You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1094 lines
25KB

  1. ;******************************************************************************
  2. ;* FFT transform with SSE/3DNow optimizations
  3. ;* Copyright (c) 2008 Loren Merritt
  4. ;* Copyright (c) 2011 Vitor Sessak
  5. ;*
  6. ;* This algorithm (though not any of the implementation details) is
  7. ;* based on libdjbfft by D. J. Bernstein.
  8. ;*
  9. ;* This file is part of FFmpeg.
  10. ;*
  11. ;* FFmpeg is free software; you can redistribute it and/or
  12. ;* modify it under the terms of the GNU Lesser General Public
  13. ;* License as published by the Free Software Foundation; either
  14. ;* version 2.1 of the License, or (at your option) any later version.
  15. ;*
  16. ;* FFmpeg is distributed in the hope that it will be useful,
  17. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. ;* Lesser General Public License for more details.
  20. ;*
  21. ;* You should have received a copy of the GNU Lesser General Public
  22. ;* License along with FFmpeg; if not, write to the Free Software
  23. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. ;******************************************************************************
  25. ; These functions are not individually interchangeable with the C versions.
  26. ; While C takes arrays of FFTComplex, SSE/3DNow leave intermediate results
  27. ; in blocks as conventient to the vector size.
  28. ; i.e. {4x real, 4x imaginary, 4x real, ...} (or 2x respectively)
  29. %include "libavutil/x86/x86util.asm"
  30. %if ARCH_X86_64
  31. %define pointer resq
  32. %else
  33. %define pointer resd
  34. %endif
  35. SECTION_RODATA
  36. struc FFTContext
  37. .nbits: resd 1
  38. .reverse: resd 1
  39. .revtab: pointer 1
  40. .tmpbuf: pointer 1
  41. .mdctsize: resd 1
  42. .mdctbits: resd 1
  43. .tcos: pointer 1
  44. .tsin: pointer 1
  45. .fftperm: pointer 1
  46. .fftcalc: pointer 1
  47. .imdctcalc:pointer 1
  48. .imdcthalf:pointer 1
  49. endstruc
  50. %define M_SQRT1_2 0.70710678118654752440
  51. %define M_COS_PI_1_8 0.923879532511287
  52. %define M_COS_PI_3_8 0.38268343236509
  53. align 32
  54. ps_cos16_1: dd 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8, 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8
  55. ps_cos16_2: dd 0, M_COS_PI_3_8, M_SQRT1_2, M_COS_PI_1_8, 0, -M_COS_PI_3_8, -M_SQRT1_2, -M_COS_PI_1_8
  56. ps_root2: times 8 dd M_SQRT1_2
  57. ps_root2mppm: dd -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2, -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2
  58. ps_p1p1m1p1: dd 0, 0, 1<<31, 0, 0, 0, 1<<31, 0
  59. perm1: dd 0x00, 0x02, 0x03, 0x01, 0x03, 0x00, 0x02, 0x01
  60. perm2: dd 0x00, 0x01, 0x02, 0x03, 0x01, 0x00, 0x02, 0x03
  61. ps_p1p1m1p1root2: dd 1.0, 1.0, -1.0, 1.0, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2
  62. ps_m1m1p1m1p1m1m1m1: dd 1<<31, 1<<31, 0, 1<<31, 0, 1<<31, 1<<31, 1<<31
  63. ps_m1m1m1m1: times 4 dd 1<<31
  64. ps_m1p1: dd 1<<31, 0
  65. %assign i 16
  66. %rep 13
  67. cextern cos_ %+ i
  68. %assign i i<<1
  69. %endrep
  70. %if ARCH_X86_64
  71. %define pointer dq
  72. %else
  73. %define pointer dd
  74. %endif
  75. %macro IF0 1+
  76. %endmacro
  77. %macro IF1 1+
  78. %1
  79. %endmacro
  80. SECTION_TEXT
  81. %macro T2_3DNOW 4 ; z0, z1, mem0, mem1
  82. mova %1, %3
  83. mova %2, %1
  84. pfadd %1, %4
  85. pfsub %2, %4
  86. %endmacro
  87. %macro T4_3DNOW 6 ; z0, z1, z2, z3, tmp0, tmp1
  88. mova %5, %3
  89. pfsub %3, %4
  90. pfadd %5, %4 ; {t6,t5}
  91. pxor %3, [ps_m1p1] ; {t8,t7}
  92. mova %6, %1
  93. movd [r0+12], %3
  94. punpckhdq %3, [r0+8]
  95. pfadd %1, %5 ; {r0,i0}
  96. pfsub %6, %5 ; {r2,i2}
  97. mova %4, %2
  98. pfadd %2, %3 ; {r1,i1}
  99. pfsub %4, %3 ; {r3,i3}
  100. SWAP %3, %6
  101. %endmacro
  102. ; in: %1 = {r0,i0,r2,i2,r4,i4,r6,i6}
  103. ; %2 = {r1,i1,r3,i3,r5,i5,r7,i7}
  104. ; %3, %4, %5 tmp
  105. ; out: %1 = {r0,r1,r2,r3,i0,i1,i2,i3}
  106. ; %2 = {r4,r5,r6,r7,i4,i5,i6,i7}
  107. %macro T8_AVX 5
  108. vsubps %5, %1, %2 ; v = %1 - %2
  109. vaddps %3, %1, %2 ; w = %1 + %2
  110. vmulps %2, %5, [ps_p1p1m1p1root2] ; v *= vals1
  111. vpermilps %2, %2, [perm1]
  112. vblendps %1, %2, %3, 0x33 ; q = {w1,w2,v4,v2,w5,w6,v7,v6}
  113. vshufps %5, %3, %2, 0x4e ; r = {w3,w4,v1,v3,w7,w8,v8,v5}
  114. vsubps %4, %5, %1 ; s = r - q
  115. vaddps %1, %5, %1 ; u = r + q
  116. vpermilps %1, %1, [perm2] ; k = {u1,u2,u3,u4,u6,u5,u7,u8}
  117. vshufps %5, %4, %1, 0xbb
  118. vshufps %3, %4, %1, 0xee
  119. vperm2f128 %3, %3, %5, 0x13
  120. vxorps %4, %4, [ps_m1m1p1m1p1m1m1m1] ; s *= {1,1,-1,-1,1,-1,-1,-1}
  121. vshufps %2, %1, %4, 0xdd
  122. vshufps %1, %1, %4, 0x88
  123. vperm2f128 %4, %2, %1, 0x02 ; v = {k1,k3,s1,s3,k2,k4,s2,s4}
  124. vperm2f128 %1, %1, %2, 0x13 ; w = {k6,k8,s6,s8,k5,k7,s5,s7}
  125. vsubps %5, %1, %3
  126. vblendps %1, %5, %1, 0x55 ; w -= {0,s7,0,k7,0,s8,0,k8}
  127. vsubps %2, %4, %1 ; %2 = v - w
  128. vaddps %1, %4, %1 ; %1 = v + w
  129. %endmacro
  130. ; In SSE mode do one fft4 transforms
  131. ; in: %1={r0,i0,r2,i2} %2={r1,i1,r3,i3}
  132. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3}
  133. ;
  134. ; In AVX mode do two fft4 transforms
  135. ; in: %1={r0,i0,r2,i2,r4,i4,r6,i6} %2={r1,i1,r3,i3,r5,i5,r7,i7}
  136. ; out: %1={r0,r1,r2,r3,r4,r5,r6,r7} %2={i0,i1,i2,i3,i4,i5,i6,i7}
  137. %macro T4_SSE 3
  138. subps %3, %1, %2 ; {t3,t4,-t8,t7}
  139. addps %1, %1, %2 ; {t1,t2,t6,t5}
  140. xorps %3, %3, [ps_p1p1m1p1]
  141. shufps %2, %1, %3, 0xbe ; {t6,t5,t7,t8}
  142. shufps %1, %1, %3, 0x44 ; {t1,t2,t3,t4}
  143. subps %3, %1, %2 ; {r2,i2,r3,i3}
  144. addps %1, %1, %2 ; {r0,i0,r1,i1}
  145. shufps %2, %1, %3, 0xdd ; {i0,i1,i2,i3}
  146. shufps %1, %1, %3, 0x88 ; {r0,r1,r2,r3}
  147. %endmacro
  148. ; In SSE mode do one FFT8
  149. ; in: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %3={r4,i4,r6,i6} %4={r5,i5,r7,i7}
  150. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %1={r4,r5,r6,r7} %2={i4,i5,i6,i7}
  151. ;
  152. ; In AVX mode do two FFT8
  153. ; in: %1={r0,i0,r2,i2,r8, i8, r10,i10} %2={r1,i1,r3,i3,r9, i9, r11,i11}
  154. ; %3={r4,i4,r6,i6,r12,i12,r14,i14} %4={r5,i5,r7,i7,r13,i13,r15,i15}
  155. ; out: %1={r0,r1,r2,r3,r8, r9, r10,r11} %2={i0,i1,i2,i3,i8, i9, i10,i11}
  156. ; %3={r4,r5,r6,r7,r12,r13,r14,r15} %4={i4,i5,i6,i7,i12,i13,i14,i15}
  157. %macro T8_SSE 6
  158. addps %6, %3, %4 ; {t1,t2,t3,t4}
  159. subps %3, %3, %4 ; {r5,i5,r7,i7}
  160. shufps %4, %3, %3, 0xb1 ; {i5,r5,i7,r7}
  161. mulps %3, %3, [ps_root2mppm] ; {-r5,i5,r7,-i7}
  162. mulps %4, %4, [ps_root2]
  163. addps %3, %3, %4 ; {t8,t7,ta,t9}
  164. shufps %4, %6, %3, 0x9c ; {t1,t4,t7,ta}
  165. shufps %6, %6, %3, 0x36 ; {t3,t2,t9,t8}
  166. subps %3, %6, %4 ; {t6,t5,tc,tb}
  167. addps %6, %6, %4 ; {t1,t2,t9,ta}
  168. shufps %5, %6, %3, 0x8d ; {t2,ta,t6,tc}
  169. shufps %6, %6, %3, 0xd8 ; {t1,t9,t5,tb}
  170. subps %3, %1, %6 ; {r4,r5,r6,r7}
  171. addps %1, %1, %6 ; {r0,r1,r2,r3}
  172. subps %4, %2, %5 ; {i4,i5,i6,i7}
  173. addps %2, %2, %5 ; {i0,i1,i2,i3}
  174. %endmacro
  175. ; scheduled for cpu-bound sizes
  176. %macro PASS_SMALL 3 ; (to load m4-m7), wre, wim
  177. IF%1 mova m4, Z(4)
  178. IF%1 mova m5, Z(5)
  179. mova m0, %2 ; wre
  180. mova m1, %3 ; wim
  181. mulps m2, m4, m0 ; r2*wre
  182. IF%1 mova m6, Z2(6)
  183. mulps m3, m5, m1 ; i2*wim
  184. IF%1 mova m7, Z2(7)
  185. mulps m4, m4, m1 ; r2*wim
  186. mulps m5, m5, m0 ; i2*wre
  187. addps m2, m2, m3 ; r2*wre + i2*wim
  188. mulps m3, m1, m7 ; i3*wim
  189. subps m5, m5, m4 ; i2*wre - r2*wim
  190. mulps m1, m1, m6 ; r3*wim
  191. mulps m4, m0, m6 ; r3*wre
  192. mulps m0, m0, m7 ; i3*wre
  193. subps m4, m4, m3 ; r3*wre - i3*wim
  194. mova m3, Z(0)
  195. addps m0, m0, m1 ; i3*wre + r3*wim
  196. subps m1, m4, m2 ; t3
  197. addps m4, m4, m2 ; t5
  198. subps m3, m3, m4 ; r2
  199. addps m4, m4, Z(0) ; r0
  200. mova m6, Z(2)
  201. mova Z(4), m3
  202. mova Z(0), m4
  203. subps m3, m5, m0 ; t4
  204. subps m4, m6, m3 ; r3
  205. addps m3, m3, m6 ; r1
  206. mova Z2(6), m4
  207. mova Z(2), m3
  208. mova m2, Z(3)
  209. addps m3, m5, m0 ; t6
  210. subps m2, m2, m1 ; i3
  211. mova m7, Z(1)
  212. addps m1, m1, Z(3) ; i1
  213. mova Z2(7), m2
  214. mova Z(3), m1
  215. subps m4, m7, m3 ; i2
  216. addps m3, m3, m7 ; i0
  217. mova Z(5), m4
  218. mova Z(1), m3
  219. %endmacro
  220. ; scheduled to avoid store->load aliasing
  221. %macro PASS_BIG 1 ; (!interleave)
  222. mova m4, Z(4) ; r2
  223. mova m5, Z(5) ; i2
  224. mova m0, [wq] ; wre
  225. mova m1, [wq+o1q] ; wim
  226. mulps m2, m4, m0 ; r2*wre
  227. mova m6, Z2(6) ; r3
  228. mulps m3, m5, m1 ; i2*wim
  229. mova m7, Z2(7) ; i3
  230. mulps m4, m4, m1 ; r2*wim
  231. mulps m5, m5, m0 ; i2*wre
  232. addps m2, m2, m3 ; r2*wre + i2*wim
  233. mulps m3, m1, m7 ; i3*wim
  234. mulps m1, m1, m6 ; r3*wim
  235. subps m5, m5, m4 ; i2*wre - r2*wim
  236. mulps m4, m0, m6 ; r3*wre
  237. mulps m0, m0, m7 ; i3*wre
  238. subps m4, m4, m3 ; r3*wre - i3*wim
  239. mova m3, Z(0)
  240. addps m0, m0, m1 ; i3*wre + r3*wim
  241. subps m1, m4, m2 ; t3
  242. addps m4, m4, m2 ; t5
  243. subps m3, m3, m4 ; r2
  244. addps m4, m4, Z(0) ; r0
  245. mova m6, Z(2)
  246. mova Z(4), m3
  247. mova Z(0), m4
  248. subps m3, m5, m0 ; t4
  249. subps m4, m6, m3 ; r3
  250. addps m3, m3, m6 ; r1
  251. IF%1 mova Z2(6), m4
  252. IF%1 mova Z(2), m3
  253. mova m2, Z(3)
  254. addps m5, m5, m0 ; t6
  255. subps m2, m2, m1 ; i3
  256. mova m7, Z(1)
  257. addps m1, m1, Z(3) ; i1
  258. IF%1 mova Z2(7), m2
  259. IF%1 mova Z(3), m1
  260. subps m6, m7, m5 ; i2
  261. addps m5, m5, m7 ; i0
  262. IF%1 mova Z(5), m6
  263. IF%1 mova Z(1), m5
  264. %if %1==0
  265. INTERL m1, m3, m7, Z, 2
  266. INTERL m2, m4, m0, Z2, 6
  267. mova m1, Z(0)
  268. mova m2, Z(4)
  269. INTERL m5, m1, m3, Z, 0
  270. INTERL m6, m2, m7, Z, 4
  271. %endif
  272. %endmacro
  273. %macro PUNPCK 3
  274. mova %3, %1
  275. punpckldq %1, %2
  276. punpckhdq %3, %2
  277. %endmacro
  278. %define Z(x) [r0+mmsize*x]
  279. %define Z2(x) [r0+mmsize*x]
  280. %define ZH(x) [r0+mmsize*x+mmsize/2]
  281. INIT_YMM avx
  282. %if HAVE_AVX_EXTERNAL
  283. align 16
  284. fft8_avx:
  285. mova m0, Z(0)
  286. mova m1, Z(1)
  287. T8_AVX m0, m1, m2, m3, m4
  288. mova Z(0), m0
  289. mova Z(1), m1
  290. ret
  291. align 16
  292. fft16_avx:
  293. mova m2, Z(2)
  294. mova m3, Z(3)
  295. T4_SSE m2, m3, m7
  296. mova m0, Z(0)
  297. mova m1, Z(1)
  298. T8_AVX m0, m1, m4, m5, m7
  299. mova m4, [ps_cos16_1]
  300. mova m5, [ps_cos16_2]
  301. vmulps m6, m2, m4
  302. vmulps m7, m3, m5
  303. vaddps m7, m7, m6
  304. vmulps m2, m2, m5
  305. vmulps m3, m3, m4
  306. vsubps m3, m3, m2
  307. vblendps m2, m7, m3, 0xf0
  308. vperm2f128 m3, m7, m3, 0x21
  309. vaddps m4, m2, m3
  310. vsubps m2, m3, m2
  311. vperm2f128 m2, m2, m2, 0x01
  312. vsubps m3, m1, m2
  313. vaddps m1, m1, m2
  314. vsubps m5, m0, m4
  315. vaddps m0, m0, m4
  316. vextractf128 Z(0), m0, 0
  317. vextractf128 ZH(0), m1, 0
  318. vextractf128 Z(1), m0, 1
  319. vextractf128 ZH(1), m1, 1
  320. vextractf128 Z(2), m5, 0
  321. vextractf128 ZH(2), m3, 0
  322. vextractf128 Z(3), m5, 1
  323. vextractf128 ZH(3), m3, 1
  324. ret
  325. align 16
  326. fft32_avx:
  327. call fft16_avx
  328. mova m0, Z(4)
  329. mova m1, Z(5)
  330. T4_SSE m0, m1, m4
  331. mova m2, Z(6)
  332. mova m3, Z(7)
  333. T8_SSE m0, m1, m2, m3, m4, m6
  334. ; m0={r0,r1,r2,r3,r8, r9, r10,r11} m1={i0,i1,i2,i3,i8, i9, i10,i11}
  335. ; m2={r4,r5,r6,r7,r12,r13,r14,r15} m3={i4,i5,i6,i7,i12,i13,i14,i15}
  336. vperm2f128 m4, m0, m2, 0x20
  337. vperm2f128 m5, m1, m3, 0x20
  338. vperm2f128 m6, m0, m2, 0x31
  339. vperm2f128 m7, m1, m3, 0x31
  340. PASS_SMALL 0, [cos_32], [cos_32+32]
  341. ret
  342. fft32_interleave_avx:
  343. call fft32_avx
  344. mov r2d, 32
  345. .deint_loop:
  346. mova m2, Z(0)
  347. mova m3, Z(1)
  348. vunpcklps m0, m2, m3
  349. vunpckhps m1, m2, m3
  350. vextractf128 Z(0), m0, 0
  351. vextractf128 ZH(0), m1, 0
  352. vextractf128 Z(1), m0, 1
  353. vextractf128 ZH(1), m1, 1
  354. add r0, mmsize*2
  355. sub r2d, mmsize/4
  356. jg .deint_loop
  357. ret
  358. %endif
  359. INIT_XMM sse
  360. align 16
  361. fft4_avx:
  362. fft4_sse:
  363. mova m0, Z(0)
  364. mova m1, Z(1)
  365. T4_SSE m0, m1, m2
  366. mova Z(0), m0
  367. mova Z(1), m1
  368. ret
  369. align 16
  370. fft8_sse:
  371. mova m0, Z(0)
  372. mova m1, Z(1)
  373. T4_SSE m0, m1, m2
  374. mova m2, Z(2)
  375. mova m3, Z(3)
  376. T8_SSE m0, m1, m2, m3, m4, m5
  377. mova Z(0), m0
  378. mova Z(1), m1
  379. mova Z(2), m2
  380. mova Z(3), m3
  381. ret
  382. align 16
  383. fft16_sse:
  384. mova m0, Z(0)
  385. mova m1, Z(1)
  386. T4_SSE m0, m1, m2
  387. mova m2, Z(2)
  388. mova m3, Z(3)
  389. T8_SSE m0, m1, m2, m3, m4, m5
  390. mova m4, Z(4)
  391. mova m5, Z(5)
  392. mova Z(0), m0
  393. mova Z(1), m1
  394. mova Z(2), m2
  395. mova Z(3), m3
  396. T4_SSE m4, m5, m6
  397. mova m6, Z2(6)
  398. mova m7, Z2(7)
  399. T4_SSE m6, m7, m0
  400. PASS_SMALL 0, [cos_16], [cos_16+16]
  401. ret
  402. %macro FFT48_3DNOW 0
  403. align 16
  404. fft4 %+ SUFFIX:
  405. T2_3DNOW m0, m1, Z(0), Z(1)
  406. mova m2, Z(2)
  407. mova m3, Z(3)
  408. T4_3DNOW m0, m1, m2, m3, m4, m5
  409. PUNPCK m0, m1, m4
  410. PUNPCK m2, m3, m5
  411. mova Z(0), m0
  412. mova Z(1), m4
  413. mova Z(2), m2
  414. mova Z(3), m5
  415. ret
  416. align 16
  417. fft8 %+ SUFFIX:
  418. T2_3DNOW m0, m1, Z(0), Z(1)
  419. mova m2, Z(2)
  420. mova m3, Z(3)
  421. T4_3DNOW m0, m1, m2, m3, m4, m5
  422. mova Z(0), m0
  423. mova Z(2), m2
  424. T2_3DNOW m4, m5, Z(4), Z(5)
  425. T2_3DNOW m6, m7, Z2(6), Z2(7)
  426. PSWAPD m0, m5
  427. PSWAPD m2, m7
  428. pxor m0, [ps_m1p1]
  429. pxor m2, [ps_m1p1]
  430. pfsub m5, m0
  431. pfadd m7, m2
  432. pfmul m5, [ps_root2]
  433. pfmul m7, [ps_root2]
  434. T4_3DNOW m1, m3, m5, m7, m0, m2
  435. mova Z(5), m5
  436. mova Z2(7), m7
  437. mova m0, Z(0)
  438. mova m2, Z(2)
  439. T4_3DNOW m0, m2, m4, m6, m5, m7
  440. PUNPCK m0, m1, m5
  441. PUNPCK m2, m3, m7
  442. mova Z(0), m0
  443. mova Z(1), m5
  444. mova Z(2), m2
  445. mova Z(3), m7
  446. PUNPCK m4, Z(5), m5
  447. PUNPCK m6, Z2(7), m7
  448. mova Z(4), m4
  449. mova Z(5), m5
  450. mova Z2(6), m6
  451. mova Z2(7), m7
  452. ret
  453. %endmacro
  454. %if ARCH_X86_32
  455. INIT_MMX 3dnowext
  456. FFT48_3DNOW
  457. INIT_MMX 3dnow
  458. FFT48_3DNOW
  459. %endif
  460. %define Z(x) [zcq + o1q*(x&6) + mmsize*(x&1)]
  461. %define Z2(x) [zcq + o3q + mmsize*(x&1)]
  462. %define ZH(x) [zcq + o1q*(x&6) + mmsize*(x&1) + mmsize/2]
  463. %define Z2H(x) [zcq + o3q + mmsize*(x&1) + mmsize/2]
  464. %macro DECL_PASS 2+ ; name, payload
  465. align 16
  466. %1:
  467. DEFINE_ARGS zc, w, n, o1, o3
  468. lea o3q, [nq*3]
  469. lea o1q, [nq*8]
  470. shl o3q, 4
  471. .loop:
  472. %2
  473. add zcq, mmsize*2
  474. add wq, mmsize
  475. sub nd, mmsize/8
  476. jg .loop
  477. rep ret
  478. %endmacro
  479. %macro FFT_DISPATCH 2; clobbers 5 GPRs, 8 XMMs
  480. lea r2, [dispatch_tab%1]
  481. mov r2, [r2 + (%2q-2)*gprsize]
  482. %ifdef PIC
  483. lea r3, [$$]
  484. add r2, r3
  485. %endif
  486. call r2
  487. %endmacro ; FFT_DISPATCH
  488. INIT_YMM avx
  489. %if HAVE_AVX_EXTERNAL
  490. %macro INTERL_AVX 5
  491. vunpckhps %3, %2, %1
  492. vunpcklps %2, %2, %1
  493. vextractf128 %4(%5), %2, 0
  494. vextractf128 %4 %+ H(%5), %3, 0
  495. vextractf128 %4(%5 + 1), %2, 1
  496. vextractf128 %4 %+ H(%5 + 1), %3, 1
  497. %endmacro
  498. %define INTERL INTERL_AVX
  499. DECL_PASS pass_avx, PASS_BIG 1
  500. DECL_PASS pass_interleave_avx, PASS_BIG 0
  501. cglobal fft_calc, 2,5,8
  502. mov r3d, [r0 + FFTContext.nbits]
  503. mov r0, r1
  504. mov r1, r3
  505. FFT_DISPATCH _interleave %+ SUFFIX, r1
  506. REP_RET
  507. %endif
  508. INIT_XMM sse
  509. %macro INTERL_SSE 5
  510. mova %3, %2
  511. unpcklps %2, %1
  512. unpckhps %3, %1
  513. mova %4(%5), %2
  514. mova %4(%5+1), %3
  515. %endmacro
  516. %define INTERL INTERL_SSE
  517. DECL_PASS pass_sse, PASS_BIG 1
  518. DECL_PASS pass_interleave_sse, PASS_BIG 0
  519. %macro FFT_CALC_FUNC 0
  520. cglobal fft_calc, 2,5,8
  521. mov r3d, [r0 + FFTContext.nbits]
  522. PUSH r1
  523. PUSH r3
  524. mov r0, r1
  525. mov r1, r3
  526. FFT_DISPATCH _interleave %+ SUFFIX, r1
  527. POP rcx
  528. POP r4
  529. cmp rcx, 3+(mmsize/16)
  530. jg .end
  531. mov r2, -1
  532. add rcx, 3
  533. shl r2, cl
  534. sub r4, r2
  535. .loop:
  536. %if mmsize == 8
  537. PSWAPD m0, [r4 + r2 + 4]
  538. mova [r4 + r2 + 4], m0
  539. %else
  540. movaps xmm0, [r4 + r2]
  541. movaps xmm1, xmm0
  542. unpcklps xmm0, [r4 + r2 + 16]
  543. unpckhps xmm1, [r4 + r2 + 16]
  544. movaps [r4 + r2], xmm0
  545. movaps [r4 + r2 + 16], xmm1
  546. %endif
  547. add r2, mmsize*2
  548. jl .loop
  549. .end:
  550. %if cpuflag(3dnow)
  551. femms
  552. RET
  553. %else
  554. REP_RET
  555. %endif
  556. %endmacro
  557. %if ARCH_X86_32
  558. INIT_MMX 3dnow
  559. FFT_CALC_FUNC
  560. INIT_MMX 3dnowext
  561. FFT_CALC_FUNC
  562. %endif
  563. INIT_XMM sse
  564. FFT_CALC_FUNC
  565. cglobal fft_permute, 2,7,1
  566. mov r4, [r0 + FFTContext.revtab]
  567. mov r5, [r0 + FFTContext.tmpbuf]
  568. mov ecx, [r0 + FFTContext.nbits]
  569. mov r2, 1
  570. shl r2, cl
  571. xor r0, r0
  572. %if ARCH_X86_32
  573. mov r1, r1m
  574. %endif
  575. .loop:
  576. movaps xmm0, [r1 + 8*r0]
  577. movzx r6, word [r4 + 2*r0]
  578. movzx r3, word [r4 + 2*r0 + 2]
  579. movlps [r5 + 8*r6], xmm0
  580. movhps [r5 + 8*r3], xmm0
  581. add r0, 2
  582. cmp r0, r2
  583. jl .loop
  584. shl r2, 3
  585. add r1, r2
  586. add r5, r2
  587. neg r2
  588. ; nbits >= 2 (FFT4) and sizeof(FFTComplex)=8 => at least 32B
  589. .loopcopy:
  590. movaps xmm0, [r5 + r2]
  591. movaps xmm1, [r5 + r2 + 16]
  592. movaps [r1 + r2], xmm0
  593. movaps [r1 + r2 + 16], xmm1
  594. add r2, 32
  595. jl .loopcopy
  596. REP_RET
  597. %macro IMDCT_CALC_FUNC 0
  598. cglobal imdct_calc, 3,5,3
  599. mov r3d, [r0 + FFTContext.mdctsize]
  600. mov r4, [r0 + FFTContext.imdcthalf]
  601. add r1, r3
  602. PUSH r3
  603. PUSH r1
  604. %if ARCH_X86_32
  605. push r2
  606. push r1
  607. push r0
  608. %else
  609. sub rsp, 8
  610. %endif
  611. call r4
  612. %if ARCH_X86_32
  613. add esp, 12
  614. %else
  615. add rsp, 8
  616. %endif
  617. POP r1
  618. POP r3
  619. lea r0, [r1 + 2*r3]
  620. mov r2, r3
  621. sub r3, mmsize
  622. neg r2
  623. mova m2, [ps_m1m1m1m1]
  624. .loop:
  625. %if mmsize == 8
  626. PSWAPD m0, [r1 + r3]
  627. PSWAPD m1, [r0 + r2]
  628. pxor m0, m2
  629. %else
  630. mova m0, [r1 + r3]
  631. mova m1, [r0 + r2]
  632. shufps m0, m0, 0x1b
  633. shufps m1, m1, 0x1b
  634. xorps m0, m2
  635. %endif
  636. mova [r0 + r3], m1
  637. mova [r1 + r2], m0
  638. sub r3, mmsize
  639. add r2, mmsize
  640. jl .loop
  641. %if cpuflag(3dnow)
  642. femms
  643. RET
  644. %else
  645. REP_RET
  646. %endif
  647. %endmacro
  648. %if ARCH_X86_32
  649. INIT_MMX 3dnow
  650. IMDCT_CALC_FUNC
  651. INIT_MMX 3dnowext
  652. IMDCT_CALC_FUNC
  653. %endif
  654. INIT_XMM sse
  655. IMDCT_CALC_FUNC
  656. %if ARCH_X86_32
  657. INIT_MMX 3dnow
  658. %define mulps pfmul
  659. %define addps pfadd
  660. %define subps pfsub
  661. %define unpcklps punpckldq
  662. %define unpckhps punpckhdq
  663. DECL_PASS pass_3dnow, PASS_SMALL 1, [wq], [wq+o1q]
  664. DECL_PASS pass_interleave_3dnow, PASS_BIG 0
  665. %define pass_3dnowext pass_3dnow
  666. %define pass_interleave_3dnowext pass_interleave_3dnow
  667. %endif
  668. %ifdef PIC
  669. %define SECTION_REL - $$
  670. %else
  671. %define SECTION_REL
  672. %endif
  673. %macro DECL_FFT 1-2 ; nbits, suffix
  674. %ifidn %0, 1
  675. %xdefine fullsuffix SUFFIX
  676. %else
  677. %xdefine fullsuffix %2 %+ SUFFIX
  678. %endif
  679. %xdefine list_of_fft fft4 %+ SUFFIX SECTION_REL, fft8 %+ SUFFIX SECTION_REL
  680. %if %1>=5
  681. %xdefine list_of_fft list_of_fft, fft16 %+ SUFFIX SECTION_REL
  682. %endif
  683. %if %1>=6
  684. %xdefine list_of_fft list_of_fft, fft32 %+ fullsuffix SECTION_REL
  685. %endif
  686. %assign n 1<<%1
  687. %rep 17-%1
  688. %assign n2 n/2
  689. %assign n4 n/4
  690. %xdefine list_of_fft list_of_fft, fft %+ n %+ fullsuffix SECTION_REL
  691. align 16
  692. fft %+ n %+ fullsuffix:
  693. call fft %+ n2 %+ SUFFIX
  694. add r0, n*4 - (n&(-2<<%1))
  695. call fft %+ n4 %+ SUFFIX
  696. add r0, n*2 - (n2&(-2<<%1))
  697. call fft %+ n4 %+ SUFFIX
  698. sub r0, n*6 + (n2&(-2<<%1))
  699. lea r1, [cos_ %+ n]
  700. mov r2d, n4/2
  701. jmp pass %+ fullsuffix
  702. %assign n n*2
  703. %endrep
  704. %undef n
  705. align 8
  706. dispatch_tab %+ fullsuffix: pointer list_of_fft
  707. %endmacro ; DECL_FFT
  708. %if HAVE_AVX_EXTERNAL
  709. INIT_YMM avx
  710. DECL_FFT 6
  711. DECL_FFT 6, _interleave
  712. %endif
  713. INIT_XMM sse
  714. DECL_FFT 5
  715. DECL_FFT 5, _interleave
  716. %if ARCH_X86_32
  717. INIT_MMX 3dnow
  718. DECL_FFT 4
  719. DECL_FFT 4, _interleave
  720. INIT_MMX 3dnowext
  721. DECL_FFT 4
  722. DECL_FFT 4, _interleave
  723. %endif
  724. INIT_XMM sse
  725. %undef mulps
  726. %undef addps
  727. %undef subps
  728. %undef unpcklps
  729. %undef unpckhps
  730. %macro PREROTATER 5 ;-2*k, 2*k, input+n4, tcos+n8, tsin+n8
  731. %if mmsize == 8 ; j*2+2-n4, n4-2-j*2, input+n4, tcos+n8, tsin+n8
  732. PSWAPD m0, [%3+%2*4]
  733. movq m2, [%3+%1*4-8]
  734. movq m3, m0
  735. punpckldq m0, m2
  736. punpckhdq m2, m3
  737. movd m1, [%4+%1*2-4] ; tcos[j]
  738. movd m3, [%4+%2*2] ; tcos[n4-j-1]
  739. punpckldq m1, [%5+%1*2-4] ; tsin[j]
  740. punpckldq m3, [%5+%2*2] ; tsin[n4-j-1]
  741. mova m4, m0
  742. PSWAPD m5, m1
  743. pfmul m0, m1
  744. pfmul m4, m5
  745. mova m6, m2
  746. PSWAPD m5, m3
  747. pfmul m2, m3
  748. pfmul m6, m5
  749. %if cpuflag(3dnowext)
  750. pfpnacc m0, m4
  751. pfpnacc m2, m6
  752. %else
  753. SBUTTERFLY dq, 0, 4, 1
  754. SBUTTERFLY dq, 2, 6, 3
  755. pxor m4, m7
  756. pxor m6, m7
  757. pfadd m0, m4
  758. pfadd m2, m6
  759. %endif
  760. %else
  761. movaps xmm0, [%3+%2*4]
  762. movaps xmm1, [%3+%1*4-0x10]
  763. movaps xmm2, xmm0
  764. shufps xmm0, xmm1, 0x88
  765. shufps xmm1, xmm2, 0x77
  766. movlps xmm4, [%4+%2*2]
  767. movlps xmm5, [%5+%2*2+0x0]
  768. movhps xmm4, [%4+%1*2-0x8]
  769. movhps xmm5, [%5+%1*2-0x8]
  770. movaps xmm2, xmm0
  771. movaps xmm3, xmm1
  772. mulps xmm0, xmm5
  773. mulps xmm1, xmm4
  774. mulps xmm2, xmm4
  775. mulps xmm3, xmm5
  776. subps xmm1, xmm0
  777. addps xmm2, xmm3
  778. movaps xmm0, xmm1
  779. unpcklps xmm1, xmm2
  780. unpckhps xmm0, xmm2
  781. %endif
  782. %endmacro
  783. %macro CMUL 6 ;j, xmm0, xmm1, 3, 4, 5
  784. mulps m6, %3, [%5+%1]
  785. mulps m7, %2, [%5+%1]
  786. mulps %2, %2, [%6+%1]
  787. mulps %3, %3, [%6+%1]
  788. subps %2, %2, m6
  789. addps %3, %3, m7
  790. %endmacro
  791. %macro POSROTATESHUF_AVX 5 ;j, k, z+n8, tcos+n8, tsin+n8
  792. .post:
  793. vmovaps ymm1, [%3+%1*2]
  794. vmovaps ymm0, [%3+%1*2+0x20]
  795. vmovaps ymm3, [%3+%2*2]
  796. vmovaps ymm2, [%3+%2*2+0x20]
  797. CMUL %1, ymm0, ymm1, %3, %4, %5
  798. CMUL %2, ymm2, ymm3, %3, %4, %5
  799. vshufps ymm1, ymm1, ymm1, 0x1b
  800. vshufps ymm3, ymm3, ymm3, 0x1b
  801. vperm2f128 ymm1, ymm1, ymm1, 0x01
  802. vperm2f128 ymm3, ymm3, ymm3, 0x01
  803. vunpcklps ymm6, ymm2, ymm1
  804. vunpckhps ymm4, ymm2, ymm1
  805. vunpcklps ymm7, ymm0, ymm3
  806. vunpckhps ymm5, ymm0, ymm3
  807. vextractf128 [%3+%1*2], ymm7, 0
  808. vextractf128 [%3+%1*2+0x10], ymm5, 0
  809. vextractf128 [%3+%1*2+0x20], ymm7, 1
  810. vextractf128 [%3+%1*2+0x30], ymm5, 1
  811. vextractf128 [%3+%2*2], ymm6, 0
  812. vextractf128 [%3+%2*2+0x10], ymm4, 0
  813. vextractf128 [%3+%2*2+0x20], ymm6, 1
  814. vextractf128 [%3+%2*2+0x30], ymm4, 1
  815. sub %2, 0x20
  816. add %1, 0x20
  817. jl .post
  818. %endmacro
  819. %macro POSROTATESHUF 5 ;j, k, z+n8, tcos+n8, tsin+n8
  820. .post:
  821. movaps xmm1, [%3+%1*2]
  822. movaps xmm0, [%3+%1*2+0x10]
  823. CMUL %1, xmm0, xmm1, %3, %4, %5
  824. movaps xmm5, [%3+%2*2]
  825. movaps xmm4, [%3+%2*2+0x10]
  826. CMUL %2, xmm4, xmm5, %3, %4, %5
  827. shufps xmm1, xmm1, 0x1b
  828. shufps xmm5, xmm5, 0x1b
  829. movaps xmm6, xmm4
  830. unpckhps xmm4, xmm1
  831. unpcklps xmm6, xmm1
  832. movaps xmm2, xmm0
  833. unpcklps xmm0, xmm5
  834. unpckhps xmm2, xmm5
  835. movaps [%3+%2*2], xmm6
  836. movaps [%3+%2*2+0x10], xmm4
  837. movaps [%3+%1*2], xmm0
  838. movaps [%3+%1*2+0x10], xmm2
  839. sub %2, 0x10
  840. add %1, 0x10
  841. jl .post
  842. %endmacro
  843. %macro CMUL_3DNOW 6
  844. mova m6, [%1+%2*2]
  845. mova %3, [%1+%2*2+8]
  846. mova %4, m6
  847. mova m7, %3
  848. pfmul m6, [%5+%2]
  849. pfmul %3, [%6+%2]
  850. pfmul %4, [%6+%2]
  851. pfmul m7, [%5+%2]
  852. pfsub %3, m6
  853. pfadd %4, m7
  854. %endmacro
  855. %macro POSROTATESHUF_3DNOW 5 ;j, k, z+n8, tcos+n8, tsin+n8
  856. .post:
  857. CMUL_3DNOW %3, %1, m0, m1, %4, %5
  858. CMUL_3DNOW %3, %2, m2, m3, %4, %5
  859. movd [%3+%1*2+ 0], m0
  860. movd [%3+%2*2+12], m1
  861. movd [%3+%2*2+ 0], m2
  862. movd [%3+%1*2+12], m3
  863. psrlq m0, 32
  864. psrlq m1, 32
  865. psrlq m2, 32
  866. psrlq m3, 32
  867. movd [%3+%1*2+ 8], m0
  868. movd [%3+%2*2+ 4], m1
  869. movd [%3+%2*2+ 8], m2
  870. movd [%3+%1*2+ 4], m3
  871. sub %2, 8
  872. add %1, 8
  873. jl .post
  874. %endmacro
  875. %macro DECL_IMDCT 1
  876. cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *input
  877. %if ARCH_X86_64
  878. %define rrevtab r7
  879. %define rtcos r8
  880. %define rtsin r9
  881. %else
  882. %define rrevtab r6
  883. %define rtsin r6
  884. %define rtcos r5
  885. %endif
  886. mov r3d, [r0+FFTContext.mdctsize]
  887. add r2, r3
  888. shr r3, 1
  889. mov rtcos, [r0+FFTContext.tcos]
  890. mov rtsin, [r0+FFTContext.tsin]
  891. add rtcos, r3
  892. add rtsin, r3
  893. %if ARCH_X86_64 == 0
  894. push rtcos
  895. push rtsin
  896. %endif
  897. shr r3, 1
  898. mov rrevtab, [r0+FFTContext.revtab]
  899. add rrevtab, r3
  900. %if ARCH_X86_64 == 0
  901. push rrevtab
  902. %endif
  903. %if mmsize == 8
  904. sub r3, 2
  905. %else
  906. sub r3, 4
  907. %endif
  908. %if ARCH_X86_64 || mmsize == 8
  909. xor r4, r4
  910. sub r4, r3
  911. %endif
  912. %if notcpuflag(3dnowext) && mmsize == 8
  913. movd m7, [ps_m1m1m1m1]
  914. %endif
  915. .pre:
  916. %if ARCH_X86_64 == 0
  917. ;unspill
  918. %if mmsize != 8
  919. xor r4, r4
  920. sub r4, r3
  921. %endif
  922. mov rtcos, [esp+8]
  923. mov rtsin, [esp+4]
  924. %endif
  925. PREROTATER r4, r3, r2, rtcos, rtsin
  926. %if mmsize == 8
  927. mov r6, [esp] ; rrevtab = ptr+n8
  928. movzx r5, word [rrevtab+r4-2] ; rrevtab[j]
  929. movzx r6, word [rrevtab+r3] ; rrevtab[n4-j-1]
  930. mova [r1+r5*8], m0
  931. mova [r1+r6*8], m2
  932. add r4, 2
  933. sub r3, 2
  934. %else
  935. %if ARCH_X86_64
  936. movzx r5, word [rrevtab+r4-4]
  937. movzx r6, word [rrevtab+r4-2]
  938. movzx r10, word [rrevtab+r3]
  939. movzx r11, word [rrevtab+r3+2]
  940. movlps [r1+r5 *8], xmm0
  941. movhps [r1+r6 *8], xmm0
  942. movlps [r1+r10*8], xmm1
  943. movhps [r1+r11*8], xmm1
  944. add r4, 4
  945. %else
  946. mov r6, [esp]
  947. movzx r5, word [r6+r4-4]
  948. movzx r4, word [r6+r4-2]
  949. movlps [r1+r5*8], xmm0
  950. movhps [r1+r4*8], xmm0
  951. movzx r5, word [r6+r3]
  952. movzx r4, word [r6+r3+2]
  953. movlps [r1+r5*8], xmm1
  954. movhps [r1+r4*8], xmm1
  955. %endif
  956. sub r3, 4
  957. %endif
  958. jns .pre
  959. mov r5, r0
  960. mov r6, r1
  961. mov r0, r1
  962. mov r1d, [r5+FFTContext.nbits]
  963. FFT_DISPATCH SUFFIX, r1
  964. mov r0d, [r5+FFTContext.mdctsize]
  965. add r6, r0
  966. shr r0, 1
  967. %if ARCH_X86_64 == 0
  968. %define rtcos r2
  969. %define rtsin r3
  970. mov rtcos, [esp+8]
  971. mov rtsin, [esp+4]
  972. %endif
  973. neg r0
  974. mov r1, -mmsize
  975. sub r1, r0
  976. %1 r0, r1, r6, rtcos, rtsin
  977. %if ARCH_X86_64 == 0
  978. add esp, 12
  979. %endif
  980. %if mmsize == 8
  981. femms
  982. %endif
  983. RET
  984. %endmacro
  985. DECL_IMDCT POSROTATESHUF
  986. %if ARCH_X86_32
  987. INIT_MMX 3dnow
  988. DECL_IMDCT POSROTATESHUF_3DNOW
  989. INIT_MMX 3dnowext
  990. DECL_IMDCT POSROTATESHUF_3DNOW
  991. %endif
  992. INIT_YMM avx
  993. %if HAVE_AVX_EXTERNAL
  994. DECL_IMDCT POSROTATESHUF_AVX
  995. %endif