You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2930 lines
88KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. # define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #ifdef ARCH_X86
  40. # define MULL(ra, rb) \
  41. ({ int rt, dummy; asm (\
  42. "imull %3 \n\t"\
  43. "shrdl %4, %%edx, %%eax \n\t"\
  44. : "=a"(rt), "=d"(dummy)\
  45. : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\
  46. rt; })
  47. # define MUL64(ra, rb) \
  48. ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; })
  49. # define MULH(ra, rb) \
  50. ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; })
  51. #elif defined(ARCH_ARMV4L)
  52. # define MULL(a, b) \
  53. ({ int lo, hi;\
  54. asm("smull %0, %1, %2, %3 \n\t"\
  55. "mov %0, %0, lsr %4\n\t"\
  56. "add %1, %0, %1, lsl %5\n\t"\
  57. : "=&r"(lo), "=&r"(hi)\
  58. : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\
  59. hi; })
  60. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  61. # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; })
  62. #else
  63. # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  64. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  65. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  66. static always_inline int MULH(int a, int b){
  67. return ((int64_t)(a) * (int64_t)(b))>>32;
  68. }
  69. #endif
  70. #define FIX(a) ((int)((a) * FRAC_ONE))
  71. /* WARNING: only correct for posititive numbers */
  72. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  73. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  74. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  75. /****************/
  76. #define HEADER_SIZE 4
  77. #define BACKSTEP_SIZE 512
  78. struct GranuleDef;
  79. typedef struct MPADecodeContext {
  80. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  81. int inbuf_index;
  82. uint8_t *inbuf_ptr, *inbuf;
  83. int frame_size;
  84. int free_format_frame_size; /* frame size in case of free format
  85. (zero if currently unknown) */
  86. /* next header (used in free format parsing) */
  87. uint32_t free_format_next_header;
  88. int error_protection;
  89. int layer;
  90. int sample_rate;
  91. int sample_rate_index; /* between 0 and 8 */
  92. int bit_rate;
  93. int old_frame_size;
  94. GetBitContext gb;
  95. int nb_channels;
  96. int mode;
  97. int mode_ext;
  98. int lsf;
  99. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  100. int synth_buf_offset[MPA_MAX_CHANNELS];
  101. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  102. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  103. #ifdef DEBUG
  104. int frame_count;
  105. #endif
  106. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  107. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  108. unsigned int dither_state;
  109. } MPADecodeContext;
  110. /**
  111. * Context for MP3On4 decoder
  112. */
  113. typedef struct MP3On4DecodeContext {
  114. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  115. int chan_cfg; ///< channel config number
  116. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  117. } MP3On4DecodeContext;
  118. /* layer 3 "granule" */
  119. typedef struct GranuleDef {
  120. uint8_t scfsi;
  121. int part2_3_length;
  122. int big_values;
  123. int global_gain;
  124. int scalefac_compress;
  125. uint8_t block_type;
  126. uint8_t switch_point;
  127. int table_select[3];
  128. int subblock_gain[3];
  129. uint8_t scalefac_scale;
  130. uint8_t count1table_select;
  131. int region_size[3]; /* number of huffman codes in each region */
  132. int preflag;
  133. int short_start, long_end; /* long/short band indexes */
  134. uint8_t scale_factors[40];
  135. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  136. } GranuleDef;
  137. #define MODE_EXT_MS_STEREO 2
  138. #define MODE_EXT_I_STEREO 1
  139. /* layer 3 huffman tables */
  140. typedef struct HuffTable {
  141. int xsize;
  142. const uint8_t *bits;
  143. const uint16_t *codes;
  144. } HuffTable;
  145. #include "mpegaudiodectab.h"
  146. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  147. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  148. /* vlc structure for decoding layer 3 huffman tables */
  149. static VLC huff_vlc[16];
  150. static VLC huff_quad_vlc[2];
  151. /* computed from band_size_long */
  152. static uint16_t band_index_long[9][23];
  153. /* XXX: free when all decoders are closed */
  154. #define TABLE_4_3_SIZE (8191 + 16)*4
  155. static int8_t *table_4_3_exp;
  156. static uint32_t *table_4_3_value;
  157. /* intensity stereo coef table */
  158. static int32_t is_table[2][16];
  159. static int32_t is_table_lsf[2][2][16];
  160. static int32_t csa_table[8][4];
  161. static float csa_table_float[8][4];
  162. static int32_t mdct_win[8][36];
  163. /* lower 2 bits: modulo 3, higher bits: shift */
  164. static uint16_t scale_factor_modshift[64];
  165. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  166. static int32_t scale_factor_mult[15][3];
  167. /* mult table for layer 2 group quantization */
  168. #define SCALE_GEN(v) \
  169. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  170. static const int32_t scale_factor_mult2[3][3] = {
  171. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  172. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  173. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  174. };
  175. void ff_mpa_synth_init(MPA_INT *window);
  176. static MPA_INT window[512] __attribute__((aligned(16)));
  177. /* layer 1 unscaling */
  178. /* n = number of bits of the mantissa minus 1 */
  179. static inline int l1_unscale(int n, int mant, int scale_factor)
  180. {
  181. int shift, mod;
  182. int64_t val;
  183. shift = scale_factor_modshift[scale_factor];
  184. mod = shift & 3;
  185. shift >>= 2;
  186. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  187. shift += n;
  188. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  189. return (int)((val + (1LL << (shift - 1))) >> shift);
  190. }
  191. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  192. {
  193. int shift, mod, val;
  194. shift = scale_factor_modshift[scale_factor];
  195. mod = shift & 3;
  196. shift >>= 2;
  197. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  198. /* NOTE: at this point, 0 <= shift <= 21 */
  199. if (shift > 0)
  200. val = (val + (1 << (shift - 1))) >> shift;
  201. return val;
  202. }
  203. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  204. static inline int l3_unscale(int value, int exponent)
  205. {
  206. unsigned int m;
  207. int e;
  208. e = table_4_3_exp [4*value + (exponent&3)];
  209. m = table_4_3_value[4*value + (exponent&3)];
  210. e -= (exponent >> 2);
  211. assert(e>=1);
  212. if (e > 31)
  213. return 0;
  214. m = (m + (1 << (e-1))) >> e;
  215. return m;
  216. }
  217. /* all integer n^(4/3) computation code */
  218. #define DEV_ORDER 13
  219. #define POW_FRAC_BITS 24
  220. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  221. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  222. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  223. static int dev_4_3_coefs[DEV_ORDER];
  224. #if 0 /* unused */
  225. static int pow_mult3[3] = {
  226. POW_FIX(1.0),
  227. POW_FIX(1.25992104989487316476),
  228. POW_FIX(1.58740105196819947474),
  229. };
  230. #endif
  231. static void int_pow_init(void)
  232. {
  233. int i, a;
  234. a = POW_FIX(1.0);
  235. for(i=0;i<DEV_ORDER;i++) {
  236. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  237. dev_4_3_coefs[i] = a;
  238. }
  239. }
  240. #if 0 /* unused, remove? */
  241. /* return the mantissa and the binary exponent */
  242. static int int_pow(int i, int *exp_ptr)
  243. {
  244. int e, er, eq, j;
  245. int a, a1;
  246. /* renormalize */
  247. a = i;
  248. e = POW_FRAC_BITS;
  249. while (a < (1 << (POW_FRAC_BITS - 1))) {
  250. a = a << 1;
  251. e--;
  252. }
  253. a -= (1 << POW_FRAC_BITS);
  254. a1 = 0;
  255. for(j = DEV_ORDER - 1; j >= 0; j--)
  256. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  257. a = (1 << POW_FRAC_BITS) + a1;
  258. /* exponent compute (exact) */
  259. e = e * 4;
  260. er = e % 3;
  261. eq = e / 3;
  262. a = POW_MULL(a, pow_mult3[er]);
  263. while (a >= 2 * POW_FRAC_ONE) {
  264. a = a >> 1;
  265. eq++;
  266. }
  267. /* convert to float */
  268. while (a < POW_FRAC_ONE) {
  269. a = a << 1;
  270. eq--;
  271. }
  272. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  273. #if POW_FRAC_BITS > FRAC_BITS
  274. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  275. /* correct overflow */
  276. if (a >= 2 * (1 << FRAC_BITS)) {
  277. a = a >> 1;
  278. eq++;
  279. }
  280. #endif
  281. *exp_ptr = eq;
  282. return a;
  283. }
  284. #endif
  285. static int decode_init(AVCodecContext * avctx)
  286. {
  287. MPADecodeContext *s = avctx->priv_data;
  288. static int init=0;
  289. int i, j, k;
  290. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  291. avctx->sample_fmt= SAMPLE_FMT_S32;
  292. #else
  293. avctx->sample_fmt= SAMPLE_FMT_S16;
  294. #endif
  295. if(avctx->antialias_algo != FF_AA_FLOAT)
  296. s->compute_antialias= compute_antialias_integer;
  297. else
  298. s->compute_antialias= compute_antialias_float;
  299. if (!init && !avctx->parse_only) {
  300. /* scale factors table for layer 1/2 */
  301. for(i=0;i<64;i++) {
  302. int shift, mod;
  303. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  304. shift = (i / 3);
  305. mod = i % 3;
  306. scale_factor_modshift[i] = mod | (shift << 2);
  307. }
  308. /* scale factor multiply for layer 1 */
  309. for(i=0;i<15;i++) {
  310. int n, norm;
  311. n = i + 2;
  312. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  313. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  314. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  315. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  316. dprintf("%d: norm=%x s=%x %x %x\n",
  317. i, norm,
  318. scale_factor_mult[i][0],
  319. scale_factor_mult[i][1],
  320. scale_factor_mult[i][2]);
  321. }
  322. ff_mpa_synth_init(window);
  323. /* huffman decode tables */
  324. for(i=1;i<16;i++) {
  325. const HuffTable *h = &mpa_huff_tables[i];
  326. int xsize, x, y;
  327. unsigned int n;
  328. uint8_t tmp_bits [256];
  329. uint16_t tmp_codes[256];
  330. memset(tmp_bits , 0, sizeof(tmp_bits ));
  331. memset(tmp_codes, 0, sizeof(tmp_codes));
  332. xsize = h->xsize;
  333. n = xsize * xsize;
  334. j = 0;
  335. for(x=0;x<xsize;x++) {
  336. for(y=0;y<xsize;y++){
  337. tmp_bits [(x << 4) | y]= h->bits [j ];
  338. tmp_codes[(x << 4) | y]= h->codes[j++];
  339. }
  340. }
  341. /* XXX: fail test */
  342. init_vlc(&huff_vlc[i], 8, 256,
  343. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  344. }
  345. for(i=0;i<2;i++) {
  346. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  347. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  348. }
  349. for(i=0;i<9;i++) {
  350. k = 0;
  351. for(j=0;j<22;j++) {
  352. band_index_long[i][j] = k;
  353. k += band_size_long[i][j];
  354. }
  355. band_index_long[i][22] = k;
  356. }
  357. /* compute n ^ (4/3) and store it in mantissa/exp format */
  358. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  359. if(!table_4_3_exp)
  360. return -1;
  361. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  362. if(!table_4_3_value)
  363. return -1;
  364. int_pow_init();
  365. for(i=1;i<TABLE_4_3_SIZE;i++) {
  366. double f, fm;
  367. int e, m;
  368. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  369. fm = frexp(f, &e);
  370. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  371. e+= FRAC_BITS - 31 + 5;
  372. /* normalized to FRAC_BITS */
  373. table_4_3_value[i] = m;
  374. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  375. table_4_3_exp[i] = -e;
  376. }
  377. for(i=0;i<7;i++) {
  378. float f;
  379. int v;
  380. if (i != 6) {
  381. f = tan((double)i * M_PI / 12.0);
  382. v = FIXR(f / (1.0 + f));
  383. } else {
  384. v = FIXR(1.0);
  385. }
  386. is_table[0][i] = v;
  387. is_table[1][6 - i] = v;
  388. }
  389. /* invalid values */
  390. for(i=7;i<16;i++)
  391. is_table[0][i] = is_table[1][i] = 0.0;
  392. for(i=0;i<16;i++) {
  393. double f;
  394. int e, k;
  395. for(j=0;j<2;j++) {
  396. e = -(j + 1) * ((i + 1) >> 1);
  397. f = pow(2.0, e / 4.0);
  398. k = i & 1;
  399. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  400. is_table_lsf[j][k][i] = FIXR(1.0);
  401. dprintf("is_table_lsf %d %d: %x %x\n",
  402. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  403. }
  404. }
  405. for(i=0;i<8;i++) {
  406. float ci, cs, ca;
  407. ci = ci_table[i];
  408. cs = 1.0 / sqrt(1.0 + ci * ci);
  409. ca = cs * ci;
  410. csa_table[i][0] = FIXHR(cs/4);
  411. csa_table[i][1] = FIXHR(ca/4);
  412. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  413. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  414. csa_table_float[i][0] = cs;
  415. csa_table_float[i][1] = ca;
  416. csa_table_float[i][2] = ca + cs;
  417. csa_table_float[i][3] = ca - cs;
  418. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  419. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  420. }
  421. /* compute mdct windows */
  422. for(i=0;i<36;i++) {
  423. for(j=0; j<4; j++){
  424. double d;
  425. if(j==2 && i%3 != 1)
  426. continue;
  427. d= sin(M_PI * (i + 0.5) / 36.0);
  428. if(j==1){
  429. if (i>=30) d= 0;
  430. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  431. else if(i>=18) d= 1;
  432. }else if(j==3){
  433. if (i< 6) d= 0;
  434. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  435. else if(i< 18) d= 1;
  436. }
  437. //merge last stage of imdct into the window coefficients
  438. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  439. if(j==2)
  440. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  441. else
  442. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  443. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  444. }
  445. }
  446. /* NOTE: we do frequency inversion adter the MDCT by changing
  447. the sign of the right window coefs */
  448. for(j=0;j<4;j++) {
  449. for(i=0;i<36;i+=2) {
  450. mdct_win[j + 4][i] = mdct_win[j][i];
  451. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  452. }
  453. }
  454. #if defined(DEBUG)
  455. for(j=0;j<8;j++) {
  456. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  457. for(i=0;i<36;i++)
  458. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  459. av_log(avctx, AV_LOG_DEBUG, "\n");
  460. }
  461. #endif
  462. init = 1;
  463. }
  464. s->inbuf_index = 0;
  465. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  466. s->inbuf_ptr = s->inbuf;
  467. #ifdef DEBUG
  468. s->frame_count = 0;
  469. #endif
  470. if (avctx->codec_id == CODEC_ID_MP3ADU)
  471. s->adu_mode = 1;
  472. return 0;
  473. }
  474. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  475. /* cos(i*pi/64) */
  476. #define COS0_0 FIXHR(0.50060299823519630134/2)
  477. #define COS0_1 FIXHR(0.50547095989754365998/2)
  478. #define COS0_2 FIXHR(0.51544730992262454697/2)
  479. #define COS0_3 FIXHR(0.53104259108978417447/2)
  480. #define COS0_4 FIXHR(0.55310389603444452782/2)
  481. #define COS0_5 FIXHR(0.58293496820613387367/2)
  482. #define COS0_6 FIXHR(0.62250412303566481615/2)
  483. #define COS0_7 FIXHR(0.67480834145500574602/2)
  484. #define COS0_8 FIXHR(0.74453627100229844977/2)
  485. #define COS0_9 FIXHR(0.83934964541552703873/2)
  486. #define COS0_10 FIXHR(0.97256823786196069369/2)
  487. #define COS0_11 FIXHR(1.16943993343288495515/4)
  488. #define COS0_12 FIXHR(1.48416461631416627724/4)
  489. #define COS0_13 FIXHR(2.05778100995341155085/8)
  490. #define COS0_14 FIXHR(3.40760841846871878570/8)
  491. #define COS0_15 FIXHR(10.19000812354805681150/32)
  492. #define COS1_0 FIXHR(0.50241928618815570551/2)
  493. #define COS1_1 FIXHR(0.52249861493968888062/2)
  494. #define COS1_2 FIXHR(0.56694403481635770368/2)
  495. #define COS1_3 FIXHR(0.64682178335999012954/2)
  496. #define COS1_4 FIXHR(0.78815462345125022473/2)
  497. #define COS1_5 FIXHR(1.06067768599034747134/4)
  498. #define COS1_6 FIXHR(1.72244709823833392782/4)
  499. #define COS1_7 FIXHR(5.10114861868916385802/16)
  500. #define COS2_0 FIXHR(0.50979557910415916894/2)
  501. #define COS2_1 FIXHR(0.60134488693504528054/2)
  502. #define COS2_2 FIXHR(0.89997622313641570463/2)
  503. #define COS2_3 FIXHR(2.56291544774150617881/8)
  504. #define COS3_0 FIXHR(0.54119610014619698439/2)
  505. #define COS3_1 FIXHR(1.30656296487637652785/4)
  506. #define COS4_0 FIXHR(0.70710678118654752439/2)
  507. /* butterfly operator */
  508. #define BF(a, b, c, s)\
  509. {\
  510. tmp0 = tab[a] + tab[b];\
  511. tmp1 = tab[a] - tab[b];\
  512. tab[a] = tmp0;\
  513. tab[b] = MULH(tmp1<<(s), c);\
  514. }
  515. #define BF1(a, b, c, d)\
  516. {\
  517. BF(a, b, COS4_0, 1);\
  518. BF(c, d,-COS4_0, 1);\
  519. tab[c] += tab[d];\
  520. }
  521. #define BF2(a, b, c, d)\
  522. {\
  523. BF(a, b, COS4_0, 1);\
  524. BF(c, d,-COS4_0, 1);\
  525. tab[c] += tab[d];\
  526. tab[a] += tab[c];\
  527. tab[c] += tab[b];\
  528. tab[b] += tab[d];\
  529. }
  530. #define ADD(a, b) tab[a] += tab[b]
  531. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  532. static void dct32(int32_t *out, int32_t *tab)
  533. {
  534. int tmp0, tmp1;
  535. /* pass 1 */
  536. BF( 0, 31, COS0_0 , 1);
  537. BF(15, 16, COS0_15, 5);
  538. /* pass 2 */
  539. BF( 0, 15, COS1_0 , 1);
  540. BF(16, 31,-COS1_0 , 1);
  541. /* pass 1 */
  542. BF( 7, 24, COS0_7 , 1);
  543. BF( 8, 23, COS0_8 , 1);
  544. /* pass 2 */
  545. BF( 7, 8, COS1_7 , 4);
  546. BF(23, 24,-COS1_7 , 4);
  547. /* pass 3 */
  548. BF( 0, 7, COS2_0 , 1);
  549. BF( 8, 15,-COS2_0 , 1);
  550. BF(16, 23, COS2_0 , 1);
  551. BF(24, 31,-COS2_0 , 1);
  552. /* pass 1 */
  553. BF( 3, 28, COS0_3 , 1);
  554. BF(12, 19, COS0_12, 2);
  555. /* pass 2 */
  556. BF( 3, 12, COS1_3 , 1);
  557. BF(19, 28,-COS1_3 , 1);
  558. /* pass 1 */
  559. BF( 4, 27, COS0_4 , 1);
  560. BF(11, 20, COS0_11, 2);
  561. /* pass 2 */
  562. BF( 4, 11, COS1_4 , 1);
  563. BF(20, 27,-COS1_4 , 1);
  564. /* pass 3 */
  565. BF( 3, 4, COS2_3 , 3);
  566. BF(11, 12,-COS2_3 , 3);
  567. BF(19, 20, COS2_3 , 3);
  568. BF(27, 28,-COS2_3 , 3);
  569. /* pass 4 */
  570. BF( 0, 3, COS3_0 , 1);
  571. BF( 4, 7,-COS3_0 , 1);
  572. BF( 8, 11, COS3_0 , 1);
  573. BF(12, 15,-COS3_0 , 1);
  574. BF(16, 19, COS3_0 , 1);
  575. BF(20, 23,-COS3_0 , 1);
  576. BF(24, 27, COS3_0 , 1);
  577. BF(28, 31,-COS3_0 , 1);
  578. /* pass 1 */
  579. BF( 1, 30, COS0_1 , 1);
  580. BF(14, 17, COS0_14, 3);
  581. /* pass 2 */
  582. BF( 1, 14, COS1_1 , 1);
  583. BF(17, 30,-COS1_1 , 1);
  584. /* pass 1 */
  585. BF( 6, 25, COS0_6 , 1);
  586. BF( 9, 22, COS0_9 , 1);
  587. /* pass 2 */
  588. BF( 6, 9, COS1_6 , 2);
  589. BF(22, 25,-COS1_6 , 2);
  590. /* pass 3 */
  591. BF( 1, 6, COS2_1 , 1);
  592. BF( 9, 14,-COS2_1 , 1);
  593. BF(17, 22, COS2_1 , 1);
  594. BF(25, 30,-COS2_1 , 1);
  595. /* pass 1 */
  596. BF( 2, 29, COS0_2 , 1);
  597. BF(13, 18, COS0_13, 3);
  598. /* pass 2 */
  599. BF( 2, 13, COS1_2 , 1);
  600. BF(18, 29,-COS1_2 , 1);
  601. /* pass 1 */
  602. BF( 5, 26, COS0_5 , 1);
  603. BF(10, 21, COS0_10, 1);
  604. /* pass 2 */
  605. BF( 5, 10, COS1_5 , 2);
  606. BF(21, 26,-COS1_5 , 2);
  607. /* pass 3 */
  608. BF( 2, 5, COS2_2 , 1);
  609. BF(10, 13,-COS2_2 , 1);
  610. BF(18, 21, COS2_2 , 1);
  611. BF(26, 29,-COS2_2 , 1);
  612. /* pass 4 */
  613. BF( 1, 2, COS3_1 , 2);
  614. BF( 5, 6,-COS3_1 , 2);
  615. BF( 9, 10, COS3_1 , 2);
  616. BF(13, 14,-COS3_1 , 2);
  617. BF(17, 18, COS3_1 , 2);
  618. BF(21, 22,-COS3_1 , 2);
  619. BF(25, 26, COS3_1 , 2);
  620. BF(29, 30,-COS3_1 , 2);
  621. /* pass 5 */
  622. BF1( 0, 1, 2, 3);
  623. BF2( 4, 5, 6, 7);
  624. BF1( 8, 9, 10, 11);
  625. BF2(12, 13, 14, 15);
  626. BF1(16, 17, 18, 19);
  627. BF2(20, 21, 22, 23);
  628. BF1(24, 25, 26, 27);
  629. BF2(28, 29, 30, 31);
  630. /* pass 6 */
  631. ADD( 8, 12);
  632. ADD(12, 10);
  633. ADD(10, 14);
  634. ADD(14, 9);
  635. ADD( 9, 13);
  636. ADD(13, 11);
  637. ADD(11, 15);
  638. out[ 0] = tab[0];
  639. out[16] = tab[1];
  640. out[ 8] = tab[2];
  641. out[24] = tab[3];
  642. out[ 4] = tab[4];
  643. out[20] = tab[5];
  644. out[12] = tab[6];
  645. out[28] = tab[7];
  646. out[ 2] = tab[8];
  647. out[18] = tab[9];
  648. out[10] = tab[10];
  649. out[26] = tab[11];
  650. out[ 6] = tab[12];
  651. out[22] = tab[13];
  652. out[14] = tab[14];
  653. out[30] = tab[15];
  654. ADD(24, 28);
  655. ADD(28, 26);
  656. ADD(26, 30);
  657. ADD(30, 25);
  658. ADD(25, 29);
  659. ADD(29, 27);
  660. ADD(27, 31);
  661. out[ 1] = tab[16] + tab[24];
  662. out[17] = tab[17] + tab[25];
  663. out[ 9] = tab[18] + tab[26];
  664. out[25] = tab[19] + tab[27];
  665. out[ 5] = tab[20] + tab[28];
  666. out[21] = tab[21] + tab[29];
  667. out[13] = tab[22] + tab[30];
  668. out[29] = tab[23] + tab[31];
  669. out[ 3] = tab[24] + tab[20];
  670. out[19] = tab[25] + tab[21];
  671. out[11] = tab[26] + tab[22];
  672. out[27] = tab[27] + tab[23];
  673. out[ 7] = tab[28] + tab[18];
  674. out[23] = tab[29] + tab[19];
  675. out[15] = tab[30] + tab[17];
  676. out[31] = tab[31];
  677. }
  678. #if FRAC_BITS <= 15
  679. static inline int round_sample(int *sum)
  680. {
  681. int sum1;
  682. sum1 = (*sum) >> OUT_SHIFT;
  683. *sum &= (1<<OUT_SHIFT)-1;
  684. if (sum1 < OUT_MIN)
  685. sum1 = OUT_MIN;
  686. else if (sum1 > OUT_MAX)
  687. sum1 = OUT_MAX;
  688. return sum1;
  689. }
  690. # if defined(ARCH_POWERPC_405)
  691. /* signed 16x16 -> 32 multiply add accumulate */
  692. # define MACS(rt, ra, rb) \
  693. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  694. /* signed 16x16 -> 32 multiply */
  695. # define MULS(ra, rb) \
  696. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  697. # else
  698. /* signed 16x16 -> 32 multiply add accumulate */
  699. # define MACS(rt, ra, rb) rt += (ra) * (rb)
  700. /* signed 16x16 -> 32 multiply */
  701. # define MULS(ra, rb) ((ra) * (rb))
  702. # endif
  703. #else
  704. static inline int round_sample(int64_t *sum)
  705. {
  706. int sum1;
  707. sum1 = (int)((*sum) >> OUT_SHIFT);
  708. *sum &= (1<<OUT_SHIFT)-1;
  709. if (sum1 < OUT_MIN)
  710. sum1 = OUT_MIN;
  711. else if (sum1 > OUT_MAX)
  712. sum1 = OUT_MAX;
  713. return sum1;
  714. }
  715. # define MULS(ra, rb) MUL64(ra, rb)
  716. #endif
  717. #define SUM8(sum, op, w, p) \
  718. { \
  719. sum op MULS((w)[0 * 64], p[0 * 64]);\
  720. sum op MULS((w)[1 * 64], p[1 * 64]);\
  721. sum op MULS((w)[2 * 64], p[2 * 64]);\
  722. sum op MULS((w)[3 * 64], p[3 * 64]);\
  723. sum op MULS((w)[4 * 64], p[4 * 64]);\
  724. sum op MULS((w)[5 * 64], p[5 * 64]);\
  725. sum op MULS((w)[6 * 64], p[6 * 64]);\
  726. sum op MULS((w)[7 * 64], p[7 * 64]);\
  727. }
  728. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  729. { \
  730. int tmp;\
  731. tmp = p[0 * 64];\
  732. sum1 op1 MULS((w1)[0 * 64], tmp);\
  733. sum2 op2 MULS((w2)[0 * 64], tmp);\
  734. tmp = p[1 * 64];\
  735. sum1 op1 MULS((w1)[1 * 64], tmp);\
  736. sum2 op2 MULS((w2)[1 * 64], tmp);\
  737. tmp = p[2 * 64];\
  738. sum1 op1 MULS((w1)[2 * 64], tmp);\
  739. sum2 op2 MULS((w2)[2 * 64], tmp);\
  740. tmp = p[3 * 64];\
  741. sum1 op1 MULS((w1)[3 * 64], tmp);\
  742. sum2 op2 MULS((w2)[3 * 64], tmp);\
  743. tmp = p[4 * 64];\
  744. sum1 op1 MULS((w1)[4 * 64], tmp);\
  745. sum2 op2 MULS((w2)[4 * 64], tmp);\
  746. tmp = p[5 * 64];\
  747. sum1 op1 MULS((w1)[5 * 64], tmp);\
  748. sum2 op2 MULS((w2)[5 * 64], tmp);\
  749. tmp = p[6 * 64];\
  750. sum1 op1 MULS((w1)[6 * 64], tmp);\
  751. sum2 op2 MULS((w2)[6 * 64], tmp);\
  752. tmp = p[7 * 64];\
  753. sum1 op1 MULS((w1)[7 * 64], tmp);\
  754. sum2 op2 MULS((w2)[7 * 64], tmp);\
  755. }
  756. void ff_mpa_synth_init(MPA_INT *window)
  757. {
  758. int i;
  759. /* max = 18760, max sum over all 16 coefs : 44736 */
  760. for(i=0;i<257;i++) {
  761. int v;
  762. v = mpa_enwindow[i];
  763. #if WFRAC_BITS < 16
  764. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  765. #endif
  766. window[i] = v;
  767. if ((i & 63) != 0)
  768. v = -v;
  769. if (i != 0)
  770. window[512 - i] = v;
  771. }
  772. }
  773. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  774. 32 samples. */
  775. /* XXX: optimize by avoiding ring buffer usage */
  776. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  777. MPA_INT *window, int *dither_state,
  778. OUT_INT *samples, int incr,
  779. int32_t sb_samples[SBLIMIT])
  780. {
  781. int32_t tmp[32];
  782. register MPA_INT *synth_buf;
  783. register const MPA_INT *w, *w2, *p;
  784. int j, offset, v;
  785. OUT_INT *samples2;
  786. #if FRAC_BITS <= 15
  787. int sum, sum2;
  788. #else
  789. int64_t sum, sum2;
  790. #endif
  791. dct32(tmp, sb_samples);
  792. offset = *synth_buf_offset;
  793. synth_buf = synth_buf_ptr + offset;
  794. for(j=0;j<32;j++) {
  795. v = tmp[j];
  796. #if FRAC_BITS <= 15
  797. /* NOTE: can cause a loss in precision if very high amplitude
  798. sound */
  799. if (v > 32767)
  800. v = 32767;
  801. else if (v < -32768)
  802. v = -32768;
  803. #endif
  804. synth_buf[j] = v;
  805. }
  806. /* copy to avoid wrap */
  807. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  808. samples2 = samples + 31 * incr;
  809. w = window;
  810. w2 = window + 31;
  811. sum = *dither_state;
  812. p = synth_buf + 16;
  813. SUM8(sum, +=, w, p);
  814. p = synth_buf + 48;
  815. SUM8(sum, -=, w + 32, p);
  816. *samples = round_sample(&sum);
  817. samples += incr;
  818. w++;
  819. /* we calculate two samples at the same time to avoid one memory
  820. access per two sample */
  821. for(j=1;j<16;j++) {
  822. sum2 = 0;
  823. p = synth_buf + 16 + j;
  824. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  825. p = synth_buf + 48 - j;
  826. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  827. *samples = round_sample(&sum);
  828. samples += incr;
  829. sum += sum2;
  830. *samples2 = round_sample(&sum);
  831. samples2 -= incr;
  832. w++;
  833. w2--;
  834. }
  835. p = synth_buf + 32;
  836. SUM8(sum, -=, w + 32, p);
  837. *samples = round_sample(&sum);
  838. *dither_state= sum;
  839. offset = (offset - 32) & 511;
  840. *synth_buf_offset = offset;
  841. }
  842. #define C3 FIXHR(0.86602540378443864676/2)
  843. /* 0.5 / cos(pi*(2*i+1)/36) */
  844. static const int icos36[9] = {
  845. FIXR(0.50190991877167369479),
  846. FIXR(0.51763809020504152469), //0
  847. FIXR(0.55168895948124587824),
  848. FIXR(0.61038729438072803416),
  849. FIXR(0.70710678118654752439), //1
  850. FIXR(0.87172339781054900991),
  851. FIXR(1.18310079157624925896),
  852. FIXR(1.93185165257813657349), //2
  853. FIXR(5.73685662283492756461),
  854. };
  855. /* 0.5 / cos(pi*(2*i+1)/36) */
  856. static const int icos36h[9] = {
  857. FIXHR(0.50190991877167369479/2),
  858. FIXHR(0.51763809020504152469/2), //0
  859. FIXHR(0.55168895948124587824/2),
  860. FIXHR(0.61038729438072803416/2),
  861. FIXHR(0.70710678118654752439/2), //1
  862. FIXHR(0.87172339781054900991/2),
  863. FIXHR(1.18310079157624925896/4),
  864. FIXHR(1.93185165257813657349/4), //2
  865. // FIXHR(5.73685662283492756461),
  866. };
  867. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  868. cases. */
  869. static void imdct12(int *out, int *in)
  870. {
  871. int in0, in1, in2, in3, in4, in5, t1, t2;
  872. in0= in[0*3];
  873. in1= in[1*3] + in[0*3];
  874. in2= in[2*3] + in[1*3];
  875. in3= in[3*3] + in[2*3];
  876. in4= in[4*3] + in[3*3];
  877. in5= in[5*3] + in[4*3];
  878. in5 += in3;
  879. in3 += in1;
  880. in2= MULH(2*in2, C3);
  881. in3= MULH(4*in3, C3);
  882. t1 = in0 - in4;
  883. t2 = MULH(2*(in1 - in5), icos36h[4]);
  884. out[ 7]=
  885. out[10]= t1 + t2;
  886. out[ 1]=
  887. out[ 4]= t1 - t2;
  888. in0 += in4>>1;
  889. in4 = in0 + in2;
  890. in5 += 2*in1;
  891. in1 = MULH(in5 + in3, icos36h[1]);
  892. out[ 8]=
  893. out[ 9]= in4 + in1;
  894. out[ 2]=
  895. out[ 3]= in4 - in1;
  896. in0 -= in2;
  897. in5 = MULH(2*(in5 - in3), icos36h[7]);
  898. out[ 0]=
  899. out[ 5]= in0 - in5;
  900. out[ 6]=
  901. out[11]= in0 + in5;
  902. }
  903. /* cos(pi*i/18) */
  904. #define C1 FIXHR(0.98480775301220805936/2)
  905. #define C2 FIXHR(0.93969262078590838405/2)
  906. #define C3 FIXHR(0.86602540378443864676/2)
  907. #define C4 FIXHR(0.76604444311897803520/2)
  908. #define C5 FIXHR(0.64278760968653932632/2)
  909. #define C6 FIXHR(0.5/2)
  910. #define C7 FIXHR(0.34202014332566873304/2)
  911. #define C8 FIXHR(0.17364817766693034885/2)
  912. /* using Lee like decomposition followed by hand coded 9 points DCT */
  913. static void imdct36(int *out, int *buf, int *in, int *win)
  914. {
  915. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  916. int tmp[18], *tmp1, *in1;
  917. for(i=17;i>=1;i--)
  918. in[i] += in[i-1];
  919. for(i=17;i>=3;i-=2)
  920. in[i] += in[i-2];
  921. for(j=0;j<2;j++) {
  922. tmp1 = tmp + j;
  923. in1 = in + j;
  924. #if 0
  925. //more accurate but slower
  926. int64_t t0, t1, t2, t3;
  927. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  928. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  929. t1 = in1[2*0] - in1[2*6];
  930. tmp1[ 6] = t1 - (t2>>1);
  931. tmp1[16] = t1 + t2;
  932. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  933. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  934. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  935. tmp1[10] = (t3 - t0 - t2) >> 32;
  936. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  937. tmp1[14] = (t3 + t2 - t1) >> 32;
  938. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  939. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  940. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  941. t0 = MUL64(2*in1[2*3], C3);
  942. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  943. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  944. tmp1[12] = (t2 + t1 - t0) >> 32;
  945. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  946. #else
  947. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  948. t3 = in1[2*0] + (in1[2*6]>>1);
  949. t1 = in1[2*0] - in1[2*6];
  950. tmp1[ 6] = t1 - (t2>>1);
  951. tmp1[16] = t1 + t2;
  952. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  953. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  954. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  955. tmp1[10] = t3 - t0 - t2;
  956. tmp1[ 2] = t3 + t0 + t1;
  957. tmp1[14] = t3 + t2 - t1;
  958. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  959. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  960. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  961. t0 = MULH(2*in1[2*3], C3);
  962. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  963. tmp1[ 0] = t2 + t3 + t0;
  964. tmp1[12] = t2 + t1 - t0;
  965. tmp1[ 8] = t3 - t1 - t0;
  966. #endif
  967. }
  968. i = 0;
  969. for(j=0;j<4;j++) {
  970. t0 = tmp[i];
  971. t1 = tmp[i + 2];
  972. s0 = t1 + t0;
  973. s2 = t1 - t0;
  974. t2 = tmp[i + 1];
  975. t3 = tmp[i + 3];
  976. s1 = MULH(2*(t3 + t2), icos36h[j]);
  977. s3 = MULL(t3 - t2, icos36[8 - j]);
  978. t0 = s0 + s1;
  979. t1 = s0 - s1;
  980. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  981. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  982. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  983. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  984. t0 = s2 + s3;
  985. t1 = s2 - s3;
  986. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  987. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  988. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  989. buf[ + j] = MULH(t0, win[18 + j]);
  990. i += 4;
  991. }
  992. s0 = tmp[16];
  993. s1 = MULH(2*tmp[17], icos36h[4]);
  994. t0 = s0 + s1;
  995. t1 = s0 - s1;
  996. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  997. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  998. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  999. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  1000. }
  1001. /* header decoding. MUST check the header before because no
  1002. consistency check is done there. Return 1 if free format found and
  1003. that the frame size must be computed externally */
  1004. static int decode_header(MPADecodeContext *s, uint32_t header)
  1005. {
  1006. int sample_rate, frame_size, mpeg25, padding;
  1007. int sample_rate_index, bitrate_index;
  1008. if (header & (1<<20)) {
  1009. s->lsf = (header & (1<<19)) ? 0 : 1;
  1010. mpeg25 = 0;
  1011. } else {
  1012. s->lsf = 1;
  1013. mpeg25 = 1;
  1014. }
  1015. s->layer = 4 - ((header >> 17) & 3);
  1016. /* extract frequency */
  1017. sample_rate_index = (header >> 10) & 3;
  1018. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1019. sample_rate_index += 3 * (s->lsf + mpeg25);
  1020. s->sample_rate_index = sample_rate_index;
  1021. s->error_protection = ((header >> 16) & 1) ^ 1;
  1022. s->sample_rate = sample_rate;
  1023. bitrate_index = (header >> 12) & 0xf;
  1024. padding = (header >> 9) & 1;
  1025. //extension = (header >> 8) & 1;
  1026. s->mode = (header >> 6) & 3;
  1027. s->mode_ext = (header >> 4) & 3;
  1028. //copyright = (header >> 3) & 1;
  1029. //original = (header >> 2) & 1;
  1030. //emphasis = header & 3;
  1031. if (s->mode == MPA_MONO)
  1032. s->nb_channels = 1;
  1033. else
  1034. s->nb_channels = 2;
  1035. if (bitrate_index != 0) {
  1036. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1037. s->bit_rate = frame_size * 1000;
  1038. switch(s->layer) {
  1039. case 1:
  1040. frame_size = (frame_size * 12000) / sample_rate;
  1041. frame_size = (frame_size + padding) * 4;
  1042. break;
  1043. case 2:
  1044. frame_size = (frame_size * 144000) / sample_rate;
  1045. frame_size += padding;
  1046. break;
  1047. default:
  1048. case 3:
  1049. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1050. frame_size += padding;
  1051. break;
  1052. }
  1053. s->frame_size = frame_size;
  1054. } else {
  1055. /* if no frame size computed, signal it */
  1056. if (!s->free_format_frame_size)
  1057. return 1;
  1058. /* free format: compute bitrate and real frame size from the
  1059. frame size we extracted by reading the bitstream */
  1060. s->frame_size = s->free_format_frame_size;
  1061. switch(s->layer) {
  1062. case 1:
  1063. s->frame_size += padding * 4;
  1064. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1065. break;
  1066. case 2:
  1067. s->frame_size += padding;
  1068. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1069. break;
  1070. default:
  1071. case 3:
  1072. s->frame_size += padding;
  1073. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1074. break;
  1075. }
  1076. }
  1077. #if defined(DEBUG)
  1078. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1079. s->layer, s->sample_rate, s->bit_rate);
  1080. if (s->nb_channels == 2) {
  1081. if (s->layer == 3) {
  1082. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1083. dprintf("ms-");
  1084. if (s->mode_ext & MODE_EXT_I_STEREO)
  1085. dprintf("i-");
  1086. }
  1087. dprintf("stereo");
  1088. } else {
  1089. dprintf("mono");
  1090. }
  1091. dprintf("\n");
  1092. #endif
  1093. return 0;
  1094. }
  1095. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1096. header, otherwise the coded frame size in bytes */
  1097. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1098. {
  1099. MPADecodeContext s1, *s = &s1;
  1100. memset( s, 0, sizeof(MPADecodeContext) );
  1101. if (ff_mpa_check_header(head) != 0)
  1102. return -1;
  1103. if (decode_header(s, head) != 0) {
  1104. return -1;
  1105. }
  1106. switch(s->layer) {
  1107. case 1:
  1108. avctx->frame_size = 384;
  1109. break;
  1110. case 2:
  1111. avctx->frame_size = 1152;
  1112. break;
  1113. default:
  1114. case 3:
  1115. if (s->lsf)
  1116. avctx->frame_size = 576;
  1117. else
  1118. avctx->frame_size = 1152;
  1119. break;
  1120. }
  1121. avctx->sample_rate = s->sample_rate;
  1122. avctx->channels = s->nb_channels;
  1123. avctx->bit_rate = s->bit_rate;
  1124. avctx->sub_id = s->layer;
  1125. return s->frame_size;
  1126. }
  1127. /* return the number of decoded frames */
  1128. static int mp_decode_layer1(MPADecodeContext *s)
  1129. {
  1130. int bound, i, v, n, ch, j, mant;
  1131. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1132. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1133. if (s->mode == MPA_JSTEREO)
  1134. bound = (s->mode_ext + 1) * 4;
  1135. else
  1136. bound = SBLIMIT;
  1137. /* allocation bits */
  1138. for(i=0;i<bound;i++) {
  1139. for(ch=0;ch<s->nb_channels;ch++) {
  1140. allocation[ch][i] = get_bits(&s->gb, 4);
  1141. }
  1142. }
  1143. for(i=bound;i<SBLIMIT;i++) {
  1144. allocation[0][i] = get_bits(&s->gb, 4);
  1145. }
  1146. /* scale factors */
  1147. for(i=0;i<bound;i++) {
  1148. for(ch=0;ch<s->nb_channels;ch++) {
  1149. if (allocation[ch][i])
  1150. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1151. }
  1152. }
  1153. for(i=bound;i<SBLIMIT;i++) {
  1154. if (allocation[0][i]) {
  1155. scale_factors[0][i] = get_bits(&s->gb, 6);
  1156. scale_factors[1][i] = get_bits(&s->gb, 6);
  1157. }
  1158. }
  1159. /* compute samples */
  1160. for(j=0;j<12;j++) {
  1161. for(i=0;i<bound;i++) {
  1162. for(ch=0;ch<s->nb_channels;ch++) {
  1163. n = allocation[ch][i];
  1164. if (n) {
  1165. mant = get_bits(&s->gb, n + 1);
  1166. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1167. } else {
  1168. v = 0;
  1169. }
  1170. s->sb_samples[ch][j][i] = v;
  1171. }
  1172. }
  1173. for(i=bound;i<SBLIMIT;i++) {
  1174. n = allocation[0][i];
  1175. if (n) {
  1176. mant = get_bits(&s->gb, n + 1);
  1177. v = l1_unscale(n, mant, scale_factors[0][i]);
  1178. s->sb_samples[0][j][i] = v;
  1179. v = l1_unscale(n, mant, scale_factors[1][i]);
  1180. s->sb_samples[1][j][i] = v;
  1181. } else {
  1182. s->sb_samples[0][j][i] = 0;
  1183. s->sb_samples[1][j][i] = 0;
  1184. }
  1185. }
  1186. }
  1187. return 12;
  1188. }
  1189. /* bitrate is in kb/s */
  1190. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1191. {
  1192. int ch_bitrate, table;
  1193. ch_bitrate = bitrate / nb_channels;
  1194. if (!lsf) {
  1195. if ((freq == 48000 && ch_bitrate >= 56) ||
  1196. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1197. table = 0;
  1198. else if (freq != 48000 && ch_bitrate >= 96)
  1199. table = 1;
  1200. else if (freq != 32000 && ch_bitrate <= 48)
  1201. table = 2;
  1202. else
  1203. table = 3;
  1204. } else {
  1205. table = 4;
  1206. }
  1207. return table;
  1208. }
  1209. static int mp_decode_layer2(MPADecodeContext *s)
  1210. {
  1211. int sblimit; /* number of used subbands */
  1212. const unsigned char *alloc_table;
  1213. int table, bit_alloc_bits, i, j, ch, bound, v;
  1214. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1215. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1216. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1217. int scale, qindex, bits, steps, k, l, m, b;
  1218. /* select decoding table */
  1219. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1220. s->sample_rate, s->lsf);
  1221. sblimit = sblimit_table[table];
  1222. alloc_table = alloc_tables[table];
  1223. if (s->mode == MPA_JSTEREO)
  1224. bound = (s->mode_ext + 1) * 4;
  1225. else
  1226. bound = sblimit;
  1227. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1228. /* sanity check */
  1229. if( bound > sblimit ) bound = sblimit;
  1230. /* parse bit allocation */
  1231. j = 0;
  1232. for(i=0;i<bound;i++) {
  1233. bit_alloc_bits = alloc_table[j];
  1234. for(ch=0;ch<s->nb_channels;ch++) {
  1235. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1236. }
  1237. j += 1 << bit_alloc_bits;
  1238. }
  1239. for(i=bound;i<sblimit;i++) {
  1240. bit_alloc_bits = alloc_table[j];
  1241. v = get_bits(&s->gb, bit_alloc_bits);
  1242. bit_alloc[0][i] = v;
  1243. bit_alloc[1][i] = v;
  1244. j += 1 << bit_alloc_bits;
  1245. }
  1246. #ifdef DEBUG
  1247. {
  1248. for(ch=0;ch<s->nb_channels;ch++) {
  1249. for(i=0;i<sblimit;i++)
  1250. dprintf(" %d", bit_alloc[ch][i]);
  1251. dprintf("\n");
  1252. }
  1253. }
  1254. #endif
  1255. /* scale codes */
  1256. for(i=0;i<sblimit;i++) {
  1257. for(ch=0;ch<s->nb_channels;ch++) {
  1258. if (bit_alloc[ch][i])
  1259. scale_code[ch][i] = get_bits(&s->gb, 2);
  1260. }
  1261. }
  1262. /* scale factors */
  1263. for(i=0;i<sblimit;i++) {
  1264. for(ch=0;ch<s->nb_channels;ch++) {
  1265. if (bit_alloc[ch][i]) {
  1266. sf = scale_factors[ch][i];
  1267. switch(scale_code[ch][i]) {
  1268. default:
  1269. case 0:
  1270. sf[0] = get_bits(&s->gb, 6);
  1271. sf[1] = get_bits(&s->gb, 6);
  1272. sf[2] = get_bits(&s->gb, 6);
  1273. break;
  1274. case 2:
  1275. sf[0] = get_bits(&s->gb, 6);
  1276. sf[1] = sf[0];
  1277. sf[2] = sf[0];
  1278. break;
  1279. case 1:
  1280. sf[0] = get_bits(&s->gb, 6);
  1281. sf[2] = get_bits(&s->gb, 6);
  1282. sf[1] = sf[0];
  1283. break;
  1284. case 3:
  1285. sf[0] = get_bits(&s->gb, 6);
  1286. sf[2] = get_bits(&s->gb, 6);
  1287. sf[1] = sf[2];
  1288. break;
  1289. }
  1290. }
  1291. }
  1292. }
  1293. #ifdef DEBUG
  1294. for(ch=0;ch<s->nb_channels;ch++) {
  1295. for(i=0;i<sblimit;i++) {
  1296. if (bit_alloc[ch][i]) {
  1297. sf = scale_factors[ch][i];
  1298. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1299. } else {
  1300. dprintf(" -");
  1301. }
  1302. }
  1303. dprintf("\n");
  1304. }
  1305. #endif
  1306. /* samples */
  1307. for(k=0;k<3;k++) {
  1308. for(l=0;l<12;l+=3) {
  1309. j = 0;
  1310. for(i=0;i<bound;i++) {
  1311. bit_alloc_bits = alloc_table[j];
  1312. for(ch=0;ch<s->nb_channels;ch++) {
  1313. b = bit_alloc[ch][i];
  1314. if (b) {
  1315. scale = scale_factors[ch][i][k];
  1316. qindex = alloc_table[j+b];
  1317. bits = quant_bits[qindex];
  1318. if (bits < 0) {
  1319. /* 3 values at the same time */
  1320. v = get_bits(&s->gb, -bits);
  1321. steps = quant_steps[qindex];
  1322. s->sb_samples[ch][k * 12 + l + 0][i] =
  1323. l2_unscale_group(steps, v % steps, scale);
  1324. v = v / steps;
  1325. s->sb_samples[ch][k * 12 + l + 1][i] =
  1326. l2_unscale_group(steps, v % steps, scale);
  1327. v = v / steps;
  1328. s->sb_samples[ch][k * 12 + l + 2][i] =
  1329. l2_unscale_group(steps, v, scale);
  1330. } else {
  1331. for(m=0;m<3;m++) {
  1332. v = get_bits(&s->gb, bits);
  1333. v = l1_unscale(bits - 1, v, scale);
  1334. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1335. }
  1336. }
  1337. } else {
  1338. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1339. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1340. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1341. }
  1342. }
  1343. /* next subband in alloc table */
  1344. j += 1 << bit_alloc_bits;
  1345. }
  1346. /* XXX: find a way to avoid this duplication of code */
  1347. for(i=bound;i<sblimit;i++) {
  1348. bit_alloc_bits = alloc_table[j];
  1349. b = bit_alloc[0][i];
  1350. if (b) {
  1351. int mant, scale0, scale1;
  1352. scale0 = scale_factors[0][i][k];
  1353. scale1 = scale_factors[1][i][k];
  1354. qindex = alloc_table[j+b];
  1355. bits = quant_bits[qindex];
  1356. if (bits < 0) {
  1357. /* 3 values at the same time */
  1358. v = get_bits(&s->gb, -bits);
  1359. steps = quant_steps[qindex];
  1360. mant = v % steps;
  1361. v = v / steps;
  1362. s->sb_samples[0][k * 12 + l + 0][i] =
  1363. l2_unscale_group(steps, mant, scale0);
  1364. s->sb_samples[1][k * 12 + l + 0][i] =
  1365. l2_unscale_group(steps, mant, scale1);
  1366. mant = v % steps;
  1367. v = v / steps;
  1368. s->sb_samples[0][k * 12 + l + 1][i] =
  1369. l2_unscale_group(steps, mant, scale0);
  1370. s->sb_samples[1][k * 12 + l + 1][i] =
  1371. l2_unscale_group(steps, mant, scale1);
  1372. s->sb_samples[0][k * 12 + l + 2][i] =
  1373. l2_unscale_group(steps, v, scale0);
  1374. s->sb_samples[1][k * 12 + l + 2][i] =
  1375. l2_unscale_group(steps, v, scale1);
  1376. } else {
  1377. for(m=0;m<3;m++) {
  1378. mant = get_bits(&s->gb, bits);
  1379. s->sb_samples[0][k * 12 + l + m][i] =
  1380. l1_unscale(bits - 1, mant, scale0);
  1381. s->sb_samples[1][k * 12 + l + m][i] =
  1382. l1_unscale(bits - 1, mant, scale1);
  1383. }
  1384. }
  1385. } else {
  1386. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1387. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1388. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1389. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1390. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1391. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1392. }
  1393. /* next subband in alloc table */
  1394. j += 1 << bit_alloc_bits;
  1395. }
  1396. /* fill remaining samples to zero */
  1397. for(i=sblimit;i<SBLIMIT;i++) {
  1398. for(ch=0;ch<s->nb_channels;ch++) {
  1399. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1400. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1401. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1402. }
  1403. }
  1404. }
  1405. }
  1406. return 3 * 12;
  1407. }
  1408. /*
  1409. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1410. */
  1411. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1412. {
  1413. uint8_t *ptr;
  1414. /* compute current position in stream */
  1415. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1416. /* copy old data before current one */
  1417. ptr -= backstep;
  1418. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1419. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1420. /* init get bits again */
  1421. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1422. /* prepare next buffer */
  1423. s->inbuf_index ^= 1;
  1424. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1425. s->old_frame_size = s->frame_size;
  1426. }
  1427. static inline void lsf_sf_expand(int *slen,
  1428. int sf, int n1, int n2, int n3)
  1429. {
  1430. if (n3) {
  1431. slen[3] = sf % n3;
  1432. sf /= n3;
  1433. } else {
  1434. slen[3] = 0;
  1435. }
  1436. if (n2) {
  1437. slen[2] = sf % n2;
  1438. sf /= n2;
  1439. } else {
  1440. slen[2] = 0;
  1441. }
  1442. slen[1] = sf % n1;
  1443. sf /= n1;
  1444. slen[0] = sf;
  1445. }
  1446. static void exponents_from_scale_factors(MPADecodeContext *s,
  1447. GranuleDef *g,
  1448. int16_t *exponents)
  1449. {
  1450. const uint8_t *bstab, *pretab;
  1451. int len, i, j, k, l, v0, shift, gain, gains[3];
  1452. int16_t *exp_ptr;
  1453. exp_ptr = exponents;
  1454. gain = g->global_gain - 210;
  1455. shift = g->scalefac_scale + 1;
  1456. bstab = band_size_long[s->sample_rate_index];
  1457. pretab = mpa_pretab[g->preflag];
  1458. for(i=0;i<g->long_end;i++) {
  1459. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1460. len = bstab[i];
  1461. for(j=len;j>0;j--)
  1462. *exp_ptr++ = v0;
  1463. }
  1464. if (g->short_start < 13) {
  1465. bstab = band_size_short[s->sample_rate_index];
  1466. gains[0] = gain - (g->subblock_gain[0] << 3);
  1467. gains[1] = gain - (g->subblock_gain[1] << 3);
  1468. gains[2] = gain - (g->subblock_gain[2] << 3);
  1469. k = g->long_end;
  1470. for(i=g->short_start;i<13;i++) {
  1471. len = bstab[i];
  1472. for(l=0;l<3;l++) {
  1473. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1474. for(j=len;j>0;j--)
  1475. *exp_ptr++ = v0;
  1476. }
  1477. }
  1478. }
  1479. }
  1480. /* handle n = 0 too */
  1481. static inline int get_bitsz(GetBitContext *s, int n)
  1482. {
  1483. if (n == 0)
  1484. return 0;
  1485. else
  1486. return get_bits(s, n);
  1487. }
  1488. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1489. int16_t *exponents, int end_pos)
  1490. {
  1491. int s_index;
  1492. int linbits, code, x, y, l, v, i, j, k, pos;
  1493. int last_pos;
  1494. VLC *vlc;
  1495. /* low frequencies (called big values) */
  1496. s_index = 0;
  1497. for(i=0;i<3;i++) {
  1498. j = g->region_size[i];
  1499. if (j == 0)
  1500. continue;
  1501. /* select vlc table */
  1502. k = g->table_select[i];
  1503. l = mpa_huff_data[k][0];
  1504. linbits = mpa_huff_data[k][1];
  1505. vlc = &huff_vlc[l];
  1506. if(!l){
  1507. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*j);
  1508. s_index += 2*j;
  1509. continue;
  1510. }
  1511. /* read huffcode and compute each couple */
  1512. for(;j>0;j--) {
  1513. if (get_bits_count(&s->gb) >= end_pos)
  1514. break;
  1515. y = get_vlc2(&s->gb, vlc->table, 8, 3);
  1516. if(!y){
  1517. g->sb_hybrid[s_index ] =
  1518. g->sb_hybrid[s_index+1] = 0;
  1519. s_index += 2;
  1520. continue;
  1521. }
  1522. x = y >> 4;
  1523. y = y & 0x0f;
  1524. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1525. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1526. if (x) {
  1527. if (x == 15)
  1528. x += get_bitsz(&s->gb, linbits);
  1529. v = l3_unscale(x, exponents[s_index]);
  1530. if (get_bits1(&s->gb))
  1531. v = -v;
  1532. } else {
  1533. v = 0;
  1534. }
  1535. g->sb_hybrid[s_index++] = v;
  1536. if (y) {
  1537. if (y == 15)
  1538. y += get_bitsz(&s->gb, linbits);
  1539. v = l3_unscale(y, exponents[s_index]);
  1540. if (get_bits1(&s->gb))
  1541. v = -v;
  1542. } else {
  1543. v = 0;
  1544. }
  1545. g->sb_hybrid[s_index++] = v;
  1546. }
  1547. }
  1548. /* high frequencies */
  1549. vlc = &huff_quad_vlc[g->count1table_select];
  1550. last_pos=0;
  1551. while (s_index <= 572) {
  1552. pos = get_bits_count(&s->gb);
  1553. if (pos >= end_pos) {
  1554. if (pos > end_pos && last_pos){
  1555. /* some encoders generate an incorrect size for this
  1556. part. We must go back into the data */
  1557. s_index -= 4;
  1558. init_get_bits(&s->gb, s->gb.buffer + (last_pos>>3), s->gb.size_in_bits - (last_pos&(~7)));
  1559. skip_bits(&s->gb, last_pos&7);
  1560. }
  1561. break;
  1562. }
  1563. last_pos= pos;
  1564. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1565. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1566. g->sb_hybrid[s_index+0]=
  1567. g->sb_hybrid[s_index+1]=
  1568. g->sb_hybrid[s_index+2]=
  1569. g->sb_hybrid[s_index+3]= 0;
  1570. while(code){
  1571. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1572. int pos= s_index+idxtab[code];
  1573. code ^= 8>>idxtab[code];
  1574. v = l3_unscale(1, exponents[pos]);
  1575. if(get_bits1(&s->gb))
  1576. v = -v;
  1577. g->sb_hybrid[pos] = v;
  1578. }
  1579. s_index+=4;
  1580. }
  1581. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1582. return 0;
  1583. }
  1584. /* Reorder short blocks from bitstream order to interleaved order. It
  1585. would be faster to do it in parsing, but the code would be far more
  1586. complicated */
  1587. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1588. {
  1589. int i, j, k, len;
  1590. int32_t *ptr, *dst, *ptr1;
  1591. int32_t tmp[576];
  1592. if (g->block_type != 2)
  1593. return;
  1594. if (g->switch_point) {
  1595. if (s->sample_rate_index != 8) {
  1596. ptr = g->sb_hybrid + 36;
  1597. } else {
  1598. ptr = g->sb_hybrid + 48;
  1599. }
  1600. } else {
  1601. ptr = g->sb_hybrid;
  1602. }
  1603. for(i=g->short_start;i<13;i++) {
  1604. len = band_size_short[s->sample_rate_index][i];
  1605. ptr1 = ptr;
  1606. for(k=0;k<3;k++) {
  1607. dst = tmp + k;
  1608. for(j=len;j>0;j--) {
  1609. *dst = *ptr++;
  1610. dst += 3;
  1611. }
  1612. }
  1613. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1614. }
  1615. }
  1616. #define ISQRT2 FIXR(0.70710678118654752440)
  1617. static void compute_stereo(MPADecodeContext *s,
  1618. GranuleDef *g0, GranuleDef *g1)
  1619. {
  1620. int i, j, k, l;
  1621. int32_t v1, v2;
  1622. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1623. int32_t (*is_tab)[16];
  1624. int32_t *tab0, *tab1;
  1625. int non_zero_found_short[3];
  1626. /* intensity stereo */
  1627. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1628. if (!s->lsf) {
  1629. is_tab = is_table;
  1630. sf_max = 7;
  1631. } else {
  1632. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1633. sf_max = 16;
  1634. }
  1635. tab0 = g0->sb_hybrid + 576;
  1636. tab1 = g1->sb_hybrid + 576;
  1637. non_zero_found_short[0] = 0;
  1638. non_zero_found_short[1] = 0;
  1639. non_zero_found_short[2] = 0;
  1640. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1641. for(i = 12;i >= g1->short_start;i--) {
  1642. /* for last band, use previous scale factor */
  1643. if (i != 11)
  1644. k -= 3;
  1645. len = band_size_short[s->sample_rate_index][i];
  1646. for(l=2;l>=0;l--) {
  1647. tab0 -= len;
  1648. tab1 -= len;
  1649. if (!non_zero_found_short[l]) {
  1650. /* test if non zero band. if so, stop doing i-stereo */
  1651. for(j=0;j<len;j++) {
  1652. if (tab1[j] != 0) {
  1653. non_zero_found_short[l] = 1;
  1654. goto found1;
  1655. }
  1656. }
  1657. sf = g1->scale_factors[k + l];
  1658. if (sf >= sf_max)
  1659. goto found1;
  1660. v1 = is_tab[0][sf];
  1661. v2 = is_tab[1][sf];
  1662. for(j=0;j<len;j++) {
  1663. tmp0 = tab0[j];
  1664. tab0[j] = MULL(tmp0, v1);
  1665. tab1[j] = MULL(tmp0, v2);
  1666. }
  1667. } else {
  1668. found1:
  1669. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1670. /* lower part of the spectrum : do ms stereo
  1671. if enabled */
  1672. for(j=0;j<len;j++) {
  1673. tmp0 = tab0[j];
  1674. tmp1 = tab1[j];
  1675. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1676. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1677. }
  1678. }
  1679. }
  1680. }
  1681. }
  1682. non_zero_found = non_zero_found_short[0] |
  1683. non_zero_found_short[1] |
  1684. non_zero_found_short[2];
  1685. for(i = g1->long_end - 1;i >= 0;i--) {
  1686. len = band_size_long[s->sample_rate_index][i];
  1687. tab0 -= len;
  1688. tab1 -= len;
  1689. /* test if non zero band. if so, stop doing i-stereo */
  1690. if (!non_zero_found) {
  1691. for(j=0;j<len;j++) {
  1692. if (tab1[j] != 0) {
  1693. non_zero_found = 1;
  1694. goto found2;
  1695. }
  1696. }
  1697. /* for last band, use previous scale factor */
  1698. k = (i == 21) ? 20 : i;
  1699. sf = g1->scale_factors[k];
  1700. if (sf >= sf_max)
  1701. goto found2;
  1702. v1 = is_tab[0][sf];
  1703. v2 = is_tab[1][sf];
  1704. for(j=0;j<len;j++) {
  1705. tmp0 = tab0[j];
  1706. tab0[j] = MULL(tmp0, v1);
  1707. tab1[j] = MULL(tmp0, v2);
  1708. }
  1709. } else {
  1710. found2:
  1711. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1712. /* lower part of the spectrum : do ms stereo
  1713. if enabled */
  1714. for(j=0;j<len;j++) {
  1715. tmp0 = tab0[j];
  1716. tmp1 = tab1[j];
  1717. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1718. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1719. }
  1720. }
  1721. }
  1722. }
  1723. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1724. /* ms stereo ONLY */
  1725. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1726. global gain */
  1727. tab0 = g0->sb_hybrid;
  1728. tab1 = g1->sb_hybrid;
  1729. for(i=0;i<576;i++) {
  1730. tmp0 = tab0[i];
  1731. tmp1 = tab1[i];
  1732. tab0[i] = tmp0 + tmp1;
  1733. tab1[i] = tmp0 - tmp1;
  1734. }
  1735. }
  1736. }
  1737. static void compute_antialias_integer(MPADecodeContext *s,
  1738. GranuleDef *g)
  1739. {
  1740. int32_t *ptr, *csa;
  1741. int n, i;
  1742. /* we antialias only "long" bands */
  1743. if (g->block_type == 2) {
  1744. if (!g->switch_point)
  1745. return;
  1746. /* XXX: check this for 8000Hz case */
  1747. n = 1;
  1748. } else {
  1749. n = SBLIMIT - 1;
  1750. }
  1751. ptr = g->sb_hybrid + 18;
  1752. for(i = n;i > 0;i--) {
  1753. int tmp0, tmp1, tmp2;
  1754. csa = &csa_table[0][0];
  1755. #define INT_AA(j) \
  1756. tmp0 = ptr[-1-j];\
  1757. tmp1 = ptr[ j];\
  1758. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1759. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1760. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1761. INT_AA(0)
  1762. INT_AA(1)
  1763. INT_AA(2)
  1764. INT_AA(3)
  1765. INT_AA(4)
  1766. INT_AA(5)
  1767. INT_AA(6)
  1768. INT_AA(7)
  1769. ptr += 18;
  1770. }
  1771. }
  1772. static void compute_antialias_float(MPADecodeContext *s,
  1773. GranuleDef *g)
  1774. {
  1775. int32_t *ptr;
  1776. int n, i;
  1777. /* we antialias only "long" bands */
  1778. if (g->block_type == 2) {
  1779. if (!g->switch_point)
  1780. return;
  1781. /* XXX: check this for 8000Hz case */
  1782. n = 1;
  1783. } else {
  1784. n = SBLIMIT - 1;
  1785. }
  1786. ptr = g->sb_hybrid + 18;
  1787. for(i = n;i > 0;i--) {
  1788. float tmp0, tmp1;
  1789. float *csa = &csa_table_float[0][0];
  1790. #define FLOAT_AA(j)\
  1791. tmp0= ptr[-1-j];\
  1792. tmp1= ptr[ j];\
  1793. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1794. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1795. FLOAT_AA(0)
  1796. FLOAT_AA(1)
  1797. FLOAT_AA(2)
  1798. FLOAT_AA(3)
  1799. FLOAT_AA(4)
  1800. FLOAT_AA(5)
  1801. FLOAT_AA(6)
  1802. FLOAT_AA(7)
  1803. ptr += 18;
  1804. }
  1805. }
  1806. static void compute_imdct(MPADecodeContext *s,
  1807. GranuleDef *g,
  1808. int32_t *sb_samples,
  1809. int32_t *mdct_buf)
  1810. {
  1811. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1812. int32_t out2[12];
  1813. int i, j, mdct_long_end, v, sblimit;
  1814. /* find last non zero block */
  1815. ptr = g->sb_hybrid + 576;
  1816. ptr1 = g->sb_hybrid + 2 * 18;
  1817. while (ptr >= ptr1) {
  1818. ptr -= 6;
  1819. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1820. if (v != 0)
  1821. break;
  1822. }
  1823. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1824. if (g->block_type == 2) {
  1825. /* XXX: check for 8000 Hz */
  1826. if (g->switch_point)
  1827. mdct_long_end = 2;
  1828. else
  1829. mdct_long_end = 0;
  1830. } else {
  1831. mdct_long_end = sblimit;
  1832. }
  1833. buf = mdct_buf;
  1834. ptr = g->sb_hybrid;
  1835. for(j=0;j<mdct_long_end;j++) {
  1836. /* apply window & overlap with previous buffer */
  1837. out_ptr = sb_samples + j;
  1838. /* select window */
  1839. if (g->switch_point && j < 2)
  1840. win1 = mdct_win[0];
  1841. else
  1842. win1 = mdct_win[g->block_type];
  1843. /* select frequency inversion */
  1844. win = win1 + ((4 * 36) & -(j & 1));
  1845. imdct36(out_ptr, buf, ptr, win);
  1846. out_ptr += 18*SBLIMIT;
  1847. ptr += 18;
  1848. buf += 18;
  1849. }
  1850. for(j=mdct_long_end;j<sblimit;j++) {
  1851. /* select frequency inversion */
  1852. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1853. out_ptr = sb_samples + j;
  1854. for(i=0; i<6; i++){
  1855. *out_ptr = buf[i];
  1856. out_ptr += SBLIMIT;
  1857. }
  1858. imdct12(out2, ptr + 0);
  1859. for(i=0;i<6;i++) {
  1860. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1861. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1862. out_ptr += SBLIMIT;
  1863. }
  1864. imdct12(out2, ptr + 1);
  1865. for(i=0;i<6;i++) {
  1866. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1867. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1868. out_ptr += SBLIMIT;
  1869. }
  1870. imdct12(out2, ptr + 2);
  1871. for(i=0;i<6;i++) {
  1872. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1873. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1874. buf[i + 6*2] = 0;
  1875. }
  1876. ptr += 18;
  1877. buf += 18;
  1878. }
  1879. /* zero bands */
  1880. for(j=sblimit;j<SBLIMIT;j++) {
  1881. /* overlap */
  1882. out_ptr = sb_samples + j;
  1883. for(i=0;i<18;i++) {
  1884. *out_ptr = buf[i];
  1885. buf[i] = 0;
  1886. out_ptr += SBLIMIT;
  1887. }
  1888. buf += 18;
  1889. }
  1890. }
  1891. #if defined(DEBUG)
  1892. void sample_dump(int fnum, int32_t *tab, int n)
  1893. {
  1894. static FILE *files[16], *f;
  1895. char buf[512];
  1896. int i;
  1897. int32_t v;
  1898. f = files[fnum];
  1899. if (!f) {
  1900. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1901. fnum,
  1902. #ifdef USE_HIGHPRECISION
  1903. "hp"
  1904. #else
  1905. "lp"
  1906. #endif
  1907. );
  1908. f = fopen(buf, "w");
  1909. if (!f)
  1910. return;
  1911. files[fnum] = f;
  1912. }
  1913. if (fnum == 0) {
  1914. static int pos = 0;
  1915. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1916. for(i=0;i<n;i++) {
  1917. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1918. if ((i % 18) == 17)
  1919. av_log(NULL, AV_LOG_DEBUG, "\n");
  1920. }
  1921. pos += n;
  1922. }
  1923. for(i=0;i<n;i++) {
  1924. /* normalize to 23 frac bits */
  1925. v = tab[i] << (23 - FRAC_BITS);
  1926. fwrite(&v, 1, sizeof(int32_t), f);
  1927. }
  1928. }
  1929. #endif
  1930. /* main layer3 decoding function */
  1931. static int mp_decode_layer3(MPADecodeContext *s)
  1932. {
  1933. int nb_granules, main_data_begin, private_bits;
  1934. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1935. GranuleDef granules[2][2], *g;
  1936. int16_t exponents[576];
  1937. /* read side info */
  1938. if (s->lsf) {
  1939. main_data_begin = get_bits(&s->gb, 8);
  1940. if (s->nb_channels == 2)
  1941. private_bits = get_bits(&s->gb, 2);
  1942. else
  1943. private_bits = get_bits(&s->gb, 1);
  1944. nb_granules = 1;
  1945. } else {
  1946. main_data_begin = get_bits(&s->gb, 9);
  1947. if (s->nb_channels == 2)
  1948. private_bits = get_bits(&s->gb, 3);
  1949. else
  1950. private_bits = get_bits(&s->gb, 5);
  1951. nb_granules = 2;
  1952. for(ch=0;ch<s->nb_channels;ch++) {
  1953. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1954. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1955. }
  1956. }
  1957. for(gr=0;gr<nb_granules;gr++) {
  1958. for(ch=0;ch<s->nb_channels;ch++) {
  1959. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1960. g = &granules[ch][gr];
  1961. g->part2_3_length = get_bits(&s->gb, 12);
  1962. g->big_values = get_bits(&s->gb, 9);
  1963. g->global_gain = get_bits(&s->gb, 8);
  1964. /* if MS stereo only is selected, we precompute the
  1965. 1/sqrt(2) renormalization factor */
  1966. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1967. MODE_EXT_MS_STEREO)
  1968. g->global_gain -= 2;
  1969. if (s->lsf)
  1970. g->scalefac_compress = get_bits(&s->gb, 9);
  1971. else
  1972. g->scalefac_compress = get_bits(&s->gb, 4);
  1973. blocksplit_flag = get_bits(&s->gb, 1);
  1974. if (blocksplit_flag) {
  1975. g->block_type = get_bits(&s->gb, 2);
  1976. if (g->block_type == 0)
  1977. return -1;
  1978. g->switch_point = get_bits(&s->gb, 1);
  1979. for(i=0;i<2;i++)
  1980. g->table_select[i] = get_bits(&s->gb, 5);
  1981. for(i=0;i<3;i++)
  1982. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1983. /* compute huffman coded region sizes */
  1984. if (g->block_type == 2)
  1985. g->region_size[0] = (36 / 2);
  1986. else {
  1987. if (s->sample_rate_index <= 2)
  1988. g->region_size[0] = (36 / 2);
  1989. else if (s->sample_rate_index != 8)
  1990. g->region_size[0] = (54 / 2);
  1991. else
  1992. g->region_size[0] = (108 / 2);
  1993. }
  1994. g->region_size[1] = (576 / 2);
  1995. } else {
  1996. int region_address1, region_address2, l;
  1997. g->block_type = 0;
  1998. g->switch_point = 0;
  1999. for(i=0;i<3;i++)
  2000. g->table_select[i] = get_bits(&s->gb, 5);
  2001. /* compute huffman coded region sizes */
  2002. region_address1 = get_bits(&s->gb, 4);
  2003. region_address2 = get_bits(&s->gb, 3);
  2004. dprintf("region1=%d region2=%d\n",
  2005. region_address1, region_address2);
  2006. g->region_size[0] =
  2007. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2008. l = region_address1 + region_address2 + 2;
  2009. /* should not overflow */
  2010. if (l > 22)
  2011. l = 22;
  2012. g->region_size[1] =
  2013. band_index_long[s->sample_rate_index][l] >> 1;
  2014. }
  2015. /* convert region offsets to region sizes and truncate
  2016. size to big_values */
  2017. g->region_size[2] = (576 / 2);
  2018. j = 0;
  2019. for(i=0;i<3;i++) {
  2020. k = FFMIN(g->region_size[i], g->big_values);
  2021. g->region_size[i] = k - j;
  2022. j = k;
  2023. }
  2024. /* compute band indexes */
  2025. if (g->block_type == 2) {
  2026. if (g->switch_point) {
  2027. /* if switched mode, we handle the 36 first samples as
  2028. long blocks. For 8000Hz, we handle the 48 first
  2029. exponents as long blocks (XXX: check this!) */
  2030. if (s->sample_rate_index <= 2)
  2031. g->long_end = 8;
  2032. else if (s->sample_rate_index != 8)
  2033. g->long_end = 6;
  2034. else
  2035. g->long_end = 4; /* 8000 Hz */
  2036. g->short_start = 2 + (s->sample_rate_index != 8);
  2037. } else {
  2038. g->long_end = 0;
  2039. g->short_start = 0;
  2040. }
  2041. } else {
  2042. g->short_start = 13;
  2043. g->long_end = 22;
  2044. }
  2045. g->preflag = 0;
  2046. if (!s->lsf)
  2047. g->preflag = get_bits(&s->gb, 1);
  2048. g->scalefac_scale = get_bits(&s->gb, 1);
  2049. g->count1table_select = get_bits(&s->gb, 1);
  2050. dprintf("block_type=%d switch_point=%d\n",
  2051. g->block_type, g->switch_point);
  2052. }
  2053. }
  2054. if (!s->adu_mode) {
  2055. /* now we get bits from the main_data_begin offset */
  2056. dprintf("seekback: %d\n", main_data_begin);
  2057. seek_to_maindata(s, main_data_begin);
  2058. }
  2059. for(gr=0;gr<nb_granules;gr++) {
  2060. for(ch=0;ch<s->nb_channels;ch++) {
  2061. g = &granules[ch][gr];
  2062. bits_pos = get_bits_count(&s->gb);
  2063. if (!s->lsf) {
  2064. uint8_t *sc;
  2065. int slen, slen1, slen2;
  2066. /* MPEG1 scale factors */
  2067. slen1 = slen_table[0][g->scalefac_compress];
  2068. slen2 = slen_table[1][g->scalefac_compress];
  2069. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2070. if (g->block_type == 2) {
  2071. n = g->switch_point ? 17 : 18;
  2072. j = 0;
  2073. for(i=0;i<n;i++)
  2074. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2075. for(i=0;i<18;i++)
  2076. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2077. for(i=0;i<3;i++)
  2078. g->scale_factors[j++] = 0;
  2079. } else {
  2080. sc = granules[ch][0].scale_factors;
  2081. j = 0;
  2082. for(k=0;k<4;k++) {
  2083. n = (k == 0 ? 6 : 5);
  2084. if ((g->scfsi & (0x8 >> k)) == 0) {
  2085. slen = (k < 2) ? slen1 : slen2;
  2086. for(i=0;i<n;i++)
  2087. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2088. } else {
  2089. /* simply copy from last granule */
  2090. for(i=0;i<n;i++) {
  2091. g->scale_factors[j] = sc[j];
  2092. j++;
  2093. }
  2094. }
  2095. }
  2096. g->scale_factors[j++] = 0;
  2097. }
  2098. #if defined(DEBUG)
  2099. {
  2100. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2101. g->scfsi, gr, ch);
  2102. for(i=0;i<j;i++)
  2103. dprintf(" %d", g->scale_factors[i]);
  2104. dprintf("\n");
  2105. }
  2106. #endif
  2107. } else {
  2108. int tindex, tindex2, slen[4], sl, sf;
  2109. /* LSF scale factors */
  2110. if (g->block_type == 2) {
  2111. tindex = g->switch_point ? 2 : 1;
  2112. } else {
  2113. tindex = 0;
  2114. }
  2115. sf = g->scalefac_compress;
  2116. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2117. /* intensity stereo case */
  2118. sf >>= 1;
  2119. if (sf < 180) {
  2120. lsf_sf_expand(slen, sf, 6, 6, 0);
  2121. tindex2 = 3;
  2122. } else if (sf < 244) {
  2123. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2124. tindex2 = 4;
  2125. } else {
  2126. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2127. tindex2 = 5;
  2128. }
  2129. } else {
  2130. /* normal case */
  2131. if (sf < 400) {
  2132. lsf_sf_expand(slen, sf, 5, 4, 4);
  2133. tindex2 = 0;
  2134. } else if (sf < 500) {
  2135. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2136. tindex2 = 1;
  2137. } else {
  2138. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2139. tindex2 = 2;
  2140. g->preflag = 1;
  2141. }
  2142. }
  2143. j = 0;
  2144. for(k=0;k<4;k++) {
  2145. n = lsf_nsf_table[tindex2][tindex][k];
  2146. sl = slen[k];
  2147. for(i=0;i<n;i++)
  2148. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2149. }
  2150. /* XXX: should compute exact size */
  2151. for(;j<40;j++)
  2152. g->scale_factors[j] = 0;
  2153. #if defined(DEBUG)
  2154. {
  2155. dprintf("gr=%d ch=%d scale_factors:\n",
  2156. gr, ch);
  2157. for(i=0;i<40;i++)
  2158. dprintf(" %d", g->scale_factors[i]);
  2159. dprintf("\n");
  2160. }
  2161. #endif
  2162. }
  2163. exponents_from_scale_factors(s, g, exponents);
  2164. /* read Huffman coded residue */
  2165. if (huffman_decode(s, g, exponents,
  2166. bits_pos + g->part2_3_length) < 0)
  2167. return -1;
  2168. #if defined(DEBUG)
  2169. sample_dump(0, g->sb_hybrid, 576);
  2170. #endif
  2171. /* skip extension bits */
  2172. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2173. if (bits_left < 0) {
  2174. dprintf("bits_left=%d\n", bits_left);
  2175. return -1;
  2176. }
  2177. while (bits_left >= 16) {
  2178. skip_bits(&s->gb, 16);
  2179. bits_left -= 16;
  2180. }
  2181. if (bits_left > 0)
  2182. skip_bits(&s->gb, bits_left);
  2183. } /* ch */
  2184. if (s->nb_channels == 2)
  2185. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2186. for(ch=0;ch<s->nb_channels;ch++) {
  2187. g = &granules[ch][gr];
  2188. reorder_block(s, g);
  2189. #if defined(DEBUG)
  2190. sample_dump(0, g->sb_hybrid, 576);
  2191. #endif
  2192. s->compute_antialias(s, g);
  2193. #if defined(DEBUG)
  2194. sample_dump(1, g->sb_hybrid, 576);
  2195. #endif
  2196. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2197. #if defined(DEBUG)
  2198. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2199. #endif
  2200. }
  2201. } /* gr */
  2202. return nb_granules * 18;
  2203. }
  2204. static int mp_decode_frame(MPADecodeContext *s,
  2205. OUT_INT *samples)
  2206. {
  2207. int i, nb_frames, ch;
  2208. OUT_INT *samples_ptr;
  2209. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2210. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2211. /* skip error protection field */
  2212. if (s->error_protection)
  2213. get_bits(&s->gb, 16);
  2214. dprintf("frame %d:\n", s->frame_count);
  2215. switch(s->layer) {
  2216. case 1:
  2217. nb_frames = mp_decode_layer1(s);
  2218. break;
  2219. case 2:
  2220. nb_frames = mp_decode_layer2(s);
  2221. break;
  2222. case 3:
  2223. default:
  2224. nb_frames = mp_decode_layer3(s);
  2225. break;
  2226. }
  2227. #if defined(DEBUG)
  2228. for(i=0;i<nb_frames;i++) {
  2229. for(ch=0;ch<s->nb_channels;ch++) {
  2230. int j;
  2231. dprintf("%d-%d:", i, ch);
  2232. for(j=0;j<SBLIMIT;j++)
  2233. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2234. dprintf("\n");
  2235. }
  2236. }
  2237. #endif
  2238. /* apply the synthesis filter */
  2239. for(ch=0;ch<s->nb_channels;ch++) {
  2240. samples_ptr = samples + ch;
  2241. for(i=0;i<nb_frames;i++) {
  2242. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2243. window, &s->dither_state,
  2244. samples_ptr, s->nb_channels,
  2245. s->sb_samples[ch][i]);
  2246. samples_ptr += 32 * s->nb_channels;
  2247. }
  2248. }
  2249. #ifdef DEBUG
  2250. s->frame_count++;
  2251. #endif
  2252. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2253. }
  2254. static int decode_frame(AVCodecContext * avctx,
  2255. void *data, int *data_size,
  2256. uint8_t * buf, int buf_size)
  2257. {
  2258. MPADecodeContext *s = avctx->priv_data;
  2259. uint32_t header;
  2260. uint8_t *buf_ptr;
  2261. int len, out_size;
  2262. OUT_INT *out_samples = data;
  2263. buf_ptr = buf;
  2264. while (buf_size > 0) {
  2265. len = s->inbuf_ptr - s->inbuf;
  2266. if (s->frame_size == 0) {
  2267. /* special case for next header for first frame in free
  2268. format case (XXX: find a simpler method) */
  2269. if (s->free_format_next_header != 0) {
  2270. s->inbuf[0] = s->free_format_next_header >> 24;
  2271. s->inbuf[1] = s->free_format_next_header >> 16;
  2272. s->inbuf[2] = s->free_format_next_header >> 8;
  2273. s->inbuf[3] = s->free_format_next_header;
  2274. s->inbuf_ptr = s->inbuf + 4;
  2275. s->free_format_next_header = 0;
  2276. goto got_header;
  2277. }
  2278. /* no header seen : find one. We need at least HEADER_SIZE
  2279. bytes to parse it */
  2280. len = HEADER_SIZE - len;
  2281. if (len > buf_size)
  2282. len = buf_size;
  2283. if (len > 0) {
  2284. memcpy(s->inbuf_ptr, buf_ptr, len);
  2285. buf_ptr += len;
  2286. buf_size -= len;
  2287. s->inbuf_ptr += len;
  2288. }
  2289. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2290. got_header:
  2291. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2292. (s->inbuf[2] << 8) | s->inbuf[3];
  2293. if (ff_mpa_check_header(header) < 0) {
  2294. /* no sync found : move by one byte (inefficient, but simple!) */
  2295. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2296. s->inbuf_ptr--;
  2297. dprintf("skip %x\n", header);
  2298. /* reset free format frame size to give a chance
  2299. to get a new bitrate */
  2300. s->free_format_frame_size = 0;
  2301. } else {
  2302. if (decode_header(s, header) == 1) {
  2303. /* free format: prepare to compute frame size */
  2304. s->frame_size = -1;
  2305. }
  2306. /* update codec info */
  2307. avctx->sample_rate = s->sample_rate;
  2308. avctx->channels = s->nb_channels;
  2309. avctx->bit_rate = s->bit_rate;
  2310. avctx->sub_id = s->layer;
  2311. switch(s->layer) {
  2312. case 1:
  2313. avctx->frame_size = 384;
  2314. break;
  2315. case 2:
  2316. avctx->frame_size = 1152;
  2317. break;
  2318. case 3:
  2319. if (s->lsf)
  2320. avctx->frame_size = 576;
  2321. else
  2322. avctx->frame_size = 1152;
  2323. break;
  2324. }
  2325. }
  2326. }
  2327. } else if (s->frame_size == -1) {
  2328. /* free format : find next sync to compute frame size */
  2329. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2330. if (len > buf_size)
  2331. len = buf_size;
  2332. if (len == 0) {
  2333. /* frame too long: resync */
  2334. s->frame_size = 0;
  2335. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2336. s->inbuf_ptr--;
  2337. } else {
  2338. uint8_t *p, *pend;
  2339. uint32_t header1;
  2340. int padding;
  2341. memcpy(s->inbuf_ptr, buf_ptr, len);
  2342. /* check for header */
  2343. p = s->inbuf_ptr - 3;
  2344. pend = s->inbuf_ptr + len - 4;
  2345. while (p <= pend) {
  2346. header = (p[0] << 24) | (p[1] << 16) |
  2347. (p[2] << 8) | p[3];
  2348. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2349. (s->inbuf[2] << 8) | s->inbuf[3];
  2350. /* check with high probability that we have a
  2351. valid header */
  2352. if ((header & SAME_HEADER_MASK) ==
  2353. (header1 & SAME_HEADER_MASK)) {
  2354. /* header found: update pointers */
  2355. len = (p + 4) - s->inbuf_ptr;
  2356. buf_ptr += len;
  2357. buf_size -= len;
  2358. s->inbuf_ptr = p;
  2359. /* compute frame size */
  2360. s->free_format_next_header = header;
  2361. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2362. padding = (header1 >> 9) & 1;
  2363. if (s->layer == 1)
  2364. s->free_format_frame_size -= padding * 4;
  2365. else
  2366. s->free_format_frame_size -= padding;
  2367. dprintf("free frame size=%d padding=%d\n",
  2368. s->free_format_frame_size, padding);
  2369. decode_header(s, header1);
  2370. goto next_data;
  2371. }
  2372. p++;
  2373. }
  2374. /* not found: simply increase pointers */
  2375. buf_ptr += len;
  2376. s->inbuf_ptr += len;
  2377. buf_size -= len;
  2378. }
  2379. } else if (len < s->frame_size) {
  2380. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2381. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2382. len = s->frame_size - len;
  2383. if (len > buf_size)
  2384. len = buf_size;
  2385. memcpy(s->inbuf_ptr, buf_ptr, len);
  2386. buf_ptr += len;
  2387. s->inbuf_ptr += len;
  2388. buf_size -= len;
  2389. }
  2390. next_data:
  2391. if (s->frame_size > 0 &&
  2392. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2393. if (avctx->parse_only) {
  2394. /* simply return the frame data */
  2395. *(uint8_t **)data = s->inbuf;
  2396. out_size = s->inbuf_ptr - s->inbuf;
  2397. } else {
  2398. out_size = mp_decode_frame(s, out_samples);
  2399. }
  2400. s->inbuf_ptr = s->inbuf;
  2401. s->frame_size = 0;
  2402. if(out_size>=0)
  2403. *data_size = out_size;
  2404. else
  2405. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2406. break;
  2407. }
  2408. }
  2409. return buf_ptr - buf;
  2410. }
  2411. static int decode_frame_adu(AVCodecContext * avctx,
  2412. void *data, int *data_size,
  2413. uint8_t * buf, int buf_size)
  2414. {
  2415. MPADecodeContext *s = avctx->priv_data;
  2416. uint32_t header;
  2417. int len, out_size;
  2418. OUT_INT *out_samples = data;
  2419. len = buf_size;
  2420. // Discard too short frames
  2421. if (buf_size < HEADER_SIZE) {
  2422. *data_size = 0;
  2423. return buf_size;
  2424. }
  2425. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2426. len = MPA_MAX_CODED_FRAME_SIZE;
  2427. memcpy(s->inbuf, buf, len);
  2428. s->inbuf_ptr = s->inbuf + len;
  2429. // Get header and restore sync word
  2430. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2431. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2432. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2433. *data_size = 0;
  2434. return buf_size;
  2435. }
  2436. decode_header(s, header);
  2437. /* update codec info */
  2438. avctx->sample_rate = s->sample_rate;
  2439. avctx->channels = s->nb_channels;
  2440. avctx->bit_rate = s->bit_rate;
  2441. avctx->sub_id = s->layer;
  2442. avctx->frame_size=s->frame_size = len;
  2443. if (avctx->parse_only) {
  2444. /* simply return the frame data */
  2445. *(uint8_t **)data = s->inbuf;
  2446. out_size = s->inbuf_ptr - s->inbuf;
  2447. } else {
  2448. out_size = mp_decode_frame(s, out_samples);
  2449. }
  2450. *data_size = out_size;
  2451. return buf_size;
  2452. }
  2453. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2454. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2455. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2456. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2457. static int chan_offset[9][5] = {
  2458. {0},
  2459. {0}, // C
  2460. {0}, // FLR
  2461. {2,0}, // C FLR
  2462. {2,0,3}, // C FLR BS
  2463. {4,0,2}, // C FLR BLRS
  2464. {4,0,2,5}, // C FLR BLRS LFE
  2465. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2466. {0,2} // FLR BLRS
  2467. };
  2468. static int decode_init_mp3on4(AVCodecContext * avctx)
  2469. {
  2470. MP3On4DecodeContext *s = avctx->priv_data;
  2471. int i;
  2472. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2473. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2474. return -1;
  2475. }
  2476. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2477. s->frames = mp3Frames[s->chan_cfg];
  2478. if(!s->frames) {
  2479. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2480. return -1;
  2481. }
  2482. avctx->channels = mp3Channels[s->chan_cfg];
  2483. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2484. * We replace avctx->priv_data with the context of the first decoder so that
  2485. * decode_init() does not have to be changed.
  2486. * Other decoders will be inited here copying data from the first context
  2487. */
  2488. // Allocate zeroed memory for the first decoder context
  2489. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2490. // Put decoder context in place to make init_decode() happy
  2491. avctx->priv_data = s->mp3decctx[0];
  2492. decode_init(avctx);
  2493. // Restore mp3on4 context pointer
  2494. avctx->priv_data = s;
  2495. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2496. /* Create a separate codec/context for each frame (first is already ok).
  2497. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2498. */
  2499. for (i = 1; i < s->frames; i++) {
  2500. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2501. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2502. s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
  2503. s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
  2504. s->mp3decctx[i]->adu_mode = 1;
  2505. }
  2506. return 0;
  2507. }
  2508. static int decode_close_mp3on4(AVCodecContext * avctx)
  2509. {
  2510. MP3On4DecodeContext *s = avctx->priv_data;
  2511. int i;
  2512. for (i = 0; i < s->frames; i++)
  2513. if (s->mp3decctx[i])
  2514. av_free(s->mp3decctx[i]);
  2515. return 0;
  2516. }
  2517. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2518. void *data, int *data_size,
  2519. uint8_t * buf, int buf_size)
  2520. {
  2521. MP3On4DecodeContext *s = avctx->priv_data;
  2522. MPADecodeContext *m;
  2523. int len, out_size = 0;
  2524. uint32_t header;
  2525. OUT_INT *out_samples = data;
  2526. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2527. OUT_INT *outptr, *bp;
  2528. int fsize;
  2529. unsigned char *start2 = buf, *start;
  2530. int fr, i, j, n;
  2531. int off = avctx->channels;
  2532. int *coff = chan_offset[s->chan_cfg];
  2533. len = buf_size;
  2534. // Discard too short frames
  2535. if (buf_size < HEADER_SIZE) {
  2536. *data_size = 0;
  2537. return buf_size;
  2538. }
  2539. // If only one decoder interleave is not needed
  2540. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2541. for (fr = 0; fr < s->frames; fr++) {
  2542. start = start2;
  2543. fsize = (start[0] << 4) | (start[1] >> 4);
  2544. start2 += fsize;
  2545. if (fsize > len)
  2546. fsize = len;
  2547. len -= fsize;
  2548. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2549. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2550. m = s->mp3decctx[fr];
  2551. assert (m != NULL);
  2552. /* copy original to new */
  2553. m->inbuf_ptr = m->inbuf + fsize;
  2554. memcpy(m->inbuf, start, fsize);
  2555. // Get header
  2556. header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
  2557. (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
  2558. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2559. *data_size = 0;
  2560. return buf_size;
  2561. }
  2562. decode_header(m, header);
  2563. mp_decode_frame(m, decoded_buf);
  2564. n = MPA_FRAME_SIZE * m->nb_channels;
  2565. out_size += n * sizeof(OUT_INT);
  2566. if(s->frames > 1) {
  2567. /* interleave output data */
  2568. bp = out_samples + coff[fr];
  2569. if(m->nb_channels == 1) {
  2570. for(j = 0; j < n; j++) {
  2571. *bp = decoded_buf[j];
  2572. bp += off;
  2573. }
  2574. } else {
  2575. for(j = 0; j < n; j++) {
  2576. bp[0] = decoded_buf[j++];
  2577. bp[1] = decoded_buf[j];
  2578. bp += off;
  2579. }
  2580. }
  2581. }
  2582. }
  2583. /* update codec info */
  2584. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2585. avctx->frame_size= buf_size;
  2586. avctx->bit_rate = 0;
  2587. for (i = 0; i < s->frames; i++)
  2588. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2589. *data_size = out_size;
  2590. return buf_size;
  2591. }
  2592. AVCodec mp2_decoder =
  2593. {
  2594. "mp2",
  2595. CODEC_TYPE_AUDIO,
  2596. CODEC_ID_MP2,
  2597. sizeof(MPADecodeContext),
  2598. decode_init,
  2599. NULL,
  2600. NULL,
  2601. decode_frame,
  2602. CODEC_CAP_PARSE_ONLY,
  2603. };
  2604. AVCodec mp3_decoder =
  2605. {
  2606. "mp3",
  2607. CODEC_TYPE_AUDIO,
  2608. CODEC_ID_MP3,
  2609. sizeof(MPADecodeContext),
  2610. decode_init,
  2611. NULL,
  2612. NULL,
  2613. decode_frame,
  2614. CODEC_CAP_PARSE_ONLY,
  2615. };
  2616. AVCodec mp3adu_decoder =
  2617. {
  2618. "mp3adu",
  2619. CODEC_TYPE_AUDIO,
  2620. CODEC_ID_MP3ADU,
  2621. sizeof(MPADecodeContext),
  2622. decode_init,
  2623. NULL,
  2624. NULL,
  2625. decode_frame_adu,
  2626. CODEC_CAP_PARSE_ONLY,
  2627. };
  2628. AVCodec mp3on4_decoder =
  2629. {
  2630. "mp3on4",
  2631. CODEC_TYPE_AUDIO,
  2632. CODEC_ID_MP3ON4,
  2633. sizeof(MP3On4DecodeContext),
  2634. decode_init_mp3on4,
  2635. NULL,
  2636. decode_close_mp3on4,
  2637. decode_frame_mp3on4,
  2638. 0
  2639. };