
  670. Read input at native frame rate. Mainly used to simulate a grab device.
  671. By default @command{ffmpeg} attempts to read the input(s) as fast as possible.
  672. This option will slow down the reading of the input(s) to the native frame rate
  673. of the input(s). It is useful for real-time output (e.g. live streaming). If
  674. your input(s) is coming from some other live streaming source (through HTTP or
  675. UDP for example) the server might already be in real-time, thus the option will
  676. likely not be required. On the other hand, this is meaningful if your input(s)
  677. is a file you are trying to push in real-time.
  678. @item -loop_input
  679. Loop over the input stream. Currently it works only for image
  680. streams. This option is used for automatic FFserver testing.
  681. This option is deprecated, use -loop 1.
  682. @item -loop_output @var{number_of_times}
  683. Repeatedly loop output for formats that support looping such as animated GIF
  684. (0 will loop the output infinitely).
  685. This option is deprecated, use -loop.
  686. @item -vsync @var{parameter}
  687. Video sync method.
  688. For compatibility reasons old values can be specified as numbers.
  689. Newly added values will have to be specified as strings always.
  690. @table @option
  691. @item 0, passthrough
  692. Each frame is passed with its timestamp from the demuxer to the muxer.
  693. @item 1, cfr
  694. Frames will be duplicated and dropped to achieve exactly the requested
  695. constant framerate.
  696. @item 2, vfr
  697. Frames are passed through with their timestamp or dropped so as to
  698. prevent 2 frames from having the same timestamp.
  699. @item drop
  700. As passthrough but destroys all timestamps, making the muxer generate
  701. fresh timestamps based on frame-rate.
  702. @item -1, auto
  703. Chooses between 1 and 2 depending on muxer capabilities. This is the
  704. default method.
  705. @end table
  706. With -map you can select from which stream the timestamps should be
  707. taken. You can leave either video or audio unchanged and sync the
  708. remaining stream(s) to the unchanged one.
  709. @item -async @var{samples_per_second}
  710. Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps,
  711. the parameter is the maximum samples per second by which the audio is changed.
  712. -async 1 is a special case where only the start of the audio stream is corrected
  713. without any later correction.
  714. This option has been deprecated. Use the @code{aresample} audio filter instead.
  715. @item -copyts
  716. Do not process input timestamps, but keep their values without trying
  717. to sanitize them. In particular, do not remove the initial start time
  718. offset value.
  719. Note that, depending on the @option{vsync} option or on specific muxer
  720. processing, the output timestamps may mismatch with the input
  721. timestamps even when this option is selected.
  722. @item -copytb @var{mode}
  723. Specify how to set the encoder timebase when stream copying. @var{mode} is an
  724. integer numeric value, and can assume one of the following values:
  725. @table @option
  726. @item 1
  727. Use the demuxer timebase.
  728. The time base is copied to the output encoder from the corresponding input
  729. demuxer. This is sometimes required to avoid non monotonically increasing
  730. timestamps when copying video streams with variable frame rate.
  731. @item 0
  732. Use the decoder timebase.
  733. The time base is copied to the output encoder from the corresponding input
  734. decoder.
  735. @item -1
  736. Try to make the choice automatically, in order to generate a sane output.
  737. @end table
  738. Default value is -1.
  739. @item -shortest (@emph{output})
  740. Finish encoding when the shortest input stream ends.
  741. @item -dts_delta_threshold
  742. Timestamp discontinuity delta threshold.
  743. @item -muxdelay @var{seconds} (@emph{input})
  744. Set the maximum demux-decode delay.
  745. @item -muxpreload @var{seconds} (@emph{input})
  746. Set the initial demux-decode delay.
  747. @item -streamid @var{output-stream-index}:@var{new-value} (@emph{output})
  748. Assign a new stream-id value to an output stream. This option should be
  749. specified prior to the output filename to which it applies.
  750. For the situation where multiple output files exist, a streamid
  751. may be reassigned to a different value.
  752. For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for
  753. an output mpegts file:
  754. @example
  755. ffmpeg -i infile -streamid 0:33 -streamid 1:36 out.ts
  756. @end example
  757. @item -bsf[:@var{stream_specifier}] @var{bitstream_filters} (@emph{output,per-stream})
  758. Set bitstream filters for matching streams. @var{bitstream_filters} is
  759. a comma-separated list of bitstream filters. Use the @code{-bsfs} option
  760. to get the list of bitstream filters.
  761. @example
  762. ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264
  763. @end example
  764. @example
  765. ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt
  766. @end example
  767. @item -tag[:@var{stream_specifier}] @var{codec_tag} (@emph{per-stream})
  768. Force a tag/fourcc for matching streams.
  769. @item -timecode @var{hh}:@var{mm}:@var{ss}SEP@var{ff}
  770. Specify Timecode for writing. @var{SEP} is ':' for non drop timecode and ';'
  771. (or '.') for drop.
  772. @example
  773. ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg
  774. @end example
  775. @anchor{filter_complex_option}
  776. @item -filter_complex @var{filtergraph} (@emph{global})
  777. Define a complex filter graph, i.e. one with arbitrary number of inputs and/or
  778. outputs. For simple graphs -- those with one input and one output of the same
  779. type -- see the @option{-filter} options. @var{filtergraph} is a description of
  780. the filter graph, as described in the ``Filtergraph syntax'' section of the
  781. ffmpeg-filters manual.
  782. Input link labels must refer to input streams using the
  783. @code{[file_index:stream_specifier]} syntax (i.e. the same as @option{-map}
  784. uses). If @var{stream_specifier} matches multiple streams, the first one will be
  785. used. An unlabeled input will be connected to the first unused input stream of
  786. the matching type.
  787. Output link labels are referred to with @option{-map}. Unlabeled outputs are
  788. added to the first output file.
  789. Note that with this option it is possible to use only lavfi sources without
  790. normal input files.
  791. For example, to overlay an image over video
  792. @example
  793. ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map
  794. '[out]' out.mkv
  795. @end example
  796. Here @code{[0:v]} refers to the first video stream in the first input file,
  797. which is linked to the first (main) input of the overlay filter. Similarly the
  798. first video stream in the second input is linked to the second (overlay) input
  799. of overlay.
  800. Assuming there is only one video stream in each input file, we can omit input
  801. labels, so the above is equivalent to
  802. @example
  803. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map
  804. '[out]' out.mkv
  805. @end example
  806. Furthermore we can omit the output label and the single output from the filter
  807. graph will be added to the output file automatically, so we can simply write
  808. @example
  809. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv
  810. @end example
  811. To generate 5 seconds of pure red video using lavfi @code{color} source:
  812. @example
  813. ffmpeg -filter_complex 'color=c=red' -t 5 out.mkv
  814. @end example
  815. @end table
  816. As a special exception, you can use a bitmap subtitle stream as input: it
  817. will be converted into a video with the same size as the largest video in
  818. the file, or 720×576 if no video is present. Note that this is an
  819. experimental and temporary solution. It will be removed once libavfilter has
  820. proper support for subtitles.
  821. For example, to hardcode subtitles on top of a DVB-T recording stored in
  822. MPEG-TS format, delaying the subtitles by 1 second:
  823. @example
  824. ffmpeg -i input.ts -filter_complex \
  825. '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \
  826. -sn -map '#0x2dc' output.mkv
  827. @end example
  828. (0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video,
  829. audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too)
  830. @section Preset files
  831. A preset file contains a sequence of @var{option}=@var{value} pairs,
  832. one for each line, specifying a sequence of options which would be
  833. awkward to specify on the command line. Lines starting with the hash
  834. ('#') character are ignored and are used to provide comments. Check
  835. the @file{presets} directory in the FFmpeg source tree for examples.
  836. Preset files are specified with the @code{vpre}, @code{apre},
  837. @code{spre}, and @code{fpre} options. The @code{fpre} option takes the
  838. filename of the preset instead of a preset name as input and can be
  839. used for any kind of codec. For the @code{vpre}, @code{apre}, and
  840. @code{spre} options, the options specified in a preset file are
  841. applied to the currently selected codec of the same type as the preset
  842. option.
  843. The argument passed to the @code{vpre}, @code{apre}, and @code{spre}
  844. preset options identifies the preset file to use according to the
  845. following rules:
  846. First ffmpeg searches for a file named @var{arg}.ffpreset in the
  847. directories @file{$FFMPEG_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  848. the datadir defined at configuration time (usually @file{PREFIX/share/ffmpeg})
  849. or in a @file{ffpresets} folder along the executable on win32,
  850. in that order. For example, if the argument is @code{libvpx-1080p}, it will
  851. search for the file @file{libvpx-1080p.ffpreset}.
  852. If no such file is found, then ffmpeg will search for a file named
  853. @var{codec_name}-@var{arg}.ffpreset in the above-mentioned
  854. directories, where @var{codec_name} is the name of the codec to which
  855. the preset file options will be applied. For example, if you select
  856. the video codec with @code{-vcodec libvpx} and use @code{-vpre 1080p},
  857. then it will search for the file @file{libvpx-1080p.ffpreset}.
  858. @c man end OPTIONS
  859. @chapter Tips
  860. @c man begin TIPS
  861. @itemize
  862. @item
  863. For streaming at very low bitrate application, use a low frame rate
  864. and a small GOP size. This is especially true for RealVideo where
  865. the Linux player does not seem to be very fast, so it can miss
  866. frames. An example is:
  867. @example
  868. ffmpeg -g 3 -r 3 -t 10 -b:v 50k -s qcif -f rv10 /tmp/b.rm
  869. @end example
  870. @item
  871. The parameter 'q' which is displayed while encoding is the current
  872. quantizer. The value 1 indicates that a very good quality could
  873. be achieved. The value 31 indicates the worst quality. If q=31 appears
  874. too often, it means that the encoder cannot compress enough to meet
  875. your bitrate. You must either increase the bitrate, decrease the
  876. frame rate or decrease the frame size.
  877. @item
  878. If your computer is not fast enough, you can speed up the
  879. compression at the expense of the compression ratio. You can use
  880. '-me zero' to speed up motion estimation, and '-g 0' to disable
  881. motion estimation completely (you have only I-frames, which means it
  882. is about as good as JPEG compression).
  883. @item
  884. To have very low audio bitrates, reduce the sampling frequency
  885. (down to 22050 Hz for MPEG audio, 22050 or 11025 for AC-3).
  886. @item
  887. To have a constant quality (but a variable bitrate), use the option
  888. '-qscale n' when 'n' is between 1 (excellent quality) and 31 (worst
  889. quality).
  890. @end itemize
  891. @c man end TIPS
  892. @chapter Examples
  893. @c man begin EXAMPLES
  894. @section Preset files
  895. A preset file contains a sequence of @var{option=value} pairs, one for
  896. each line, specifying a sequence of options which can be specified also on
  897. the command line. Lines starting with the hash ('#') character are ignored and
  898. are used to provide comments. Empty lines are also ignored. Check the
  899. @file{presets} directory in the FFmpeg source tree for examples.
  900. Preset files are specified with the @code{pre} option, this option takes a
  901. preset name as input. FFmpeg searches for a file named @var{preset_name}.avpreset in
  902. the directories @file{$AVCONV_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  903. the data directory defined at configuration time (usually @file{$PREFIX/share/ffmpeg})
  904. in that order. For example, if the argument is @code{libx264-max}, it will
  905. search for the file @file{libx264-max.avpreset}.
  906. @section Video and Audio grabbing
  907. If you specify the input format and device then ffmpeg can grab video
  908. and audio directly.
  909. @example
  910. ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg
  911. @end example
  912. Or with an ALSA audio source (mono input, card id 1) instead of OSS:
  913. @example
  914. ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg
  915. @end example
  916. Note that you must activate the right video source and channel before
  917. launching ffmpeg with any TV viewer such as
  918. @uref{http://linux.bytesex.org/xawtv/, xawtv} by Gerd Knorr. You also
  919. have to set the audio recording levels correctly with a
  920. standard mixer.
  921. @section X11 grabbing
  922. Grab the X11 display with ffmpeg via
  923. @example
  924. ffmpeg -f x11grab -s cif -r 25 -i :0.0 /tmp/out.mpg
  925. @end example
  926. 0.0 is display.screen number of your X11 server, same as
  927. the DISPLAY environment variable.
  928. @example
  929. ffmpeg -f x11grab -s cif -r 25 -i :0.0+10,20 /tmp/out.mpg
  930. @end example
  931. 0.0 is display.screen number of your X11 server, same as the DISPLAY environment
  932. variable. 10 is the x-offset and 20 the y-offset for the grabbing.
  933. @section Video and Audio file format conversion
  934. Any supported file format and protocol can serve as input to ffmpeg:
  935. Examples:
  936. @itemize
  937. @item
  938. You can use YUV files as input:
  939. @example
  940. ffmpeg -i /tmp/test%d.Y /tmp/out.mpg
  941. @end example
  942. It will use the files:
  943. @example
  944. /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
  945. /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...
  946. @end example
  947. The Y files use twice the resolution of the U and V files. They are
  948. raw files, without header. They can be generated by all decent video
  949. decoders. You must specify the size of the image with the @option{-s} option
  950. if ffmpeg cannot guess it.
  951. @item
  952. You can input from a raw YUV420P file:
  953. @example
  954. ffmpeg -i /tmp/test.yuv /tmp/out.avi
  955. @end example
  956. test.yuv is a file containing raw YUV planar data. Each frame is composed
  957. of the Y plane followed by the U and V planes at half vertical and
  958. horizontal resolution.
  959. @item
  960. You can output to a raw YUV420P file:
  961. @example
  962. ffmpeg -i mydivx.avi hugefile.yuv
  963. @end example
  964. @item
  965. You can set several input files and output files:
  966. @example
  967. ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg
  968. @end example
  969. Converts the audio file a.wav and the raw YUV video file a.yuv
  970. to MPEG file a.mpg.
  971. @item
  972. You can also do audio and video conversions at the same time:
  973. @example
  974. ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2
  975. @end example
  976. Converts a.wav to MPEG audio at 22050 Hz sample rate.
  977. @item
  978. You can encode to several formats at the same time and define a
  979. mapping from input stream to output streams:
  980. @example
  981. ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2
  982. @end example
  983. Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. '-map
  984. file:index' specifies which input stream is used for each output
  985. stream, in the order of the definition of output streams.
  986. @item
  987. You can transcode decrypted VOBs:
  988. @example
  989. ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi
  990. @end example
  991. This is a typical DVD ripping example; the input is a VOB file, the
  992. output an AVI file with MPEG-4 video and MP3 audio. Note that in this
  993. command we use B-frames so the MPEG-4 stream is DivX5 compatible, and
  994. GOP size is 300 which means one intra frame every 10 seconds for 29.97fps
  995. input video. Furthermore, the audio stream is MP3-encoded so you need
  996. to enable LAME support by passing @code{--enable-libmp3lame} to configure.
  997. The mapping is particularly useful for DVD transcoding
  998. to get the desired audio language.
  999. NOTE: To see the supported input formats, use @code{ffmpeg -formats}.
  1000. @item
  1001. You can extract images from a video, or create a video from many images:
  1002. For extracting images from a video:
  1003. @example
  1004. ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg
  1005. @end example
  1006. This will extract one video frame per second from the video and will
  1007. output them in files named @file{foo-001.jpeg}, @file{foo-002.jpeg},
  1008. etc. Images will be rescaled to fit the new WxH values.
  1009. If you want to extract just a limited number of frames, you can use the
  1010. above command in combination with the -vframes or -t option, or in
  1011. combination with -ss to start extracting from a certain point in time.
  1012. For creating a video from many images:
  1013. @example
  1014. ffmpeg -f image2 -i foo-%03d.jpeg -r 12 -s WxH foo.avi
  1015. @end example
  1016. The syntax @code{foo-%03d.jpeg} specifies to use a decimal number
  1017. composed of three digits padded with zeroes to express the sequence
  1018. number. It is the same syntax supported by the C printf function, but
  1019. only formats accepting a normal integer are suitable.
  1020. When importing an image sequence, -i also supports expanding
  1021. shell-like wildcard patterns (globbing) internally, by selecting the
  1022. image2-specific @code{-pattern_type glob} option.
  1023. For example, for creating a video from filenames matching the glob pattern
  1024. @code{foo-*.jpeg}:
  1025. @example
  1026. ffmpeg -f image2 -pattern_type glob -i 'foo-*.jpeg' -r 12 -s WxH foo.avi
  1027. @end example
  1028. @item
  1029. You can put many streams of the same type in the output:
  1030. @example
  1031. ffmpeg -i test1.avi -i test2.avi -map 0:3 -map 0:2 -map 0:1 -map 0:0 -c copy test12.nut
  1032. @end example
  1033. The resulting output file @file{test12.avi} will contain first four streams from
  1034. the input file in reverse order.
  1035. @item
  1036. To force CBR video output:
  1037. @example
  1038. ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v
  1039. @end example
  1040. @item
  1041. The four options lmin, lmax, mblmin and mblmax use 'lambda' units,
  1042. but you may use the QP2LAMBDA constant to easily convert from 'q' units:
  1043. @example
  1044. ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext
  1045. @end example
  1046. @end itemize
  1047. @c man end EXAMPLES
  1048. @chapter See Also
  1049. @ifhtml
  1050. @url{ffplay.html,ffplay}, @url{ffprobe.html,ffprobe}, @url{ffserver.html,ffserver},
  1051. @url{ffmpeg-utils.html,ffmpeg-utils},
  1052. @url{ffmpeg-scaler.html,ffmpeg-scaler},
  1053. @url{ffmpeg-resampler.html,ffmpeg-resampler},
  1054. @url{ffmpeg-codecs.html,ffmpeg-codecs},
  1055. @url{ffmpeg-bitstream-filters,ffmpeg-bitstream-filters},
  1056. @url{ffmpeg-formats.html,ffmpeg-formats},
  1057. @url{ffmpeg-devices.html,ffmpeg-devices},
  1058. @url{ffmpeg-protocols.html,ffmpeg-protocols},
  1059. @url{ffmpeg-filters.html,ffmpeg-filters}
  1060. @end ifhtml
  1061. @ifnothtml
  1062. ffplay(1), ffprobe(1), ffserver(1),
  1063. ffmpeg-utils(1), ffmpeg-scaler(1), ffmpeg-resampler(1),
  1064. ffmpeg-codecs(1), ffmpeg-bitstream-filters(1), ffmpeg-formats(1),
  1065. ffmpeg-devices(1), ffmpeg-protocols(1), ffmpeg-filters(1)
  1066. @end ifnothtml
  1067. @include authors.texi
  1068. @ignore
  1069. @setfilename ffmpeg
  1070. @settitle ffmpeg video converter
  1071. @end ignore
  1072. @bye