You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4030 lines
114KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The magic labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated each other
  37. by a semicolon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string.
  64. @c man end GRAPH2DOT
  65. @chapter Filtergraph description
  66. @c man begin FILTERGRAPH DESCRIPTION
  67. A filtergraph is a directed graph of connected filters. It can contain
  68. cycles, and there can be multiple links between a pair of
  69. filters. Each link has one input pad on one side connecting it to one
  70. filter from which it takes its input, and one output pad on the other
  71. side connecting it to the one filter accepting its output.
  72. Each filter in a filtergraph is an instance of a filter class
  73. registered in the application, which defines the features and the
  74. number of input and output pads of the filter.
  75. A filter with no input pads is called a "source", a filter with no
  76. output pads is called a "sink".
  77. @anchor{Filtergraph syntax}
  78. @section Filtergraph syntax
  79. A filtergraph can be represented using a textual representation, which is
  80. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  81. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  82. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  83. @file{libavfilter/avfiltergraph.h}.
  84. A filterchain consists of a sequence of connected filters, each one
  85. connected to the previous one in the sequence. A filterchain is
  86. represented by a list of ","-separated filter descriptions.
  87. A filtergraph consists of a sequence of filterchains. A sequence of
  88. filterchains is represented by a list of ";"-separated filterchain
  89. descriptions.
  90. A filter is represented by a string of the form:
  91. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  92. @var{filter_name} is the name of the filter class of which the
  93. described filter is an instance of, and has to be the name of one of
  94. the filter classes registered in the program.
  95. The name of the filter class is optionally followed by a string
  96. "=@var{arguments}".
  97. @var{arguments} is a string which contains the parameters used to
  98. initialize the filter instance, and are described in the filter
  99. descriptions below.
  100. The list of arguments can be quoted using the character "'" as initial
  101. and ending mark, and the character '\' for escaping the characters
  102. within the quoted text; otherwise the argument string is considered
  103. terminated when the next special character (belonging to the set
  104. "[]=;,") is encountered.
  105. The name and arguments of the filter are optionally preceded and
  106. followed by a list of link labels.
  107. A link label allows to name a link and associate it to a filter output
  108. or input pad. The preceding labels @var{in_link_1}
  109. ... @var{in_link_N}, are associated to the filter input pads,
  110. the following labels @var{out_link_1} ... @var{out_link_M}, are
  111. associated to the output pads.
  112. When two link labels with the same name are found in the
  113. filtergraph, a link between the corresponding input and output pad is
  114. created.
  115. If an output pad is not labelled, it is linked by default to the first
  116. unlabelled input pad of the next filter in the filterchain.
  117. For example in the filterchain:
  118. @example
  119. nullsrc, split[L1], [L2]overlay, nullsink
  120. @end example
  121. the split filter instance has two output pads, and the overlay filter
  122. instance two input pads. The first output pad of split is labelled
  123. "L1", the first input pad of overlay is labelled "L2", and the second
  124. output pad of split is linked to the second input pad of overlay,
  125. which are both unlabelled.
  126. In a complete filterchain all the unlabelled filter input and output
  127. pads must be connected. A filtergraph is considered valid if all the
  128. filter input and output pads of all the filterchains are connected.
  129. Libavfilter will automatically insert scale filters where format
  130. conversion is required. It is possible to specify swscale flags
  131. for those automatically inserted scalers by prepending
  132. @code{sws_flags=@var{flags};}
  133. to the filtergraph description.
  134. Follows a BNF description for the filtergraph syntax:
  135. @example
  136. @var{NAME} ::= sequence of alphanumeric characters and '_'
  137. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  138. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  139. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  140. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  141. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  142. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  143. @end example
  144. @c man end FILTERGRAPH DESCRIPTION
  145. @chapter Audio Filters
  146. @c man begin AUDIO FILTERS
  147. When you configure your FFmpeg build, you can disable any of the
  148. existing filters using @code{--disable-filters}.
  149. The configure output will show the audio filters included in your
  150. build.
  151. Below is a description of the currently available audio filters.
  152. @section aconvert
  153. Convert the input audio format to the specified formats.
  154. The filter accepts a string of the form:
  155. "@var{sample_format}:@var{channel_layout}".
  156. @var{sample_format} specifies the sample format, and can be a string or the
  157. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  158. suffix for a planar sample format.
  159. @var{channel_layout} specifies the channel layout, and can be a string
  160. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  161. The special parameter "auto", signifies that the filter will
  162. automatically select the output format depending on the output filter.
  163. Some examples follow.
  164. @itemize
  165. @item
  166. Convert input to float, planar, stereo:
  167. @example
  168. aconvert=fltp:stereo
  169. @end example
  170. @item
  171. Convert input to unsigned 8-bit, automatically select out channel layout:
  172. @example
  173. aconvert=u8:auto
  174. @end example
  175. @end itemize
  176. @section aformat
  177. Convert the input audio to one of the specified formats. The framework will
  178. negotiate the most appropriate format to minimize conversions.
  179. The filter accepts the following named parameters:
  180. @table @option
  181. @item sample_fmts
  182. A comma-separated list of requested sample formats.
  183. @item sample_rates
  184. A comma-separated list of requested sample rates.
  185. @item channel_layouts
  186. A comma-separated list of requested channel layouts.
  187. @end table
  188. If a parameter is omitted, all values are allowed.
  189. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  190. @example
  191. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  192. @end example
  193. @section amerge
  194. Merge two or more audio streams into a single multi-channel stream.
  195. The filter accepts the following named options:
  196. @table @option
  197. @item inputs
  198. Set the number of inputs. Default is 2.
  199. @end table
  200. If the channel layouts of the inputs are disjoint, and therefore compatible,
  201. the channel layout of the output will be set accordingly and the channels
  202. will be reordered as necessary. If the channel layouts of the inputs are not
  203. disjoint, the output will have all the channels of the first input then all
  204. the channels of the second input, in that order, and the channel layout of
  205. the output will be the default value corresponding to the total number of
  206. channels.
  207. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  208. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  209. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  210. first input, b1 is the first channel of the second input).
  211. On the other hand, if both input are in stereo, the output channels will be
  212. in the default order: a1, a2, b1, b2, and the channel layout will be
  213. arbitrarily set to 4.0, which may or may not be the expected value.
  214. All inputs must have the same sample rate, and format.
  215. If inputs do not have the same duration, the output will stop with the
  216. shortest.
  217. Example: merge two mono files into a stereo stream:
  218. @example
  219. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  220. @end example
  221. Example: multiple merges:
  222. @example
  223. ffmpeg -f lavfi -i "
  224. amovie=input.mkv:si=0 [a0];
  225. amovie=input.mkv:si=1 [a1];
  226. amovie=input.mkv:si=2 [a2];
  227. amovie=input.mkv:si=3 [a3];
  228. amovie=input.mkv:si=4 [a4];
  229. amovie=input.mkv:si=5 [a5];
  230. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  231. @end example
  232. @section amix
  233. Mixes multiple audio inputs into a single output.
  234. For example
  235. @example
  236. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  237. @end example
  238. will mix 3 input audio streams to a single output with the same duration as the
  239. first input and a dropout transition time of 3 seconds.
  240. The filter accepts the following named parameters:
  241. @table @option
  242. @item inputs
  243. Number of inputs. If unspecified, it defaults to 2.
  244. @item duration
  245. How to determine the end-of-stream.
  246. @table @option
  247. @item longest
  248. Duration of longest input. (default)
  249. @item shortest
  250. Duration of shortest input.
  251. @item first
  252. Duration of first input.
  253. @end table
  254. @item dropout_transition
  255. Transition time, in seconds, for volume renormalization when an input
  256. stream ends. The default value is 2 seconds.
  257. @end table
  258. @section anull
  259. Pass the audio source unchanged to the output.
  260. @section aresample
  261. Resample the input audio to the specified sample rate.
  262. The filter accepts exactly one parameter, the output sample rate. If not
  263. specified then the filter will automatically convert between its input
  264. and output sample rates.
  265. For example, to resample the input audio to 44100Hz:
  266. @example
  267. aresample=44100
  268. @end example
  269. @section asetnsamples
  270. Set the number of samples per each output audio frame.
  271. The last output packet may contain a different number of samples, as
  272. the filter will flush all the remaining samples when the input audio
  273. signal its end.
  274. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  275. separated by ":".
  276. @table @option
  277. @item nb_out_samples, n
  278. Set the number of frames per each output audio frame. The number is
  279. intended as the number of samples @emph{per each channel}.
  280. Default value is 1024.
  281. @item pad, p
  282. If set to 1, the filter will pad the last audio frame with zeroes, so
  283. that the last frame will contain the same number of samples as the
  284. previous ones. Default value is 1.
  285. @end table
  286. For example, to set the number of per-frame samples to 1234 and
  287. disable padding for the last frame, use:
  288. @example
  289. asetnsamples=n=1234:p=0
  290. @end example
  291. @section ashowinfo
  292. Show a line containing various information for each input audio frame.
  293. The input audio is not modified.
  294. The shown line contains a sequence of key/value pairs of the form
  295. @var{key}:@var{value}.
  296. A description of each shown parameter follows:
  297. @table @option
  298. @item n
  299. sequential number of the input frame, starting from 0
  300. @item pts
  301. presentation TimeStamp of the input frame, expressed as a number of
  302. time base units. The time base unit depends on the filter input pad, and
  303. is usually 1/@var{sample_rate}.
  304. @item pts_time
  305. presentation TimeStamp of the input frame, expressed as a number of
  306. seconds
  307. @item pos
  308. position of the frame in the input stream, -1 if this information in
  309. unavailable and/or meaningless (for example in case of synthetic audio)
  310. @item fmt
  311. sample format name
  312. @item chlayout
  313. channel layout description
  314. @item nb_samples
  315. number of samples (per each channel) contained in the filtered frame
  316. @item rate
  317. sample rate for the audio frame
  318. @item checksum
  319. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  320. @item plane_checksum
  321. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  322. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  323. @var{c6} @var{c7}]"
  324. @end table
  325. @section asplit
  326. Split input audio into several identical outputs.
  327. The filter accepts a single parameter which specifies the number of outputs. If
  328. unspecified, it defaults to 2.
  329. For example:
  330. @example
  331. [in] asplit [out0][out1]
  332. @end example
  333. will create two separate outputs from the same input.
  334. To create 3 or more outputs, you need to specify the number of
  335. outputs, like in:
  336. @example
  337. [in] asplit=3 [out0][out1][out2]
  338. @end example
  339. @example
  340. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  341. @end example
  342. will create 5 copies of the input audio.
  343. @section astreamsync
  344. Forward two audio streams and control the order the buffers are forwarded.
  345. The argument to the filter is an expression deciding which stream should be
  346. forwarded next: if the result is negative, the first stream is forwarded; if
  347. the result is positive or zero, the second stream is forwarded. It can use
  348. the following variables:
  349. @table @var
  350. @item b1 b2
  351. number of buffers forwarded so far on each stream
  352. @item s1 s2
  353. number of samples forwarded so far on each stream
  354. @item t1 t2
  355. current timestamp of each stream
  356. @end table
  357. The default value is @code{t1-t2}, which means to always forward the stream
  358. that has a smaller timestamp.
  359. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  360. input, while avoiding too much of a desynchronization:
  361. @example
  362. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  363. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  364. [a2] [b2] amerge
  365. @end example
  366. @section atempo
  367. Adjust audio tempo.
  368. The filter accepts exactly one parameter, the audio tempo. If not
  369. specified then the filter will assume nominal 1.0 tempo. Tempo must
  370. be in the [0.5, 2.0] range.
  371. For example, to slow down audio to 80% tempo:
  372. @example
  373. atempo=0.8
  374. @end example
  375. For example, to speed up audio to 125% tempo:
  376. @example
  377. atempo=1.25
  378. @end example
  379. @section earwax
  380. Make audio easier to listen to on headphones.
  381. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  382. so that when listened to on headphones the stereo image is moved from
  383. inside your head (standard for headphones) to outside and in front of
  384. the listener (standard for speakers).
  385. Ported from SoX.
  386. @section pan
  387. Mix channels with specific gain levels. The filter accepts the output
  388. channel layout followed by a set of channels definitions.
  389. This filter is also designed to remap efficiently the channels of an audio
  390. stream.
  391. The filter accepts parameters of the form:
  392. "@var{l}:@var{outdef}:@var{outdef}:..."
  393. @table @option
  394. @item l
  395. output channel layout or number of channels
  396. @item outdef
  397. output channel specification, of the form:
  398. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  399. @item out_name
  400. output channel to define, either a channel name (FL, FR, etc.) or a channel
  401. number (c0, c1, etc.)
  402. @item gain
  403. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  404. @item in_name
  405. input channel to use, see out_name for details; it is not possible to mix
  406. named and numbered input channels
  407. @end table
  408. If the `=' in a channel specification is replaced by `<', then the gains for
  409. that specification will be renormalized so that the total is 1, thus
  410. avoiding clipping noise.
  411. @subsection Mixing examples
  412. For example, if you want to down-mix from stereo to mono, but with a bigger
  413. factor for the left channel:
  414. @example
  415. pan=1:c0=0.9*c0+0.1*c1
  416. @end example
  417. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  418. 7-channels surround:
  419. @example
  420. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  421. @end example
  422. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  423. that should be preferred (see "-ac" option) unless you have very specific
  424. needs.
  425. @subsection Remapping examples
  426. The channel remapping will be effective if, and only if:
  427. @itemize
  428. @item gain coefficients are zeroes or ones,
  429. @item only one input per channel output,
  430. @end itemize
  431. If all these conditions are satisfied, the filter will notify the user ("Pure
  432. channel mapping detected"), and use an optimized and lossless method to do the
  433. remapping.
  434. For example, if you have a 5.1 source and want a stereo audio stream by
  435. dropping the extra channels:
  436. @example
  437. pan="stereo: c0=FL : c1=FR"
  438. @end example
  439. Given the same source, you can also switch front left and front right channels
  440. and keep the input channel layout:
  441. @example
  442. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  443. @end example
  444. If the input is a stereo audio stream, you can mute the front left channel (and
  445. still keep the stereo channel layout) with:
  446. @example
  447. pan="stereo:c1=c1"
  448. @end example
  449. Still with a stereo audio stream input, you can copy the right channel in both
  450. front left and right:
  451. @example
  452. pan="stereo: c0=FR : c1=FR"
  453. @end example
  454. @section silencedetect
  455. Detect silence in an audio stream.
  456. This filter logs a message when it detects that the input audio volume is less
  457. or equal to a noise tolerance value for a duration greater or equal to the
  458. minimum detected noise duration.
  459. The printed times and duration are expressed in seconds.
  460. @table @option
  461. @item duration, d
  462. Set silence duration until notification (default is 2 seconds).
  463. @item noise, n
  464. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  465. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  466. @end table
  467. Detect 5 seconds of silence with -50dB noise tolerance:
  468. @example
  469. silencedetect=n=-50dB:d=5
  470. @end example
  471. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  472. tolerance in @file{silence.mp3}:
  473. @example
  474. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  475. @end example
  476. @section volume
  477. Adjust the input audio volume.
  478. The filter accepts exactly one parameter @var{vol}, which expresses
  479. how the audio volume will be increased or decreased.
  480. Output values are clipped to the maximum value.
  481. If @var{vol} is expressed as a decimal number, the output audio
  482. volume is given by the relation:
  483. @example
  484. @var{output_volume} = @var{vol} * @var{input_volume}
  485. @end example
  486. If @var{vol} is expressed as a decimal number followed by the string
  487. "dB", the value represents the requested change in decibels of the
  488. input audio power, and the output audio volume is given by the
  489. relation:
  490. @example
  491. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  492. @end example
  493. Otherwise @var{vol} is considered an expression and its evaluated
  494. value is used for computing the output audio volume according to the
  495. first relation.
  496. Default value for @var{vol} is 1.0.
  497. @subsection Examples
  498. @itemize
  499. @item
  500. Half the input audio volume:
  501. @example
  502. volume=0.5
  503. @end example
  504. The above example is equivalent to:
  505. @example
  506. volume=1/2
  507. @end example
  508. @item
  509. Decrease input audio power by 12 decibels:
  510. @example
  511. volume=-12dB
  512. @end example
  513. @end itemize
  514. @section asyncts
  515. Synchronize audio data with timestamps by squeezing/stretching it and/or
  516. dropping samples/adding silence when needed.
  517. The filter accepts the following named parameters:
  518. @table @option
  519. @item compensate
  520. Enable stretching/squeezing the data to make it match the timestamps.
  521. @item min_delta
  522. Minimum difference between timestamps and audio data (in seconds) to trigger
  523. adding/dropping samples.
  524. @item max_comp
  525. Maximum compensation in samples per second.
  526. @end table
  527. @section channelsplit
  528. Split each channel in input audio stream into a separate output stream.
  529. This filter accepts the following named parameters:
  530. @table @option
  531. @item channel_layout
  532. Channel layout of the input stream. Default is "stereo".
  533. @end table
  534. For example, assuming a stereo input MP3 file
  535. @example
  536. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  537. @end example
  538. will create an output Matroska file with two audio streams, one containing only
  539. the left channel and the other the right channel.
  540. To split a 5.1 WAV file into per-channel files
  541. @example
  542. ffmpeg -i in.wav -filter_complex
  543. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  544. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  545. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  546. side_right.wav
  547. @end example
  548. @section channelmap
  549. Remap input channels to new locations.
  550. This filter accepts the following named parameters:
  551. @table @option
  552. @item channel_layout
  553. Channel layout of the output stream.
  554. @item map
  555. Map channels from input to output. The argument is a comma-separated list of
  556. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  557. @var{in_channel} form. @var{in_channel} can be either the name of the input
  558. channel (e.g. FL for front left) or its index in the input channel layout.
  559. @var{out_channel} is the name of the output channel or its index in the output
  560. channel layout. If @var{out_channel} is not given then it is implicitly an
  561. index, starting with zero and increasing by one for each mapping.
  562. @end table
  563. If no mapping is present, the filter will implicitly map input channels to
  564. output channels preserving index.
  565. For example, assuming a 5.1+downmix input MOV file
  566. @example
  567. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  568. @end example
  569. will create an output WAV file tagged as stereo from the downmix channels of
  570. the input.
  571. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  572. @example
  573. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  574. @end example
  575. @section join
  576. Join multiple input streams into one multi-channel stream.
  577. The filter accepts the following named parameters:
  578. @table @option
  579. @item inputs
  580. Number of input streams. Defaults to 2.
  581. @item channel_layout
  582. Desired output channel layout. Defaults to stereo.
  583. @item map
  584. Map channels from inputs to output. The argument is a comma-separated list of
  585. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  586. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  587. can be either the name of the input channel (e.g. FL for front left) or its
  588. index in the specified input stream. @var{out_channel} is the name of the output
  589. channel.
  590. @end table
  591. The filter will attempt to guess the mappings when those are not specified
  592. explicitly. It does so by first trying to find an unused matching input channel
  593. and if that fails it picks the first unused input channel.
  594. E.g. to join 3 inputs (with properly set channel layouts)
  595. @example
  596. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  597. @end example
  598. To build a 5.1 output from 6 single-channel streams:
  599. @example
  600. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  601. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  602. out
  603. @end example
  604. @section resample
  605. Convert the audio sample format, sample rate and channel layout. This filter is
  606. not meant to be used directly.
  607. @c man end AUDIO FILTERS
  608. @chapter Audio Sources
  609. @c man begin AUDIO SOURCES
  610. Below is a description of the currently available audio sources.
  611. @section abuffer
  612. Buffer audio frames, and make them available to the filter chain.
  613. This source is mainly intended for a programmatic use, in particular
  614. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  615. It accepts the following mandatory parameters:
  616. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  617. @table @option
  618. @item sample_rate
  619. The sample rate of the incoming audio buffers.
  620. @item sample_fmt
  621. The sample format of the incoming audio buffers.
  622. Either a sample format name or its corresponging integer representation from
  623. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  624. @item channel_layout
  625. The channel layout of the incoming audio buffers.
  626. Either a channel layout name from channel_layout_map in
  627. @file{libavutil/audioconvert.c} or its corresponding integer representation
  628. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  629. @end table
  630. For example:
  631. @example
  632. abuffer=44100:s16p:stereo
  633. @end example
  634. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  635. Since the sample format with name "s16p" corresponds to the number
  636. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  637. equivalent to:
  638. @example
  639. abuffer=44100:6:0x3
  640. @end example
  641. @section aevalsrc
  642. Generate an audio signal specified by an expression.
  643. This source accepts in input one or more expressions (one for each
  644. channel), which are evaluated and used to generate a corresponding
  645. audio signal.
  646. It accepts the syntax: @var{exprs}[::@var{options}].
  647. @var{exprs} is a list of expressions separated by ":", one for each
  648. separate channel. In case the @var{channel_layout} is not
  649. specified, the selected channel layout depends on the number of
  650. provided expressions.
  651. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  652. separated by ":".
  653. The description of the accepted options follows.
  654. @table @option
  655. @item channel_layout, c
  656. Set the channel layout. The number of channels in the specified layout
  657. must be equal to the number of specified expressions.
  658. @item duration, d
  659. Set the minimum duration of the sourced audio. See the function
  660. @code{av_parse_time()} for the accepted format.
  661. Note that the resulting duration may be greater than the specified
  662. duration, as the generated audio is always cut at the end of a
  663. complete frame.
  664. If not specified, or the expressed duration is negative, the audio is
  665. supposed to be generated forever.
  666. @item nb_samples, n
  667. Set the number of samples per channel per each output frame,
  668. default to 1024.
  669. @item sample_rate, s
  670. Specify the sample rate, default to 44100.
  671. @end table
  672. Each expression in @var{exprs} can contain the following constants:
  673. @table @option
  674. @item n
  675. number of the evaluated sample, starting from 0
  676. @item t
  677. time of the evaluated sample expressed in seconds, starting from 0
  678. @item s
  679. sample rate
  680. @end table
  681. @subsection Examples
  682. @itemize
  683. @item
  684. Generate silence:
  685. @example
  686. aevalsrc=0
  687. @end example
  688. @item
  689. Generate a sin signal with frequency of 440 Hz, set sample rate to
  690. 8000 Hz:
  691. @example
  692. aevalsrc="sin(440*2*PI*t)::s=8000"
  693. @end example
  694. @item
  695. Generate a two channels signal, specify the channel layout (Front
  696. Center + Back Center) explicitly:
  697. @example
  698. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  699. @end example
  700. @item
  701. Generate white noise:
  702. @example
  703. aevalsrc="-2+random(0)"
  704. @end example
  705. @item
  706. Generate an amplitude modulated signal:
  707. @example
  708. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  709. @end example
  710. @item
  711. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  712. @example
  713. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  714. @end example
  715. @end itemize
  716. @section amovie
  717. Read an audio stream from a movie container.
  718. It accepts the syntax: @var{movie_name}[:@var{options}] where
  719. @var{movie_name} is the name of the resource to read (not necessarily
  720. a file but also a device or a stream accessed through some protocol),
  721. and @var{options} is an optional sequence of @var{key}=@var{value}
  722. pairs, separated by ":".
  723. The description of the accepted options follows.
  724. @table @option
  725. @item format_name, f
  726. Specify the format assumed for the movie to read, and can be either
  727. the name of a container or an input device. If not specified the
  728. format is guessed from @var{movie_name} or by probing.
  729. @item seek_point, sp
  730. Specify the seek point in seconds, the frames will be output
  731. starting from this seek point, the parameter is evaluated with
  732. @code{av_strtod} so the numerical value may be suffixed by an IS
  733. postfix. Default value is "0".
  734. @item stream_index, si
  735. Specify the index of the audio stream to read. If the value is -1,
  736. the best suited audio stream will be automatically selected. Default
  737. value is "-1".
  738. @end table
  739. @section anullsrc
  740. Null audio source, return unprocessed audio frames. It is mainly useful
  741. as a template and to be employed in analysis / debugging tools, or as
  742. the source for filters which ignore the input data (for example the sox
  743. synth filter).
  744. It accepts an optional sequence of @var{key}=@var{value} pairs,
  745. separated by ":".
  746. The description of the accepted options follows.
  747. @table @option
  748. @item sample_rate, s
  749. Specify the sample rate, and defaults to 44100.
  750. @item channel_layout, cl
  751. Specify the channel layout, and can be either an integer or a string
  752. representing a channel layout. The default value of @var{channel_layout}
  753. is "stereo".
  754. Check the channel_layout_map definition in
  755. @file{libavcodec/audioconvert.c} for the mapping between strings and
  756. channel layout values.
  757. @item nb_samples, n
  758. Set the number of samples per requested frames.
  759. @end table
  760. Follow some examples:
  761. @example
  762. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  763. anullsrc=r=48000:cl=4
  764. # same as
  765. anullsrc=r=48000:cl=mono
  766. @end example
  767. @section abuffer
  768. Buffer audio frames, and make them available to the filter chain.
  769. This source is not intended to be part of user-supplied graph descriptions but
  770. for insertion by calling programs through the interface defined in
  771. @file{libavfilter/buffersrc.h}.
  772. It accepts the following named parameters:
  773. @table @option
  774. @item time_base
  775. Timebase which will be used for timestamps of submitted frames. It must be
  776. either a floating-point number or in @var{numerator}/@var{denominator} form.
  777. @item sample_rate
  778. Audio sample rate.
  779. @item sample_fmt
  780. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  781. @item channel_layout
  782. Channel layout of the audio data, in the form that can be accepted by
  783. @code{av_get_channel_layout()}.
  784. @end table
  785. All the parameters need to be explicitly defined.
  786. @c man end AUDIO SOURCES
  787. @chapter Audio Sinks
  788. @c man begin AUDIO SINKS
  789. Below is a description of the currently available audio sinks.
  790. @section abuffersink
  791. Buffer audio frames, and make them available to the end of filter chain.
  792. This sink is mainly intended for programmatic use, in particular
  793. through the interface defined in @file{libavfilter/buffersink.h}.
  794. It requires a pointer to an AVABufferSinkContext structure, which
  795. defines the incoming buffers' formats, to be passed as the opaque
  796. parameter to @code{avfilter_init_filter} for initialization.
  797. @section anullsink
  798. Null audio sink, do absolutely nothing with the input audio. It is
  799. mainly useful as a template and to be employed in analysis / debugging
  800. tools.
  801. @section abuffersink
  802. This sink is intended for programmatic use. Frames that arrive on this sink can
  803. be retrieved by the calling program using the interface defined in
  804. @file{libavfilter/buffersink.h}.
  805. This filter accepts no parameters.
  806. @c man end AUDIO SINKS
  807. @chapter Video Filters
  808. @c man begin VIDEO FILTERS
  809. When you configure your FFmpeg build, you can disable any of the
  810. existing filters using @code{--disable-filters}.
  811. The configure output will show the video filters included in your
  812. build.
  813. Below is a description of the currently available video filters.
  814. @section ass
  815. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  816. using the libass library.
  817. To enable compilation of this filter you need to configure FFmpeg with
  818. @code{--enable-libass}.
  819. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  820. where @var{ass_filename} is the filename of the ASS file to read, and
  821. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  822. separated by ":".
  823. A description of the accepted options follows.
  824. @table @option
  825. @item original_size
  826. Specifies the size of the original video, the video for which the ASS file
  827. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  828. necessary to correctly scale the fonts if the aspect ratio has been changed.
  829. @end table
  830. For example, to render the file @file{sub.ass} on top of the input
  831. video, use the command:
  832. @example
  833. ass=sub.ass
  834. @end example
  835. @section bbox
  836. Compute the bounding box for the non-black pixels in the input frame
  837. luminance plane.
  838. This filter computes the bounding box containing all the pixels with a
  839. luminance value greater than the minimum allowed value.
  840. The parameters describing the bounding box are printed on the filter
  841. log.
  842. @section blackdetect
  843. Detect video intervals that are (almost) completely black. Can be
  844. useful to detect chapter transitions, commercials, or invalid
  845. recordings. Output lines contains the time for the start, end and
  846. duration of the detected black interval expressed in seconds.
  847. In order to display the output lines, you need to set the loglevel at
  848. least to the AV_LOG_INFO value.
  849. This filter accepts a list of options in the form of
  850. @var{key}=@var{value} pairs separated by ":". A description of the
  851. accepted options follows.
  852. @table @option
  853. @item black_min_duration, d
  854. Set the minimum detected black duration expressed in seconds. It must
  855. be a non-negative floating point number.
  856. Default value is 2.0.
  857. @item picture_black_ratio_th, pic_th
  858. Set the threshold for considering a picture "black".
  859. Express the minimum value for the ratio:
  860. @example
  861. @var{nb_black_pixels} / @var{nb_pixels}
  862. @end example
  863. for which a picture is considered black.
  864. Default value is 0.98.
  865. @item pixel_black_th, pix_th
  866. Set the threshold for considering a pixel "black".
  867. The threshold expresses the maximum pixel luminance value for which a
  868. pixel is considered "black". The provided value is scaled according to
  869. the following equation:
  870. @example
  871. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  872. @end example
  873. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  874. the input video format, the range is [0-255] for YUV full-range
  875. formats and [16-235] for YUV non full-range formats.
  876. Default value is 0.10.
  877. @end table
  878. The following example sets the maximum pixel threshold to the minimum
  879. value, and detects only black intervals of 2 or more seconds:
  880. @example
  881. blackdetect=d=2:pix_th=0.00
  882. @end example
  883. @section blackframe
  884. Detect frames that are (almost) completely black. Can be useful to
  885. detect chapter transitions or commercials. Output lines consist of
  886. the frame number of the detected frame, the percentage of blackness,
  887. the position in the file if known or -1 and the timestamp in seconds.
  888. In order to display the output lines, you need to set the loglevel at
  889. least to the AV_LOG_INFO value.
  890. The filter accepts the syntax:
  891. @example
  892. blackframe[=@var{amount}:[@var{threshold}]]
  893. @end example
  894. @var{amount} is the percentage of the pixels that have to be below the
  895. threshold, and defaults to 98.
  896. @var{threshold} is the threshold below which a pixel value is
  897. considered black, and defaults to 32.
  898. @section boxblur
  899. Apply boxblur algorithm to the input video.
  900. This filter accepts the parameters:
  901. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  902. Chroma and alpha parameters are optional, if not specified they default
  903. to the corresponding values set for @var{luma_radius} and
  904. @var{luma_power}.
  905. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  906. the radius in pixels of the box used for blurring the corresponding
  907. input plane. They are expressions, and can contain the following
  908. constants:
  909. @table @option
  910. @item w, h
  911. the input width and height in pixels
  912. @item cw, ch
  913. the input chroma image width and height in pixels
  914. @item hsub, vsub
  915. horizontal and vertical chroma subsample values. For example for the
  916. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  917. @end table
  918. The radius must be a non-negative number, and must not be greater than
  919. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  920. and of @code{min(cw,ch)/2} for the chroma planes.
  921. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  922. how many times the boxblur filter is applied to the corresponding
  923. plane.
  924. Some examples follow:
  925. @itemize
  926. @item
  927. Apply a boxblur filter with luma, chroma, and alpha radius
  928. set to 2:
  929. @example
  930. boxblur=2:1
  931. @end example
  932. @item
  933. Set luma radius to 2, alpha and chroma radius to 0
  934. @example
  935. boxblur=2:1:0:0:0:0
  936. @end example
  937. @item
  938. Set luma and chroma radius to a fraction of the video dimension
  939. @example
  940. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  941. @end example
  942. @end itemize
  943. @section colormatrix
  944. The colormatrix filter allows conversion between any of the following color
  945. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  946. and FCC (@var{fcc}).
  947. The syntax of the parameters is @var{source}:@var{destination}:
  948. @example
  949. colormatrix=bt601:smpte240m
  950. @end example
  951. @section copy
  952. Copy the input source unchanged to the output. Mainly useful for
  953. testing purposes.
  954. @section crop
  955. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  956. The @var{keep_aspect} parameter is optional, if specified and set to a
  957. non-zero value will force the output display aspect ratio to be the
  958. same of the input, by changing the output sample aspect ratio.
  959. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  960. expressions containing the following constants:
  961. @table @option
  962. @item x, y
  963. the computed values for @var{x} and @var{y}. They are evaluated for
  964. each new frame.
  965. @item in_w, in_h
  966. the input width and height
  967. @item iw, ih
  968. same as @var{in_w} and @var{in_h}
  969. @item out_w, out_h
  970. the output (cropped) width and height
  971. @item ow, oh
  972. same as @var{out_w} and @var{out_h}
  973. @item a
  974. same as @var{iw} / @var{ih}
  975. @item sar
  976. input sample aspect ratio
  977. @item dar
  978. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  979. @item hsub, vsub
  980. horizontal and vertical chroma subsample values. For example for the
  981. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  982. @item n
  983. the number of input frame, starting from 0
  984. @item pos
  985. the position in the file of the input frame, NAN if unknown
  986. @item t
  987. timestamp expressed in seconds, NAN if the input timestamp is unknown
  988. @end table
  989. The @var{out_w} and @var{out_h} parameters specify the expressions for
  990. the width and height of the output (cropped) video. They are
  991. evaluated just at the configuration of the filter.
  992. The default value of @var{out_w} is "in_w", and the default value of
  993. @var{out_h} is "in_h".
  994. The expression for @var{out_w} may depend on the value of @var{out_h},
  995. and the expression for @var{out_h} may depend on @var{out_w}, but they
  996. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  997. evaluated after @var{out_w} and @var{out_h}.
  998. The @var{x} and @var{y} parameters specify the expressions for the
  999. position of the top-left corner of the output (non-cropped) area. They
  1000. are evaluated for each frame. If the evaluated value is not valid, it
  1001. is approximated to the nearest valid value.
  1002. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1003. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1004. the center of the input image.
  1005. The expression for @var{x} may depend on @var{y}, and the expression
  1006. for @var{y} may depend on @var{x}.
  1007. Follow some examples:
  1008. @example
  1009. # crop the central input area with size 100x100
  1010. crop=100:100
  1011. # crop the central input area with size 2/3 of the input video
  1012. "crop=2/3*in_w:2/3*in_h"
  1013. # crop the input video central square
  1014. crop=in_h
  1015. # delimit the rectangle with the top-left corner placed at position
  1016. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1017. # corner of the input image.
  1018. crop=in_w-100:in_h-100:100:100
  1019. # crop 10 pixels from the left and right borders, and 20 pixels from
  1020. # the top and bottom borders
  1021. "crop=in_w-2*10:in_h-2*20"
  1022. # keep only the bottom right quarter of the input image
  1023. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1024. # crop height for getting Greek harmony
  1025. "crop=in_w:1/PHI*in_w"
  1026. # trembling effect
  1027. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1028. # erratic camera effect depending on timestamp
  1029. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1030. # set x depending on the value of y
  1031. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1032. @end example
  1033. @section cropdetect
  1034. Auto-detect crop size.
  1035. Calculate necessary cropping parameters and prints the recommended
  1036. parameters through the logging system. The detected dimensions
  1037. correspond to the non-black area of the input video.
  1038. It accepts the syntax:
  1039. @example
  1040. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1041. @end example
  1042. @table @option
  1043. @item limit
  1044. Threshold, which can be optionally specified from nothing (0) to
  1045. everything (255), defaults to 24.
  1046. @item round
  1047. Value which the width/height should be divisible by, defaults to
  1048. 16. The offset is automatically adjusted to center the video. Use 2 to
  1049. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1050. encoding to most video codecs.
  1051. @item reset
  1052. Counter that determines after how many frames cropdetect will reset
  1053. the previously detected largest video area and start over to detect
  1054. the current optimal crop area. Defaults to 0.
  1055. This can be useful when channel logos distort the video area. 0
  1056. indicates never reset and return the largest area encountered during
  1057. playback.
  1058. @end table
  1059. @section delogo
  1060. Suppress a TV station logo by a simple interpolation of the surrounding
  1061. pixels. Just set a rectangle covering the logo and watch it disappear
  1062. (and sometimes something even uglier appear - your mileage may vary).
  1063. The filter accepts parameters as a string of the form
  1064. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1065. @var{key}=@var{value} pairs, separated by ":".
  1066. The description of the accepted parameters follows.
  1067. @table @option
  1068. @item x, y
  1069. Specify the top left corner coordinates of the logo. They must be
  1070. specified.
  1071. @item w, h
  1072. Specify the width and height of the logo to clear. They must be
  1073. specified.
  1074. @item band, t
  1075. Specify the thickness of the fuzzy edge of the rectangle (added to
  1076. @var{w} and @var{h}). The default value is 4.
  1077. @item show
  1078. When set to 1, a green rectangle is drawn on the screen to simplify
  1079. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1080. @var{band} is set to 4. The default value is 0.
  1081. @end table
  1082. Some examples follow.
  1083. @itemize
  1084. @item
  1085. Set a rectangle covering the area with top left corner coordinates 0,0
  1086. and size 100x77, setting a band of size 10:
  1087. @example
  1088. delogo=0:0:100:77:10
  1089. @end example
  1090. @item
  1091. As the previous example, but use named options:
  1092. @example
  1093. delogo=x=0:y=0:w=100:h=77:band=10
  1094. @end example
  1095. @end itemize
  1096. @section deshake
  1097. Attempt to fix small changes in horizontal and/or vertical shift. This
  1098. filter helps remove camera shake from hand-holding a camera, bumping a
  1099. tripod, moving on a vehicle, etc.
  1100. The filter accepts parameters as a string of the form
  1101. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1102. A description of the accepted parameters follows.
  1103. @table @option
  1104. @item x, y, w, h
  1105. Specify a rectangular area where to limit the search for motion
  1106. vectors.
  1107. If desired the search for motion vectors can be limited to a
  1108. rectangular area of the frame defined by its top left corner, width
  1109. and height. These parameters have the same meaning as the drawbox
  1110. filter which can be used to visualise the position of the bounding
  1111. box.
  1112. This is useful when simultaneous movement of subjects within the frame
  1113. might be confused for camera motion by the motion vector search.
  1114. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1115. then the full frame is used. This allows later options to be set
  1116. without specifying the bounding box for the motion vector search.
  1117. Default - search the whole frame.
  1118. @item rx, ry
  1119. Specify the maximum extent of movement in x and y directions in the
  1120. range 0-64 pixels. Default 16.
  1121. @item edge
  1122. Specify how to generate pixels to fill blanks at the edge of the
  1123. frame. An integer from 0 to 3 as follows:
  1124. @table @option
  1125. @item 0
  1126. Fill zeroes at blank locations
  1127. @item 1
  1128. Original image at blank locations
  1129. @item 2
  1130. Extruded edge value at blank locations
  1131. @item 3
  1132. Mirrored edge at blank locations
  1133. @end table
  1134. The default setting is mirror edge at blank locations.
  1135. @item blocksize
  1136. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1137. default 8.
  1138. @item contrast
  1139. Specify the contrast threshold for blocks. Only blocks with more than
  1140. the specified contrast (difference between darkest and lightest
  1141. pixels) will be considered. Range 1-255, default 125.
  1142. @item search
  1143. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1144. search. Default - exhaustive search.
  1145. @item filename
  1146. If set then a detailed log of the motion search is written to the
  1147. specified file.
  1148. @end table
  1149. @section drawbox
  1150. Draw a colored box on the input image.
  1151. It accepts the syntax:
  1152. @example
  1153. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1154. @end example
  1155. @table @option
  1156. @item x, y
  1157. Specify the top left corner coordinates of the box. Default to 0.
  1158. @item width, height
  1159. Specify the width and height of the box, if 0 they are interpreted as
  1160. the input width and height. Default to 0.
  1161. @item color
  1162. Specify the color of the box to write, it can be the name of a color
  1163. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1164. @end table
  1165. Follow some examples:
  1166. @example
  1167. # draw a black box around the edge of the input image
  1168. drawbox
  1169. # draw a box with color red and an opacity of 50%
  1170. drawbox=10:20:200:60:red@@0.5"
  1171. @end example
  1172. @section drawtext
  1173. Draw text string or text from specified file on top of video using the
  1174. libfreetype library.
  1175. To enable compilation of this filter you need to configure FFmpeg with
  1176. @code{--enable-libfreetype}.
  1177. The filter also recognizes strftime() sequences in the provided text
  1178. and expands them accordingly. Check the documentation of strftime().
  1179. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1180. separated by ":".
  1181. The description of the accepted parameters follows.
  1182. @table @option
  1183. @item box
  1184. Used to draw a box around text using background color.
  1185. Value should be either 1 (enable) or 0 (disable).
  1186. The default value of @var{box} is 0.
  1187. @item boxcolor
  1188. The color to be used for drawing box around text.
  1189. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1190. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1191. The default value of @var{boxcolor} is "white".
  1192. @item draw
  1193. Set an expression which specifies if the text should be drawn. If the
  1194. expression evaluates to 0, the text is not drawn. This is useful for
  1195. specifying that the text should be drawn only when specific conditions
  1196. are met.
  1197. Default value is "1".
  1198. See below for the list of accepted constants and functions.
  1199. @item fix_bounds
  1200. If true, check and fix text coords to avoid clipping.
  1201. @item fontcolor
  1202. The color to be used for drawing fonts.
  1203. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1204. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1205. The default value of @var{fontcolor} is "black".
  1206. @item fontfile
  1207. The font file to be used for drawing text. Path must be included.
  1208. This parameter is mandatory.
  1209. @item fontsize
  1210. The font size to be used for drawing text.
  1211. The default value of @var{fontsize} is 16.
  1212. @item ft_load_flags
  1213. Flags to be used for loading the fonts.
  1214. The flags map the corresponding flags supported by libfreetype, and are
  1215. a combination of the following values:
  1216. @table @var
  1217. @item default
  1218. @item no_scale
  1219. @item no_hinting
  1220. @item render
  1221. @item no_bitmap
  1222. @item vertical_layout
  1223. @item force_autohint
  1224. @item crop_bitmap
  1225. @item pedantic
  1226. @item ignore_global_advance_width
  1227. @item no_recurse
  1228. @item ignore_transform
  1229. @item monochrome
  1230. @item linear_design
  1231. @item no_autohint
  1232. @item end table
  1233. @end table
  1234. Default value is "render".
  1235. For more information consult the documentation for the FT_LOAD_*
  1236. libfreetype flags.
  1237. @item shadowcolor
  1238. The color to be used for drawing a shadow behind the drawn text. It
  1239. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1240. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1241. The default value of @var{shadowcolor} is "black".
  1242. @item shadowx, shadowy
  1243. The x and y offsets for the text shadow position with respect to the
  1244. position of the text. They can be either positive or negative
  1245. values. Default value for both is "0".
  1246. @item tabsize
  1247. The size in number of spaces to use for rendering the tab.
  1248. Default value is 4.
  1249. @item timecode
  1250. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1251. format. It can be used with or without text parameter. @var{timecode_rate}
  1252. option must be specified.
  1253. @item timecode_rate, rate, r
  1254. Set the timecode frame rate (timecode only).
  1255. @item text
  1256. The text string to be drawn. The text must be a sequence of UTF-8
  1257. encoded characters.
  1258. This parameter is mandatory if no file is specified with the parameter
  1259. @var{textfile}.
  1260. @item textfile
  1261. A text file containing text to be drawn. The text must be a sequence
  1262. of UTF-8 encoded characters.
  1263. This parameter is mandatory if no text string is specified with the
  1264. parameter @var{text}.
  1265. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1266. @item x, y
  1267. The expressions which specify the offsets where text will be drawn
  1268. within the video frame. They are relative to the top/left border of the
  1269. output image.
  1270. The default value of @var{x} and @var{y} is "0".
  1271. See below for the list of accepted constants and functions.
  1272. @end table
  1273. The parameters for @var{x} and @var{y} are expressions containing the
  1274. following constants and functions:
  1275. @table @option
  1276. @item dar
  1277. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1278. @item hsub, vsub
  1279. horizontal and vertical chroma subsample values. For example for the
  1280. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1281. @item line_h, lh
  1282. the height of each text line
  1283. @item main_h, h, H
  1284. the input height
  1285. @item main_w, w, W
  1286. the input width
  1287. @item max_glyph_a, ascent
  1288. the maximum distance from the baseline to the highest/upper grid
  1289. coordinate used to place a glyph outline point, for all the rendered
  1290. glyphs.
  1291. It is a positive value, due to the grid's orientation with the Y axis
  1292. upwards.
  1293. @item max_glyph_d, descent
  1294. the maximum distance from the baseline to the lowest grid coordinate
  1295. used to place a glyph outline point, for all the rendered glyphs.
  1296. This is a negative value, due to the grid's orientation, with the Y axis
  1297. upwards.
  1298. @item max_glyph_h
  1299. maximum glyph height, that is the maximum height for all the glyphs
  1300. contained in the rendered text, it is equivalent to @var{ascent} -
  1301. @var{descent}.
  1302. @item max_glyph_w
  1303. maximum glyph width, that is the maximum width for all the glyphs
  1304. contained in the rendered text
  1305. @item n
  1306. the number of input frame, starting from 0
  1307. @item rand(min, max)
  1308. return a random number included between @var{min} and @var{max}
  1309. @item sar
  1310. input sample aspect ratio
  1311. @item t
  1312. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1313. @item text_h, th
  1314. the height of the rendered text
  1315. @item text_w, tw
  1316. the width of the rendered text
  1317. @item x, y
  1318. the x and y offset coordinates where the text is drawn.
  1319. These parameters allow the @var{x} and @var{y} expressions to refer
  1320. each other, so you can for example specify @code{y=x/dar}.
  1321. @end table
  1322. If libavfilter was built with @code{--enable-fontconfig}, then
  1323. @option{fontfile} can be a fontconfig pattern or omitted.
  1324. Some examples follow.
  1325. @itemize
  1326. @item
  1327. Draw "Test Text" with font FreeSerif, using the default values for the
  1328. optional parameters.
  1329. @example
  1330. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1331. @end example
  1332. @item
  1333. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1334. and y=50 (counting from the top-left corner of the screen), text is
  1335. yellow with a red box around it. Both the text and the box have an
  1336. opacity of 20%.
  1337. @example
  1338. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1339. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1340. @end example
  1341. Note that the double quotes are not necessary if spaces are not used
  1342. within the parameter list.
  1343. @item
  1344. Show the text at the center of the video frame:
  1345. @example
  1346. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1347. @end example
  1348. @item
  1349. Show a text line sliding from right to left in the last row of the video
  1350. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1351. with no newlines.
  1352. @example
  1353. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1354. @end example
  1355. @item
  1356. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1357. @example
  1358. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1359. @end example
  1360. @item
  1361. Draw a single green letter "g", at the center of the input video.
  1362. The glyph baseline is placed at half screen height.
  1363. @example
  1364. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1365. @end example
  1366. @item
  1367. Show text for 1 second every 3 seconds:
  1368. @example
  1369. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1370. @end example
  1371. @item
  1372. Use fontconfig to set the font. Note that the colons need to be escaped.
  1373. @example
  1374. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1375. @end example
  1376. @end itemize
  1377. For more information about libfreetype, check:
  1378. @url{http://www.freetype.org/}.
  1379. For more information about fontconfig, check:
  1380. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1381. @section fade
  1382. Apply fade-in/out effect to input video.
  1383. It accepts the parameters:
  1384. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1385. @var{type} specifies if the effect type, can be either "in" for
  1386. fade-in, or "out" for a fade-out effect.
  1387. @var{start_frame} specifies the number of the start frame for starting
  1388. to apply the fade effect.
  1389. @var{nb_frames} specifies the number of frames for which the fade
  1390. effect has to last. At the end of the fade-in effect the output video
  1391. will have the same intensity as the input video, at the end of the
  1392. fade-out transition the output video will be completely black.
  1393. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1394. separated by ":". The description of the accepted options follows.
  1395. @table @option
  1396. @item type, t
  1397. See @var{type}.
  1398. @item start_frame, s
  1399. See @var{start_frame}.
  1400. @item nb_frames, n
  1401. See @var{nb_frames}.
  1402. @item alpha
  1403. If set to 1, fade only alpha channel, if one exists on the input.
  1404. Default value is 0.
  1405. @end table
  1406. A few usage examples follow, usable too as test scenarios.
  1407. @example
  1408. # fade in first 30 frames of video
  1409. fade=in:0:30
  1410. # fade out last 45 frames of a 200-frame video
  1411. fade=out:155:45
  1412. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1413. fade=in:0:25, fade=out:975:25
  1414. # make first 5 frames black, then fade in from frame 5-24
  1415. fade=in:5:20
  1416. # fade in alpha over first 25 frames of video
  1417. fade=in:0:25:alpha=1
  1418. @end example
  1419. @section fieldorder
  1420. Transform the field order of the input video.
  1421. It accepts one parameter which specifies the required field order that
  1422. the input interlaced video will be transformed to. The parameter can
  1423. assume one of the following values:
  1424. @table @option
  1425. @item 0 or bff
  1426. output bottom field first
  1427. @item 1 or tff
  1428. output top field first
  1429. @end table
  1430. Default value is "tff".
  1431. Transformation is achieved by shifting the picture content up or down
  1432. by one line, and filling the remaining line with appropriate picture content.
  1433. This method is consistent with most broadcast field order converters.
  1434. If the input video is not flagged as being interlaced, or it is already
  1435. flagged as being of the required output field order then this filter does
  1436. not alter the incoming video.
  1437. This filter is very useful when converting to or from PAL DV material,
  1438. which is bottom field first.
  1439. For example:
  1440. @example
  1441. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1442. @end example
  1443. @section fifo
  1444. Buffer input images and send them when they are requested.
  1445. This filter is mainly useful when auto-inserted by the libavfilter
  1446. framework.
  1447. The filter does not take parameters.
  1448. @section format
  1449. Convert the input video to one of the specified pixel formats.
  1450. Libavfilter will try to pick one that is supported for the input to
  1451. the next filter.
  1452. The filter accepts a list of pixel format names, separated by ":",
  1453. for example "yuv420p:monow:rgb24".
  1454. Some examples follow:
  1455. @example
  1456. # convert the input video to the format "yuv420p"
  1457. format=yuv420p
  1458. # convert the input video to any of the formats in the list
  1459. format=yuv420p:yuv444p:yuv410p
  1460. @end example
  1461. @section fps
  1462. Convert the video to specified constant framerate by duplicating or dropping
  1463. frames as necessary.
  1464. This filter accepts the following named parameters:
  1465. @table @option
  1466. @item fps
  1467. Desired output framerate.
  1468. @end table
  1469. @anchor{frei0r}
  1470. @section frei0r
  1471. Apply a frei0r effect to the input video.
  1472. To enable compilation of this filter you need to install the frei0r
  1473. header and configure FFmpeg with @code{--enable-frei0r}.
  1474. The filter supports the syntax:
  1475. @example
  1476. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1477. @end example
  1478. @var{filter_name} is the name to the frei0r effect to load. If the
  1479. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1480. is searched in each one of the directories specified by the colon
  1481. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1482. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1483. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1484. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1485. for the frei0r effect.
  1486. A frei0r effect parameter can be a boolean (whose values are specified
  1487. with "y" and "n"), a double, a color (specified by the syntax
  1488. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1489. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1490. description), a position (specified by the syntax @var{X}/@var{Y},
  1491. @var{X} and @var{Y} being float numbers) and a string.
  1492. The number and kind of parameters depend on the loaded effect. If an
  1493. effect parameter is not specified the default value is set.
  1494. Some examples follow:
  1495. @itemize
  1496. @item
  1497. Apply the distort0r effect, set the first two double parameters:
  1498. @example
  1499. frei0r=distort0r:0.5:0.01
  1500. @end example
  1501. @item
  1502. Apply the colordistance effect, takes a color as first parameter:
  1503. @example
  1504. frei0r=colordistance:0.2/0.3/0.4
  1505. frei0r=colordistance:violet
  1506. frei0r=colordistance:0x112233
  1507. @end example
  1508. @item
  1509. Apply the perspective effect, specify the top left and top right image
  1510. positions:
  1511. @example
  1512. frei0r=perspective:0.2/0.2:0.8/0.2
  1513. @end example
  1514. @end itemize
  1515. For more information see:
  1516. @url{http://frei0r.dyne.org}
  1517. @section gradfun
  1518. Fix the banding artifacts that are sometimes introduced into nearly flat
  1519. regions by truncation to 8bit color depth.
  1520. Interpolate the gradients that should go where the bands are, and
  1521. dither them.
  1522. This filter is designed for playback only. Do not use it prior to
  1523. lossy compression, because compression tends to lose the dither and
  1524. bring back the bands.
  1525. The filter takes two optional parameters, separated by ':':
  1526. @var{strength}:@var{radius}
  1527. @var{strength} is the maximum amount by which the filter will change
  1528. any one pixel. Also the threshold for detecting nearly flat
  1529. regions. Acceptable values range from .51 to 255, default value is
  1530. 1.2, out-of-range values will be clipped to the valid range.
  1531. @var{radius} is the neighborhood to fit the gradient to. A larger
  1532. radius makes for smoother gradients, but also prevents the filter from
  1533. modifying the pixels near detailed regions. Acceptable values are
  1534. 8-32, default value is 16, out-of-range values will be clipped to the
  1535. valid range.
  1536. @example
  1537. # default parameters
  1538. gradfun=1.2:16
  1539. # omitting radius
  1540. gradfun=1.2
  1541. @end example
  1542. @section hflip
  1543. Flip the input video horizontally.
  1544. For example to horizontally flip the input video with @command{ffmpeg}:
  1545. @example
  1546. ffmpeg -i in.avi -vf "hflip" out.avi
  1547. @end example
  1548. @section hqdn3d
  1549. High precision/quality 3d denoise filter. This filter aims to reduce
  1550. image noise producing smooth images and making still images really
  1551. still. It should enhance compressibility.
  1552. It accepts the following optional parameters:
  1553. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1554. @table @option
  1555. @item luma_spatial
  1556. a non-negative float number which specifies spatial luma strength,
  1557. defaults to 4.0
  1558. @item chroma_spatial
  1559. a non-negative float number which specifies spatial chroma strength,
  1560. defaults to 3.0*@var{luma_spatial}/4.0
  1561. @item luma_tmp
  1562. a float number which specifies luma temporal strength, defaults to
  1563. 6.0*@var{luma_spatial}/4.0
  1564. @item chroma_tmp
  1565. a float number which specifies chroma temporal strength, defaults to
  1566. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1567. @end table
  1568. @section idet
  1569. Interlaceing detect filter. This filter tries to detect if the input is
  1570. interlaced or progressive. Top or bottom field first.
  1571. @section lut, lutrgb, lutyuv
  1572. Compute a look-up table for binding each pixel component input value
  1573. to an output value, and apply it to input video.
  1574. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1575. to an RGB input video.
  1576. These filters accept in input a ":"-separated list of options, which
  1577. specify the expressions used for computing the lookup table for the
  1578. corresponding pixel component values.
  1579. The @var{lut} filter requires either YUV or RGB pixel formats in
  1580. input, and accepts the options:
  1581. @table @option
  1582. @item c0
  1583. first pixel component
  1584. @item c1
  1585. second pixel component
  1586. @item c2
  1587. third pixel component
  1588. @item c3
  1589. fourth pixel component, corresponds to the alpha component
  1590. @end table
  1591. The exact component associated to each option depends on the format in
  1592. input.
  1593. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1594. accepts the options:
  1595. @table @option
  1596. @item r
  1597. red component
  1598. @item g
  1599. green component
  1600. @item b
  1601. blue component
  1602. @item a
  1603. alpha component
  1604. @end table
  1605. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1606. accepts the options:
  1607. @table @option
  1608. @item y
  1609. Y/luminance component
  1610. @item u
  1611. U/Cb component
  1612. @item v
  1613. V/Cr component
  1614. @item a
  1615. alpha component
  1616. @end table
  1617. The expressions can contain the following constants and functions:
  1618. @table @option
  1619. @item w, h
  1620. the input width and height
  1621. @item val
  1622. input value for the pixel component
  1623. @item clipval
  1624. the input value clipped in the @var{minval}-@var{maxval} range
  1625. @item maxval
  1626. maximum value for the pixel component
  1627. @item minval
  1628. minimum value for the pixel component
  1629. @item negval
  1630. the negated value for the pixel component value clipped in the
  1631. @var{minval}-@var{maxval} range , it corresponds to the expression
  1632. "maxval-clipval+minval"
  1633. @item clip(val)
  1634. the computed value in @var{val} clipped in the
  1635. @var{minval}-@var{maxval} range
  1636. @item gammaval(gamma)
  1637. the computed gamma correction value of the pixel component value
  1638. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1639. expression
  1640. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1641. @end table
  1642. All expressions default to "val".
  1643. Some examples follow:
  1644. @example
  1645. # negate input video
  1646. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1647. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1648. # the above is the same as
  1649. lutrgb="r=negval:g=negval:b=negval"
  1650. lutyuv="y=negval:u=negval:v=negval"
  1651. # negate luminance
  1652. lutyuv=y=negval
  1653. # remove chroma components, turns the video into a graytone image
  1654. lutyuv="u=128:v=128"
  1655. # apply a luma burning effect
  1656. lutyuv="y=2*val"
  1657. # remove green and blue components
  1658. lutrgb="g=0:b=0"
  1659. # set a constant alpha channel value on input
  1660. format=rgba,lutrgb=a="maxval-minval/2"
  1661. # correct luminance gamma by a 0.5 factor
  1662. lutyuv=y=gammaval(0.5)
  1663. @end example
  1664. @section mp
  1665. Apply an MPlayer filter to the input video.
  1666. This filter provides a wrapper around most of the filters of
  1667. MPlayer/MEncoder.
  1668. This wrapper is considered experimental. Some of the wrapped filters
  1669. may not work properly and we may drop support for them, as they will
  1670. be implemented natively into FFmpeg. Thus you should avoid
  1671. depending on them when writing portable scripts.
  1672. The filters accepts the parameters:
  1673. @var{filter_name}[:=]@var{filter_params}
  1674. @var{filter_name} is the name of a supported MPlayer filter,
  1675. @var{filter_params} is a string containing the parameters accepted by
  1676. the named filter.
  1677. The list of the currently supported filters follows:
  1678. @table @var
  1679. @item decimate
  1680. @item denoise3d
  1681. @item detc
  1682. @item dint
  1683. @item divtc
  1684. @item down3dright
  1685. @item dsize
  1686. @item eq2
  1687. @item eq
  1688. @item field
  1689. @item fil
  1690. @item fixpts
  1691. @item framestep
  1692. @item fspp
  1693. @item geq
  1694. @item harddup
  1695. @item hqdn3d
  1696. @item hue
  1697. @item il
  1698. @item ilpack
  1699. @item ivtc
  1700. @item kerndeint
  1701. @item mcdeint
  1702. @item noise
  1703. @item ow
  1704. @item palette
  1705. @item perspective
  1706. @item phase
  1707. @item pp7
  1708. @item pullup
  1709. @item qp
  1710. @item rectangle
  1711. @item rotate
  1712. @item sab
  1713. @item smartblur
  1714. @item softpulldown
  1715. @item softskip
  1716. @item spp
  1717. @item telecine
  1718. @item tile
  1719. @item tinterlace
  1720. @item unsharp
  1721. @item uspp
  1722. @item yuvcsp
  1723. @item yvu9
  1724. @end table
  1725. The parameter syntax and behavior for the listed filters are the same
  1726. of the corresponding MPlayer filters. For detailed instructions check
  1727. the "VIDEO FILTERS" section in the MPlayer manual.
  1728. Some examples follow:
  1729. @example
  1730. # adjust gamma, brightness, contrast
  1731. mp=eq2=1.0:2:0.5
  1732. # tweak hue and saturation
  1733. mp=hue=100:-10
  1734. @end example
  1735. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1736. @section negate
  1737. Negate input video.
  1738. This filter accepts an integer in input, if non-zero it negates the
  1739. alpha component (if available). The default value in input is 0.
  1740. @section noformat
  1741. Force libavfilter not to use any of the specified pixel formats for the
  1742. input to the next filter.
  1743. The filter accepts a list of pixel format names, separated by ":",
  1744. for example "yuv420p:monow:rgb24".
  1745. Some examples follow:
  1746. @example
  1747. # force libavfilter to use a format different from "yuv420p" for the
  1748. # input to the vflip filter
  1749. noformat=yuv420p,vflip
  1750. # convert the input video to any of the formats not contained in the list
  1751. noformat=yuv420p:yuv444p:yuv410p
  1752. @end example
  1753. @section null
  1754. Pass the video source unchanged to the output.
  1755. @section ocv
  1756. Apply video transform using libopencv.
  1757. To enable this filter install libopencv library and headers and
  1758. configure FFmpeg with @code{--enable-libopencv}.
  1759. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1760. @var{filter_name} is the name of the libopencv filter to apply.
  1761. @var{filter_params} specifies the parameters to pass to the libopencv
  1762. filter. If not specified the default values are assumed.
  1763. Refer to the official libopencv documentation for more precise
  1764. information:
  1765. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1766. Follows the list of supported libopencv filters.
  1767. @anchor{dilate}
  1768. @subsection dilate
  1769. Dilate an image by using a specific structuring element.
  1770. This filter corresponds to the libopencv function @code{cvDilate}.
  1771. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1772. @var{struct_el} represents a structuring element, and has the syntax:
  1773. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1774. @var{cols} and @var{rows} represent the number of columns and rows of
  1775. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1776. point, and @var{shape} the shape for the structuring element, and
  1777. can be one of the values "rect", "cross", "ellipse", "custom".
  1778. If the value for @var{shape} is "custom", it must be followed by a
  1779. string of the form "=@var{filename}". The file with name
  1780. @var{filename} is assumed to represent a binary image, with each
  1781. printable character corresponding to a bright pixel. When a custom
  1782. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1783. or columns and rows of the read file are assumed instead.
  1784. The default value for @var{struct_el} is "3x3+0x0/rect".
  1785. @var{nb_iterations} specifies the number of times the transform is
  1786. applied to the image, and defaults to 1.
  1787. Follow some example:
  1788. @example
  1789. # use the default values
  1790. ocv=dilate
  1791. # dilate using a structuring element with a 5x5 cross, iterate two times
  1792. ocv=dilate=5x5+2x2/cross:2
  1793. # read the shape from the file diamond.shape, iterate two times
  1794. # the file diamond.shape may contain a pattern of characters like this:
  1795. # *
  1796. # ***
  1797. # *****
  1798. # ***
  1799. # *
  1800. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1801. ocv=0x0+2x2/custom=diamond.shape:2
  1802. @end example
  1803. @subsection erode
  1804. Erode an image by using a specific structuring element.
  1805. This filter corresponds to the libopencv function @code{cvErode}.
  1806. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1807. with the same syntax and semantics as the @ref{dilate} filter.
  1808. @subsection smooth
  1809. Smooth the input video.
  1810. The filter takes the following parameters:
  1811. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1812. @var{type} is the type of smooth filter to apply, and can be one of
  1813. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1814. "bilateral". The default value is "gaussian".
  1815. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1816. parameters whose meanings depend on smooth type. @var{param1} and
  1817. @var{param2} accept integer positive values or 0, @var{param3} and
  1818. @var{param4} accept float values.
  1819. The default value for @var{param1} is 3, the default value for the
  1820. other parameters is 0.
  1821. These parameters correspond to the parameters assigned to the
  1822. libopencv function @code{cvSmooth}.
  1823. @anchor{overlay}
  1824. @section overlay
  1825. Overlay one video on top of another.
  1826. It takes two inputs and one output, the first input is the "main"
  1827. video on which the second input is overlayed.
  1828. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1829. @var{x} is the x coordinate of the overlayed video on the main video,
  1830. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1831. the following parameters:
  1832. @table @option
  1833. @item main_w, main_h
  1834. main input width and height
  1835. @item W, H
  1836. same as @var{main_w} and @var{main_h}
  1837. @item overlay_w, overlay_h
  1838. overlay input width and height
  1839. @item w, h
  1840. same as @var{overlay_w} and @var{overlay_h}
  1841. @end table
  1842. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1843. separated by ":".
  1844. The description of the accepted options follows.
  1845. @table @option
  1846. @item rgb
  1847. If set to 1, force the filter to accept inputs in the RGB
  1848. color space. Default value is 0.
  1849. @end table
  1850. Be aware that frames are taken from each input video in timestamp
  1851. order, hence, if their initial timestamps differ, it is a a good idea
  1852. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1853. have them begin in the same zero timestamp, as it does the example for
  1854. the @var{movie} filter.
  1855. Follow some examples:
  1856. @example
  1857. # draw the overlay at 10 pixels from the bottom right
  1858. # corner of the main video.
  1859. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1860. # insert a transparent PNG logo in the bottom left corner of the input
  1861. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1862. # insert 2 different transparent PNG logos (second logo on bottom
  1863. # right corner):
  1864. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  1865. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1866. # add a transparent color layer on top of the main video,
  1867. # WxH specifies the size of the main input to the overlay filter
  1868. color=red@.3:WxH [over]; [in][over] overlay [out]
  1869. # play an original video and a filtered version (here with the deshake filter)
  1870. # side by side
  1871. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  1872. # the previous example is the same as:
  1873. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  1874. @end example
  1875. You can chain together more overlays but the efficiency of such
  1876. approach is yet to be tested.
  1877. @section pad
  1878. Add paddings to the input image, and places the original input at the
  1879. given coordinates @var{x}, @var{y}.
  1880. It accepts the following parameters:
  1881. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1882. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1883. expressions containing the following constants:
  1884. @table @option
  1885. @item in_w, in_h
  1886. the input video width and height
  1887. @item iw, ih
  1888. same as @var{in_w} and @var{in_h}
  1889. @item out_w, out_h
  1890. the output width and height, that is the size of the padded area as
  1891. specified by the @var{width} and @var{height} expressions
  1892. @item ow, oh
  1893. same as @var{out_w} and @var{out_h}
  1894. @item x, y
  1895. x and y offsets as specified by the @var{x} and @var{y}
  1896. expressions, or NAN if not yet specified
  1897. @item a
  1898. same as @var{iw} / @var{ih}
  1899. @item sar
  1900. input sample aspect ratio
  1901. @item dar
  1902. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1903. @item hsub, vsub
  1904. horizontal and vertical chroma subsample values. For example for the
  1905. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1906. @end table
  1907. Follows the description of the accepted parameters.
  1908. @table @option
  1909. @item width, height
  1910. Specify the size of the output image with the paddings added. If the
  1911. value for @var{width} or @var{height} is 0, the corresponding input size
  1912. is used for the output.
  1913. The @var{width} expression can reference the value set by the
  1914. @var{height} expression, and vice versa.
  1915. The default value of @var{width} and @var{height} is 0.
  1916. @item x, y
  1917. Specify the offsets where to place the input image in the padded area
  1918. with respect to the top/left border of the output image.
  1919. The @var{x} expression can reference the value set by the @var{y}
  1920. expression, and vice versa.
  1921. The default value of @var{x} and @var{y} is 0.
  1922. @item color
  1923. Specify the color of the padded area, it can be the name of a color
  1924. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1925. The default value of @var{color} is "black".
  1926. @end table
  1927. Some examples follow:
  1928. @example
  1929. # Add paddings with color "violet" to the input video. Output video
  1930. # size is 640x480, the top-left corner of the input video is placed at
  1931. # column 0, row 40.
  1932. pad=640:480:0:40:violet
  1933. # pad the input to get an output with dimensions increased bt 3/2,
  1934. # and put the input video at the center of the padded area
  1935. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1936. # pad the input to get a squared output with size equal to the maximum
  1937. # value between the input width and height, and put the input video at
  1938. # the center of the padded area
  1939. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1940. # pad the input to get a final w/h ratio of 16:9
  1941. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1942. # for anamorphic video, in order to set the output display aspect ratio,
  1943. # it is necessary to use sar in the expression, according to the relation:
  1944. # (ih * X / ih) * sar = output_dar
  1945. # X = output_dar / sar
  1946. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1947. # double output size and put the input video in the bottom-right
  1948. # corner of the output padded area
  1949. pad="2*iw:2*ih:ow-iw:oh-ih"
  1950. @end example
  1951. @section pixdesctest
  1952. Pixel format descriptor test filter, mainly useful for internal
  1953. testing. The output video should be equal to the input video.
  1954. For example:
  1955. @example
  1956. format=monow, pixdesctest
  1957. @end example
  1958. can be used to test the monowhite pixel format descriptor definition.
  1959. @section removelogo
  1960. Suppress a TV station logo, using an image file to determine which
  1961. pixels comprise the logo. It works by filling in the pixels that
  1962. comprise the logo with neighboring pixels.
  1963. This filter requires one argument which specifies the filter bitmap
  1964. file, which can be any image format supported by libavformat. The
  1965. width and height of the image file must match those of the video
  1966. stream being processed.
  1967. Pixels in the provided bitmap image with a value of zero are not
  1968. considered part of the logo, non-zero pixels are considered part of
  1969. the logo. If you use white (255) for the logo and black (0) for the
  1970. rest, you will be safe. For making the filter bitmap, it is
  1971. recommended to take a screen capture of a black frame with the logo
  1972. visible, and then using a threshold filter followed by the erode
  1973. filter once or twice.
  1974. If needed, little splotches can be fixed manually. Remember that if
  1975. logo pixels are not covered, the filter quality will be much
  1976. reduced. Marking too many pixels as part of the logo does not hurt as
  1977. much, but it will increase the amount of blurring needed to cover over
  1978. the image and will destroy more information than necessary, and extra
  1979. pixels will slow things down on a large logo.
  1980. @section scale
  1981. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1982. The scale filter forces the output display aspect ratio to be the same
  1983. of the input, by changing the output sample aspect ratio.
  1984. The parameters @var{width} and @var{height} are expressions containing
  1985. the following constants:
  1986. @table @option
  1987. @item in_w, in_h
  1988. the input width and height
  1989. @item iw, ih
  1990. same as @var{in_w} and @var{in_h}
  1991. @item out_w, out_h
  1992. the output (cropped) width and height
  1993. @item ow, oh
  1994. same as @var{out_w} and @var{out_h}
  1995. @item a
  1996. same as @var{iw} / @var{ih}
  1997. @item sar
  1998. input sample aspect ratio
  1999. @item dar
  2000. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2001. @item hsub, vsub
  2002. horizontal and vertical chroma subsample values. For example for the
  2003. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2004. @end table
  2005. If the input image format is different from the format requested by
  2006. the next filter, the scale filter will convert the input to the
  2007. requested format.
  2008. If the value for @var{width} or @var{height} is 0, the respective input
  2009. size is used for the output.
  2010. If the value for @var{width} or @var{height} is -1, the scale filter will
  2011. use, for the respective output size, a value that maintains the aspect
  2012. ratio of the input image.
  2013. The default value of @var{width} and @var{height} is 0.
  2014. Valid values for the optional parameter @var{interl} are:
  2015. @table @option
  2016. @item 1
  2017. force interlaced aware scaling
  2018. @item -1
  2019. select interlaced aware scaling depending on whether the source frames
  2020. are flagged as interlaced or not
  2021. @end table
  2022. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2023. Some examples follow:
  2024. @example
  2025. # scale the input video to a size of 200x100.
  2026. scale=200:100
  2027. # scale the input to 2x
  2028. scale=2*iw:2*ih
  2029. # the above is the same as
  2030. scale=2*in_w:2*in_h
  2031. # scale the input to 2x with forced interlaced scaling
  2032. scale=2*iw:2*ih:interl=1
  2033. # scale the input to half size
  2034. scale=iw/2:ih/2
  2035. # increase the width, and set the height to the same size
  2036. scale=3/2*iw:ow
  2037. # seek for Greek harmony
  2038. scale=iw:1/PHI*iw
  2039. scale=ih*PHI:ih
  2040. # increase the height, and set the width to 3/2 of the height
  2041. scale=3/2*oh:3/5*ih
  2042. # increase the size, but make the size a multiple of the chroma
  2043. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2044. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2045. scale='min(500\, iw*3/2):-1'
  2046. @end example
  2047. @section select
  2048. Select frames to pass in output.
  2049. It accepts in input an expression, which is evaluated for each input
  2050. frame. If the expression is evaluated to a non-zero value, the frame
  2051. is selected and passed to the output, otherwise it is discarded.
  2052. The expression can contain the following constants:
  2053. @table @option
  2054. @item n
  2055. the sequential number of the filtered frame, starting from 0
  2056. @item selected_n
  2057. the sequential number of the selected frame, starting from 0
  2058. @item prev_selected_n
  2059. the sequential number of the last selected frame, NAN if undefined
  2060. @item TB
  2061. timebase of the input timestamps
  2062. @item pts
  2063. the PTS (Presentation TimeStamp) of the filtered video frame,
  2064. expressed in @var{TB} units, NAN if undefined
  2065. @item t
  2066. the PTS (Presentation TimeStamp) of the filtered video frame,
  2067. expressed in seconds, NAN if undefined
  2068. @item prev_pts
  2069. the PTS of the previously filtered video frame, NAN if undefined
  2070. @item prev_selected_pts
  2071. the PTS of the last previously filtered video frame, NAN if undefined
  2072. @item prev_selected_t
  2073. the PTS of the last previously selected video frame, NAN if undefined
  2074. @item start_pts
  2075. the PTS of the first video frame in the video, NAN if undefined
  2076. @item start_t
  2077. the time of the first video frame in the video, NAN if undefined
  2078. @item pict_type
  2079. the type of the filtered frame, can assume one of the following
  2080. values:
  2081. @table @option
  2082. @item I
  2083. @item P
  2084. @item B
  2085. @item S
  2086. @item SI
  2087. @item SP
  2088. @item BI
  2089. @end table
  2090. @item interlace_type
  2091. the frame interlace type, can assume one of the following values:
  2092. @table @option
  2093. @item PROGRESSIVE
  2094. the frame is progressive (not interlaced)
  2095. @item TOPFIRST
  2096. the frame is top-field-first
  2097. @item BOTTOMFIRST
  2098. the frame is bottom-field-first
  2099. @end table
  2100. @item key
  2101. 1 if the filtered frame is a key-frame, 0 otherwise
  2102. @item pos
  2103. the position in the file of the filtered frame, -1 if the information
  2104. is not available (e.g. for synthetic video)
  2105. @item scene
  2106. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2107. probability for the current frame to introduce a new scene, while a higher
  2108. value means the current frame is more likely to be one (see the example below)
  2109. @end table
  2110. The default value of the select expression is "1".
  2111. Some examples follow:
  2112. @example
  2113. # select all frames in input
  2114. select
  2115. # the above is the same as:
  2116. select=1
  2117. # skip all frames:
  2118. select=0
  2119. # select only I-frames
  2120. select='eq(pict_type\,I)'
  2121. # select one frame every 100
  2122. select='not(mod(n\,100))'
  2123. # select only frames contained in the 10-20 time interval
  2124. select='gte(t\,10)*lte(t\,20)'
  2125. # select only I frames contained in the 10-20 time interval
  2126. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2127. # select frames with a minimum distance of 10 seconds
  2128. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2129. @end example
  2130. Complete example to create a mosaic of the first scenes:
  2131. @example
  2132. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2133. @end example
  2134. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2135. choice.
  2136. @section setdar, setsar
  2137. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2138. output video.
  2139. This is done by changing the specified Sample (aka Pixel) Aspect
  2140. Ratio, according to the following equation:
  2141. @example
  2142. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2143. @end example
  2144. Keep in mind that the @code{setdar} filter does not modify the pixel
  2145. dimensions of the video frame. Also the display aspect ratio set by
  2146. this filter may be changed by later filters in the filterchain,
  2147. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2148. applied.
  2149. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2150. the filter output video.
  2151. Note that as a consequence of the application of this filter, the
  2152. output display aspect ratio will change according to the equation
  2153. above.
  2154. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2155. filter may be changed by later filters in the filterchain, e.g. if
  2156. another "setsar" or a "setdar" filter is applied.
  2157. The @code{setdar} and @code{setsar} filters accept a parameter string
  2158. which represents the wanted aspect ratio. The parameter can
  2159. be a floating point number string, an expression, or a string of the form
  2160. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2161. and denominator of the aspect ratio. If the parameter is not
  2162. specified, it is assumed the value "0:1".
  2163. For example to change the display aspect ratio to 16:9, specify:
  2164. @example
  2165. setdar=16:9
  2166. @end example
  2167. The example above is equivalent to:
  2168. @example
  2169. setdar=1.77777
  2170. @end example
  2171. To change the sample aspect ratio to 10:11, specify:
  2172. @example
  2173. setsar=10:11
  2174. @end example
  2175. @section setfield
  2176. Force field for the output video frame.
  2177. The @code{setfield} filter marks the interlace type field for the
  2178. output frames. It does not change the input frame, but only sets the
  2179. corresponding property, which affects how the frame is treated by
  2180. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2181. It accepts a string parameter, which can assume the following values:
  2182. @table @samp
  2183. @item auto
  2184. Keep the same field property.
  2185. @item bff
  2186. Mark the frame as bottom-field-first.
  2187. @item tff
  2188. Mark the frame as top-field-first.
  2189. @item prog
  2190. Mark the frame as progressive.
  2191. @end table
  2192. @section setpts
  2193. Change the PTS (presentation timestamp) of the input video frames.
  2194. Accept in input an expression evaluated through the eval API, which
  2195. can contain the following constants:
  2196. @table @option
  2197. @item PTS
  2198. the presentation timestamp in input
  2199. @item N
  2200. the count of the input frame, starting from 0.
  2201. @item STARTPTS
  2202. the PTS of the first video frame
  2203. @item INTERLACED
  2204. tell if the current frame is interlaced
  2205. @item POS
  2206. original position in the file of the frame, or undefined if undefined
  2207. for the current frame
  2208. @item PREV_INPTS
  2209. previous input PTS
  2210. @item PREV_OUTPTS
  2211. previous output PTS
  2212. @end table
  2213. Some examples follow:
  2214. @example
  2215. # start counting PTS from zero
  2216. setpts=PTS-STARTPTS
  2217. # fast motion
  2218. setpts=0.5*PTS
  2219. # slow motion
  2220. setpts=2.0*PTS
  2221. # fixed rate 25 fps
  2222. setpts=N/(25*TB)
  2223. # fixed rate 25 fps with some jitter
  2224. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  2225. @end example
  2226. @section settb, asettb
  2227. Set the timebase to use for the output frames timestamps.
  2228. It is mainly useful for testing timebase configuration.
  2229. It accepts in input an arithmetic expression representing a rational.
  2230. The expression can contain the constants "AVTB" (the
  2231. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  2232. audio only).
  2233. The default value for the input is "intb".
  2234. Follow some examples.
  2235. @example
  2236. # set the timebase to 1/25
  2237. settb=1/25
  2238. # set the timebase to 1/10
  2239. settb=0.1
  2240. #set the timebase to 1001/1000
  2241. settb=1+0.001
  2242. #set the timebase to 2*intb
  2243. settb=2*intb
  2244. #set the default timebase value
  2245. settb=AVTB
  2246. @end example
  2247. @section showinfo
  2248. Show a line containing various information for each input video frame.
  2249. The input video is not modified.
  2250. The shown line contains a sequence of key/value pairs of the form
  2251. @var{key}:@var{value}.
  2252. A description of each shown parameter follows:
  2253. @table @option
  2254. @item n
  2255. sequential number of the input frame, starting from 0
  2256. @item pts
  2257. Presentation TimeStamp of the input frame, expressed as a number of
  2258. time base units. The time base unit depends on the filter input pad.
  2259. @item pts_time
  2260. Presentation TimeStamp of the input frame, expressed as a number of
  2261. seconds
  2262. @item pos
  2263. position of the frame in the input stream, -1 if this information in
  2264. unavailable and/or meaningless (for example in case of synthetic video)
  2265. @item fmt
  2266. pixel format name
  2267. @item sar
  2268. sample aspect ratio of the input frame, expressed in the form
  2269. @var{num}/@var{den}
  2270. @item s
  2271. size of the input frame, expressed in the form
  2272. @var{width}x@var{height}
  2273. @item i
  2274. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2275. for bottom field first)
  2276. @item iskey
  2277. 1 if the frame is a key frame, 0 otherwise
  2278. @item type
  2279. picture type of the input frame ("I" for an I-frame, "P" for a
  2280. P-frame, "B" for a B-frame, "?" for unknown type).
  2281. Check also the documentation of the @code{AVPictureType} enum and of
  2282. the @code{av_get_picture_type_char} function defined in
  2283. @file{libavutil/avutil.h}.
  2284. @item checksum
  2285. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2286. @item plane_checksum
  2287. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2288. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2289. @end table
  2290. @section slicify
  2291. Pass the images of input video on to next video filter as multiple
  2292. slices.
  2293. @example
  2294. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2295. @end example
  2296. The filter accepts the slice height as parameter. If the parameter is
  2297. not specified it will use the default value of 16.
  2298. Adding this in the beginning of filter chains should make filtering
  2299. faster due to better use of the memory cache.
  2300. @section split
  2301. Split input video into several identical outputs.
  2302. The filter accepts a single parameter which specifies the number of outputs. If
  2303. unspecified, it defaults to 2.
  2304. For example
  2305. @example
  2306. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2307. @end example
  2308. will create 5 copies of the input video.
  2309. For example:
  2310. @example
  2311. [in] split [splitout1][splitout2];
  2312. [splitout1] crop=100:100:0:0 [cropout];
  2313. [splitout2] pad=200:200:100:100 [padout];
  2314. @end example
  2315. will create two separate outputs from the same input, one cropped and
  2316. one padded.
  2317. @section super2xsai
  2318. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2319. Interpolate) pixel art scaling algorithm.
  2320. Useful for enlarging pixel art images without reducing sharpness.
  2321. @section swapuv
  2322. Swap U & V plane.
  2323. @section thumbnail
  2324. Select the most representative frame in a given sequence of consecutive frames.
  2325. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2326. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2327. the next batch of @var{N} frames until the end.
  2328. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2329. value will result in a higher memory usage, so a high value is not recommended.
  2330. The following example extract one picture each 50 frames:
  2331. @example
  2332. thumbnail=50
  2333. @end example
  2334. Complete example of a thumbnail creation with @command{ffmpeg}:
  2335. @example
  2336. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2337. @end example
  2338. @section tile
  2339. Tile several successive frames together.
  2340. It accepts as argument the tile size (i.e. the number of lines and columns)
  2341. in the form "@var{w}x@var{h}".
  2342. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2343. nokey}) in a movie:
  2344. @example
  2345. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2346. @end example
  2347. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2348. duplicating each output frame to accomodate the originally detected frame
  2349. rate.
  2350. @section tinterlace
  2351. Perform various types of temporal field interlacing.
  2352. Frames are counted starting from 1, so the first input frame is
  2353. considered odd.
  2354. This filter accepts a single parameter specifying the mode. Available
  2355. modes are:
  2356. @table @samp
  2357. @item merge, 0
  2358. Move odd frames into the upper field, even into the lower field,
  2359. generating a double height frame at half framerate.
  2360. @item drop_odd, 1
  2361. Only output even frames, odd frames are dropped, generating a frame with
  2362. unchanged height at half framerate.
  2363. @item drop_even, 2
  2364. Only output odd frames, even frames are dropped, generating a frame with
  2365. unchanged height at half framerate.
  2366. @item pad, 3
  2367. Expand each frame to full height, but pad alternate lines with black,
  2368. generating a frame with double height at the same input framerate.
  2369. @item interleave_top, 4
  2370. Interleave the upper field from odd frames with the lower field from
  2371. even frames, generating a frame with unchanged height at half framerate.
  2372. @item interleave_bottom, 5
  2373. Interleave the lower field from odd frames with the upper field from
  2374. even frames, generating a frame with unchanged height at half framerate.
  2375. @item interlacex2, 6
  2376. Double frame rate with unchanged height. Frames are inserted each
  2377. containing the second temporal field from the previous input frame and
  2378. the first temporal field from the next input frame. This mode relies on
  2379. the top_field_first flag. Useful for interlaced video displays with no
  2380. field synchronisation.
  2381. @end table
  2382. Numeric values are deprecated but are accepted for backward
  2383. compatibility reasons.
  2384. Default mode is @code{merge}.
  2385. @section transpose
  2386. Transpose rows with columns in the input video and optionally flip it.
  2387. It accepts a parameter representing an integer, which can assume the
  2388. values:
  2389. @table @samp
  2390. @item 0
  2391. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2392. @example
  2393. L.R L.l
  2394. . . -> . .
  2395. l.r R.r
  2396. @end example
  2397. @item 1
  2398. Rotate by 90 degrees clockwise, that is:
  2399. @example
  2400. L.R l.L
  2401. . . -> . .
  2402. l.r r.R
  2403. @end example
  2404. @item 2
  2405. Rotate by 90 degrees counterclockwise, that is:
  2406. @example
  2407. L.R R.r
  2408. . . -> . .
  2409. l.r L.l
  2410. @end example
  2411. @item 3
  2412. Rotate by 90 degrees clockwise and vertically flip, that is:
  2413. @example
  2414. L.R r.R
  2415. . . -> . .
  2416. l.r l.L
  2417. @end example
  2418. @end table
  2419. @section unsharp
  2420. Sharpen or blur the input video.
  2421. It accepts the following parameters:
  2422. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2423. Negative values for the amount will blur the input video, while positive
  2424. values will sharpen. All parameters are optional and default to the
  2425. equivalent of the string '5:5:1.0:5:5:0.0'.
  2426. @table @option
  2427. @item luma_msize_x
  2428. Set the luma matrix horizontal size. It can be an integer between 3
  2429. and 13, default value is 5.
  2430. @item luma_msize_y
  2431. Set the luma matrix vertical size. It can be an integer between 3
  2432. and 13, default value is 5.
  2433. @item luma_amount
  2434. Set the luma effect strength. It can be a float number between -2.0
  2435. and 5.0, default value is 1.0.
  2436. @item chroma_msize_x
  2437. Set the chroma matrix horizontal size. It can be an integer between 3
  2438. and 13, default value is 5.
  2439. @item chroma_msize_y
  2440. Set the chroma matrix vertical size. It can be an integer between 3
  2441. and 13, default value is 5.
  2442. @item chroma_amount
  2443. Set the chroma effect strength. It can be a float number between -2.0
  2444. and 5.0, default value is 0.0.
  2445. @end table
  2446. @example
  2447. # Strong luma sharpen effect parameters
  2448. unsharp=7:7:2.5
  2449. # Strong blur of both luma and chroma parameters
  2450. unsharp=7:7:-2:7:7:-2
  2451. # Use the default values with @command{ffmpeg}
  2452. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2453. @end example
  2454. @section vflip
  2455. Flip the input video vertically.
  2456. @example
  2457. ffmpeg -i in.avi -vf "vflip" out.avi
  2458. @end example
  2459. @section yadif
  2460. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2461. filter").
  2462. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2463. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2464. following values:
  2465. @table @option
  2466. @item 0
  2467. output 1 frame for each frame
  2468. @item 1
  2469. output 1 frame for each field
  2470. @item 2
  2471. like 0 but skips spatial interlacing check
  2472. @item 3
  2473. like 1 but skips spatial interlacing check
  2474. @end table
  2475. Default value is 0.
  2476. @var{parity} specifies the picture field parity assumed for the input
  2477. interlaced video, accepts one of the following values:
  2478. @table @option
  2479. @item 0
  2480. assume top field first
  2481. @item 1
  2482. assume bottom field first
  2483. @item -1
  2484. enable automatic detection
  2485. @end table
  2486. Default value is -1.
  2487. If interlacing is unknown or decoder does not export this information,
  2488. top field first will be assumed.
  2489. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2490. and only deinterlace frames marked as interlaced
  2491. @table @option
  2492. @item 0
  2493. deinterlace all frames
  2494. @item 1
  2495. only deinterlace frames marked as interlaced
  2496. @end table
  2497. Default value is 0.
  2498. @c man end VIDEO FILTERS
  2499. @chapter Video Sources
  2500. @c man begin VIDEO SOURCES
  2501. Below is a description of the currently available video sources.
  2502. @section buffer
  2503. Buffer video frames, and make them available to the filter chain.
  2504. This source is mainly intended for a programmatic use, in particular
  2505. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2506. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2507. separated by ":". A descroption of the accepted options follows.
  2508. @table @option
  2509. @item video_size
  2510. Specify the size (width and height) of the buffered video frames.
  2511. @item pix_fmt
  2512. A string representing the pixel format of the buffered video frames.
  2513. It may be a number corresponding to a pixel format, or a pixel format
  2514. name.
  2515. @item time_base
  2516. Specify the timebase assumed by the timestamps of the buffered frames.
  2517. @item time_base
  2518. Specify the frame rate expected for the video stream.
  2519. @item pixel_aspect
  2520. Specify the sample aspect ratio assumed by the video frames.
  2521. @item sws_param
  2522. Specify the optional parameters to be used for the scale filter which
  2523. is automatically inserted when an input change is detected in the
  2524. input size or format.
  2525. @end table
  2526. For example:
  2527. @example
  2528. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2529. @end example
  2530. will instruct the source to accept video frames with size 320x240 and
  2531. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2532. square pixels (1:1 sample aspect ratio).
  2533. Since the pixel format with name "yuv410p" corresponds to the number 6
  2534. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2535. this example corresponds to:
  2536. @example
  2537. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2538. @end example
  2539. Alternatively, the options can be specified as a flat string, but this
  2540. syntax is deprecated:
  2541. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2542. @section cellauto
  2543. Create a pattern generated by an elementary cellular automaton.
  2544. The initial state of the cellular automaton can be defined through the
  2545. @option{filename}, and @option{pattern} options. If such options are
  2546. not specified an initial state is created randomly.
  2547. At each new frame a new row in the video is filled with the result of
  2548. the cellular automaton next generation. The behavior when the whole
  2549. frame is filled is defined by the @option{scroll} option.
  2550. This source accepts a list of options in the form of
  2551. @var{key}=@var{value} pairs separated by ":". A description of the
  2552. accepted options follows.
  2553. @table @option
  2554. @item filename, f
  2555. Read the initial cellular automaton state, i.e. the starting row, from
  2556. the specified file.
  2557. In the file, each non-whitespace character is considered an alive
  2558. cell, a newline will terminate the row, and further characters in the
  2559. file will be ignored.
  2560. @item pattern, p
  2561. Read the initial cellular automaton state, i.e. the starting row, from
  2562. the specified string.
  2563. Each non-whitespace character in the string is considered an alive
  2564. cell, a newline will terminate the row, and further characters in the
  2565. string will be ignored.
  2566. @item rate, r
  2567. Set the video rate, that is the number of frames generated per second.
  2568. Default is 25.
  2569. @item random_fill_ratio, ratio
  2570. Set the random fill ratio for the initial cellular automaton row. It
  2571. is a floating point number value ranging from 0 to 1, defaults to
  2572. 1/PHI.
  2573. This option is ignored when a file or a pattern is specified.
  2574. @item random_seed, seed
  2575. Set the seed for filling randomly the initial row, must be an integer
  2576. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2577. set to -1, the filter will try to use a good random seed on a best
  2578. effort basis.
  2579. @item rule
  2580. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2581. Default value is 110.
  2582. @item size, s
  2583. Set the size of the output video.
  2584. If @option{filename} or @option{pattern} is specified, the size is set
  2585. by default to the width of the specified initial state row, and the
  2586. height is set to @var{width} * PHI.
  2587. If @option{size} is set, it must contain the width of the specified
  2588. pattern string, and the specified pattern will be centered in the
  2589. larger row.
  2590. If a filename or a pattern string is not specified, the size value
  2591. defaults to "320x518" (used for a randomly generated initial state).
  2592. @item scroll
  2593. If set to 1, scroll the output upward when all the rows in the output
  2594. have been already filled. If set to 0, the new generated row will be
  2595. written over the top row just after the bottom row is filled.
  2596. Defaults to 1.
  2597. @item start_full, full
  2598. If set to 1, completely fill the output with generated rows before
  2599. outputting the first frame.
  2600. This is the default behavior, for disabling set the value to 0.
  2601. @item stitch
  2602. If set to 1, stitch the left and right row edges together.
  2603. This is the default behavior, for disabling set the value to 0.
  2604. @end table
  2605. @subsection Examples
  2606. @itemize
  2607. @item
  2608. Read the initial state from @file{pattern}, and specify an output of
  2609. size 200x400.
  2610. @example
  2611. cellauto=f=pattern:s=200x400
  2612. @end example
  2613. @item
  2614. Generate a random initial row with a width of 200 cells, with a fill
  2615. ratio of 2/3:
  2616. @example
  2617. cellauto=ratio=2/3:s=200x200
  2618. @end example
  2619. @item
  2620. Create a pattern generated by rule 18 starting by a single alive cell
  2621. centered on an initial row with width 100:
  2622. @example
  2623. cellauto=p=@@:s=100x400:full=0:rule=18
  2624. @end example
  2625. @item
  2626. Specify a more elaborated initial pattern:
  2627. @example
  2628. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2629. @end example
  2630. @end itemize
  2631. @section color
  2632. Provide an uniformly colored input.
  2633. This source accepts list of options in the form of
  2634. @var{key}=@var{value} pairs separated by ":".
  2635. Alternatively, it accepts a string in the form
  2636. @var{color}:@var{size}:@var{rate}, but this syntax is
  2637. deprecated.
  2638. Follows the description of the accepted parameters.
  2639. @table @option
  2640. @item color, c
  2641. Specify the color of the source. It can be the name of a color (case
  2642. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2643. alpha specifier. The default value is "black".
  2644. @item size, s
  2645. Specify the size of the sourced video, it may be a string of the form
  2646. @var{width}x@var{height}, or the name of a size abbreviation. The
  2647. default value is "320x240".
  2648. @item rate, r
  2649. Specify the frame rate of the sourced video, as the number of frames
  2650. generated per second. It has to be a string in the format
  2651. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2652. number or a valid video frame rate abbreviation. The default value is
  2653. "25".
  2654. @end table
  2655. For example the following graph description will generate a red source
  2656. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2657. frames per second, which will be overlayed over the source connected
  2658. to the pad with identifier "in".
  2659. @example
  2660. "color=c=red@@0.2:s=qcif:r=10 [color]; [in][color] overlay [out]"
  2661. @end example
  2662. @section movie
  2663. Read a video stream from a movie container.
  2664. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2665. @var{movie_name} is the name of the resource to read (not necessarily
  2666. a file but also a device or a stream accessed through some protocol),
  2667. and @var{options} is an optional sequence of @var{key}=@var{value}
  2668. pairs, separated by ":".
  2669. The description of the accepted options follows.
  2670. @table @option
  2671. @item format_name, f
  2672. Specifies the format assumed for the movie to read, and can be either
  2673. the name of a container or an input device. If not specified the
  2674. format is guessed from @var{movie_name} or by probing.
  2675. @item seek_point, sp
  2676. Specifies the seek point in seconds, the frames will be output
  2677. starting from this seek point, the parameter is evaluated with
  2678. @code{av_strtod} so the numerical value may be suffixed by an IS
  2679. postfix. Default value is "0".
  2680. @item stream_index, si
  2681. Specifies the index of the video stream to read. If the value is -1,
  2682. the best suited video stream will be automatically selected. Default
  2683. value is "-1".
  2684. @item loop
  2685. Specifies how many times to read the video stream in sequence.
  2686. If the value is less than 1, the stream will be read again and again.
  2687. Default value is "1".
  2688. Note that when the movie is looped the source timestamps are not
  2689. changed, so it will generate non monotonically increasing timestamps.
  2690. @end table
  2691. This filter allows to overlay a second video on top of main input of
  2692. a filtergraph as shown in this graph:
  2693. @example
  2694. input -----------> deltapts0 --> overlay --> output
  2695. ^
  2696. |
  2697. movie --> scale--> deltapts1 -------+
  2698. @end example
  2699. Some examples follow:
  2700. @example
  2701. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2702. # on top of the input labelled as "in".
  2703. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2704. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2705. # read from a video4linux2 device, and overlay it on top of the input
  2706. # labelled as "in"
  2707. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2708. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2709. @end example
  2710. @section mptestsrc
  2711. Generate various test patterns, as generated by the MPlayer test filter.
  2712. The size of the generated video is fixed, and is 256x256.
  2713. This source is useful in particular for testing encoding features.
  2714. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2715. separated by ":". The description of the accepted options follows.
  2716. @table @option
  2717. @item rate, r
  2718. Specify the frame rate of the sourced video, as the number of frames
  2719. generated per second. It has to be a string in the format
  2720. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2721. number or a valid video frame rate abbreviation. The default value is
  2722. "25".
  2723. @item duration, d
  2724. Set the video duration of the sourced video. The accepted syntax is:
  2725. @example
  2726. [-]HH:MM:SS[.m...]
  2727. [-]S+[.m...]
  2728. @end example
  2729. See also the function @code{av_parse_time()}.
  2730. If not specified, or the expressed duration is negative, the video is
  2731. supposed to be generated forever.
  2732. @item test, t
  2733. Set the number or the name of the test to perform. Supported tests are:
  2734. @table @option
  2735. @item dc_luma
  2736. @item dc_chroma
  2737. @item freq_luma
  2738. @item freq_chroma
  2739. @item amp_luma
  2740. @item amp_chroma
  2741. @item cbp
  2742. @item mv
  2743. @item ring1
  2744. @item ring2
  2745. @item all
  2746. @end table
  2747. Default value is "all", which will cycle through the list of all tests.
  2748. @end table
  2749. For example the following:
  2750. @example
  2751. testsrc=t=dc_luma
  2752. @end example
  2753. will generate a "dc_luma" test pattern.
  2754. @section frei0r_src
  2755. Provide a frei0r source.
  2756. To enable compilation of this filter you need to install the frei0r
  2757. header and configure FFmpeg with @code{--enable-frei0r}.
  2758. The source supports the syntax:
  2759. @example
  2760. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2761. @end example
  2762. @var{size} is the size of the video to generate, may be a string of the
  2763. form @var{width}x@var{height} or a frame size abbreviation.
  2764. @var{rate} is the rate of the video to generate, may be a string of
  2765. the form @var{num}/@var{den} or a frame rate abbreviation.
  2766. @var{src_name} is the name to the frei0r source to load. For more
  2767. information regarding frei0r and how to set the parameters read the
  2768. section @ref{frei0r} in the description of the video filters.
  2769. For example, to generate a frei0r partik0l source with size 200x200
  2770. and frame rate 10 which is overlayed on the overlay filter main input:
  2771. @example
  2772. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2773. @end example
  2774. @section life
  2775. Generate a life pattern.
  2776. This source is based on a generalization of John Conway's life game.
  2777. The sourced input represents a life grid, each pixel represents a cell
  2778. which can be in one of two possible states, alive or dead. Every cell
  2779. interacts with its eight neighbours, which are the cells that are
  2780. horizontally, vertically, or diagonally adjacent.
  2781. At each interaction the grid evolves according to the adopted rule,
  2782. which specifies the number of neighbor alive cells which will make a
  2783. cell stay alive or born. The @option{rule} option allows to specify
  2784. the rule to adopt.
  2785. This source accepts a list of options in the form of
  2786. @var{key}=@var{value} pairs separated by ":". A description of the
  2787. accepted options follows.
  2788. @table @option
  2789. @item filename, f
  2790. Set the file from which to read the initial grid state. In the file,
  2791. each non-whitespace character is considered an alive cell, and newline
  2792. is used to delimit the end of each row.
  2793. If this option is not specified, the initial grid is generated
  2794. randomly.
  2795. @item rate, r
  2796. Set the video rate, that is the number of frames generated per second.
  2797. Default is 25.
  2798. @item random_fill_ratio, ratio
  2799. Set the random fill ratio for the initial random grid. It is a
  2800. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2801. It is ignored when a file is specified.
  2802. @item random_seed, seed
  2803. Set the seed for filling the initial random grid, must be an integer
  2804. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2805. set to -1, the filter will try to use a good random seed on a best
  2806. effort basis.
  2807. @item rule
  2808. Set the life rule.
  2809. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2810. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2811. @var{NS} specifies the number of alive neighbor cells which make a
  2812. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2813. which make a dead cell to become alive (i.e. to "born").
  2814. "s" and "b" can be used in place of "S" and "B", respectively.
  2815. Alternatively a rule can be specified by an 18-bits integer. The 9
  2816. high order bits are used to encode the next cell state if it is alive
  2817. for each number of neighbor alive cells, the low order bits specify
  2818. the rule for "borning" new cells. Higher order bits encode for an
  2819. higher number of neighbor cells.
  2820. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2821. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2822. Default value is "S23/B3", which is the original Conway's game of life
  2823. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2824. cells, and will born a new cell if there are three alive cells around
  2825. a dead cell.
  2826. @item size, s
  2827. Set the size of the output video.
  2828. If @option{filename} is specified, the size is set by default to the
  2829. same size of the input file. If @option{size} is set, it must contain
  2830. the size specified in the input file, and the initial grid defined in
  2831. that file is centered in the larger resulting area.
  2832. If a filename is not specified, the size value defaults to "320x240"
  2833. (used for a randomly generated initial grid).
  2834. @item stitch
  2835. If set to 1, stitch the left and right grid edges together, and the
  2836. top and bottom edges also. Defaults to 1.
  2837. @item mold
  2838. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2839. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2840. value from 0 to 255.
  2841. @item life_color
  2842. Set the color of living (or new born) cells.
  2843. @item death_color
  2844. Set the color of dead cells. If @option{mold} is set, this is the first color
  2845. used to represent a dead cell.
  2846. @item mold_color
  2847. Set mold color, for definitely dead and moldy cells.
  2848. @end table
  2849. @subsection Examples
  2850. @itemize
  2851. @item
  2852. Read a grid from @file{pattern}, and center it on a grid of size
  2853. 300x300 pixels:
  2854. @example
  2855. life=f=pattern:s=300x300
  2856. @end example
  2857. @item
  2858. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2859. @example
  2860. life=ratio=2/3:s=200x200
  2861. @end example
  2862. @item
  2863. Specify a custom rule for evolving a randomly generated grid:
  2864. @example
  2865. life=rule=S14/B34
  2866. @end example
  2867. @item
  2868. Full example with slow death effect (mold) using @command{ffplay}:
  2869. @example
  2870. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2871. @end example
  2872. @end itemize
  2873. @section nullsrc, rgbtestsrc, testsrc
  2874. The @code{nullsrc} source returns unprocessed video frames. It is
  2875. mainly useful to be employed in analysis / debugging tools, or as the
  2876. source for filters which ignore the input data.
  2877. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2878. detecting RGB vs BGR issues. You should see a red, green and blue
  2879. stripe from top to bottom.
  2880. The @code{testsrc} source generates a test video pattern, showing a
  2881. color pattern, a scrolling gradient and a timestamp. This is mainly
  2882. intended for testing purposes.
  2883. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2884. separated by ":". The description of the accepted options follows.
  2885. @table @option
  2886. @item size, s
  2887. Specify the size of the sourced video, it may be a string of the form
  2888. @var{width}x@var{height}, or the name of a size abbreviation. The
  2889. default value is "320x240".
  2890. @item rate, r
  2891. Specify the frame rate of the sourced video, as the number of frames
  2892. generated per second. It has to be a string in the format
  2893. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2894. number or a valid video frame rate abbreviation. The default value is
  2895. "25".
  2896. @item sar
  2897. Set the sample aspect ratio of the sourced video.
  2898. @item duration, d
  2899. Set the video duration of the sourced video. The accepted syntax is:
  2900. @example
  2901. [-]HH[:MM[:SS[.m...]]]
  2902. [-]S+[.m...]
  2903. @end example
  2904. See also the function @code{av_parse_time()}.
  2905. If not specified, or the expressed duration is negative, the video is
  2906. supposed to be generated forever.
  2907. @item decimals, n
  2908. Set the number of decimals to show in the timestamp, only used in the
  2909. @code{testsrc} source.
  2910. The displayed timestamp value will correspond to the original
  2911. timestamp value multiplied by the power of 10 of the specified
  2912. value. Default value is 0.
  2913. @end table
  2914. For example the following:
  2915. @example
  2916. testsrc=duration=5.3:size=qcif:rate=10
  2917. @end example
  2918. will generate a video with a duration of 5.3 seconds, with size
  2919. 176x144 and a frame rate of 10 frames per second.
  2920. If the input content is to be ignored, @code{nullsrc} can be used. The
  2921. following command generates noise in the luminance plane by employing
  2922. the @code{mp=geq} filter:
  2923. @example
  2924. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2925. @end example
  2926. @c man end VIDEO SOURCES
  2927. @chapter Video Sinks
  2928. @c man begin VIDEO SINKS
  2929. Below is a description of the currently available video sinks.
  2930. @section buffersink
  2931. Buffer video frames, and make them available to the end of the filter
  2932. graph.
  2933. This sink is mainly intended for a programmatic use, in particular
  2934. through the interface defined in @file{libavfilter/buffersink.h}.
  2935. It does not require a string parameter in input, but you need to
  2936. specify a pointer to a list of supported pixel formats terminated by
  2937. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2938. when initializing this sink.
  2939. @section nullsink
  2940. Null video sink, do absolutely nothing with the input video. It is
  2941. mainly useful as a template and to be employed in analysis / debugging
  2942. tools.
  2943. @c man end VIDEO SINKS
  2944. @chapter Transmedia Filters
  2945. @c man begin TRANSMEDIA FILTERS
  2946. Below is a description of the currently available transmedia filters.
  2947. @section showwaves
  2948. Convert input audio to a video output, representing the samples waves.
  2949. The filter accepts the following named parameters:
  2950. @table @option
  2951. @item n
  2952. Set the number of samples which are printed on the same column. A
  2953. larger value will decrease the frame rate. Must be a positive
  2954. integer. This option can be set only if the value for @var{rate}
  2955. is not explicitly specified.
  2956. @item rate, r
  2957. Set the (approximate) output frame rate. This is done by setting the
  2958. option @var{n}. Default value is "25".
  2959. @item size, s
  2960. Specify the video size for the output. Default value is "600x240".
  2961. @end table
  2962. Some examples follow.
  2963. @itemize
  2964. @item
  2965. Output the input file audio and the corresponding video representation
  2966. at the same time:
  2967. @example
  2968. amovie=a.mp3,asplit[out0],showwaves[out1]
  2969. @end example
  2970. @item
  2971. Create a synthetic signal and show it with showwaves, forcing a
  2972. framerate of 30 frames per second:
  2973. @example
  2974. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  2975. @end example
  2976. @end itemize
  2977. @c man end TRANSMEDIA FILTERS