You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

651 lines
15KB

  1. ;******************************************************************************
  2. ;* MMX optimized DSP utils
  3. ;* Copyright (c) 2008 Loren Merritt
  4. ;*
  5. ;* This file is part of FFmpeg.
  6. ;*
  7. ;* FFmpeg is free software; you can redistribute it and/or
  8. ;* modify it under the terms of the GNU Lesser General Public
  9. ;* License as published by the Free Software Foundation; either
  10. ;* version 2.1 of the License, or (at your option) any later version.
  11. ;*
  12. ;* FFmpeg is distributed in the hope that it will be useful,
  13. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. ;* Lesser General Public License for more details.
  16. ;*
  17. ;* You should have received a copy of the GNU Lesser General Public
  18. ;* License along with FFmpeg; if not, write to the Free Software
  19. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. ;******************************************************************************
  21. %include "libavutil/x86/x86util.asm"
  22. SECTION_RODATA
  23. pb_f: times 16 db 15
  24. pb_zzzzzzzz77777777: times 8 db -1
  25. pb_7: times 8 db 7
  26. pb_zzzz3333zzzzbbbb: db -1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,11,11,11,11
  27. pb_zz11zz55zz99zzdd: db -1,-1,1,1,-1,-1,5,5,-1,-1,9,9,-1,-1,13,13
  28. pb_revwords: SHUFFLE_MASK_W 7, 6, 5, 4, 3, 2, 1, 0
  29. pd_16384: times 4 dd 16384
  30. pb_bswap32: db 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
  31. SECTION_TEXT
  32. %macro SCALARPRODUCT 0
  33. ; int scalarproduct_int16(int16_t *v1, int16_t *v2, int order)
  34. cglobal scalarproduct_int16, 3,3,3, v1, v2, order
  35. shl orderq, 1
  36. add v1q, orderq
  37. add v2q, orderq
  38. neg orderq
  39. pxor m2, m2
  40. .loop:
  41. movu m0, [v1q + orderq]
  42. movu m1, [v1q + orderq + mmsize]
  43. pmaddwd m0, [v2q + orderq]
  44. pmaddwd m1, [v2q + orderq + mmsize]
  45. paddd m2, m0
  46. paddd m2, m1
  47. add orderq, mmsize*2
  48. jl .loop
  49. %if mmsize == 16
  50. movhlps m0, m2
  51. paddd m2, m0
  52. pshuflw m0, m2, 0x4e
  53. %else
  54. pshufw m0, m2, 0x4e
  55. %endif
  56. paddd m2, m0
  57. movd eax, m2
  58. RET
  59. ; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul)
  60. cglobal scalarproduct_and_madd_int16, 4,4,8, v1, v2, v3, order, mul
  61. shl orderq, 1
  62. movd m7, mulm
  63. %if mmsize == 16
  64. pshuflw m7, m7, 0
  65. punpcklqdq m7, m7
  66. %else
  67. pshufw m7, m7, 0
  68. %endif
  69. pxor m6, m6
  70. add v1q, orderq
  71. add v2q, orderq
  72. add v3q, orderq
  73. neg orderq
  74. .loop:
  75. movu m0, [v2q + orderq]
  76. movu m1, [v2q + orderq + mmsize]
  77. mova m4, [v1q + orderq]
  78. mova m5, [v1q + orderq + mmsize]
  79. movu m2, [v3q + orderq]
  80. movu m3, [v3q + orderq + mmsize]
  81. pmaddwd m0, m4
  82. pmaddwd m1, m5
  83. pmullw m2, m7
  84. pmullw m3, m7
  85. paddd m6, m0
  86. paddd m6, m1
  87. paddw m2, m4
  88. paddw m3, m5
  89. mova [v1q + orderq], m2
  90. mova [v1q + orderq + mmsize], m3
  91. add orderq, mmsize*2
  92. jl .loop
  93. %if mmsize == 16
  94. movhlps m0, m6
  95. paddd m6, m0
  96. pshuflw m0, m6, 0x4e
  97. %else
  98. pshufw m0, m6, 0x4e
  99. %endif
  100. paddd m6, m0
  101. movd eax, m6
  102. RET
  103. %endmacro
  104. INIT_MMX mmxext
  105. SCALARPRODUCT
  106. INIT_XMM sse2
  107. SCALARPRODUCT
  108. %macro SCALARPRODUCT_LOOP 1
  109. align 16
  110. .loop%1:
  111. sub orderq, mmsize*2
  112. %if %1
  113. mova m1, m4
  114. mova m4, [v2q + orderq]
  115. mova m0, [v2q + orderq + mmsize]
  116. palignr m1, m0, %1
  117. palignr m0, m4, %1
  118. mova m3, m5
  119. mova m5, [v3q + orderq]
  120. mova m2, [v3q + orderq + mmsize]
  121. palignr m3, m2, %1
  122. palignr m2, m5, %1
  123. %else
  124. mova m0, [v2q + orderq]
  125. mova m1, [v2q + orderq + mmsize]
  126. mova m2, [v3q + orderq]
  127. mova m3, [v3q + orderq + mmsize]
  128. %endif
  129. %define t0 [v1q + orderq]
  130. %define t1 [v1q + orderq + mmsize]
  131. %if ARCH_X86_64
  132. mova m8, t0
  133. mova m9, t1
  134. %define t0 m8
  135. %define t1 m9
  136. %endif
  137. pmaddwd m0, t0
  138. pmaddwd m1, t1
  139. pmullw m2, m7
  140. pmullw m3, m7
  141. paddw m2, t0
  142. paddw m3, t1
  143. paddd m6, m0
  144. paddd m6, m1
  145. mova [v1q + orderq], m2
  146. mova [v1q + orderq + mmsize], m3
  147. jg .loop%1
  148. %if %1
  149. jmp .end
  150. %endif
  151. %endmacro
  152. ; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul)
  153. INIT_XMM ssse3
  154. cglobal scalarproduct_and_madd_int16, 4,5,10, v1, v2, v3, order, mul
  155. shl orderq, 1
  156. movd m7, mulm
  157. pshuflw m7, m7, 0
  158. punpcklqdq m7, m7
  159. pxor m6, m6
  160. mov r4d, v2d
  161. and r4d, 15
  162. and v2q, ~15
  163. and v3q, ~15
  164. mova m4, [v2q + orderq]
  165. mova m5, [v3q + orderq]
  166. ; linear is faster than branch tree or jump table, because the branches taken are cyclic (i.e. predictable)
  167. cmp r4d, 0
  168. je .loop0
  169. cmp r4d, 2
  170. je .loop2
  171. cmp r4d, 4
  172. je .loop4
  173. cmp r4d, 6
  174. je .loop6
  175. cmp r4d, 8
  176. je .loop8
  177. cmp r4d, 10
  178. je .loop10
  179. cmp r4d, 12
  180. je .loop12
  181. SCALARPRODUCT_LOOP 14
  182. SCALARPRODUCT_LOOP 12
  183. SCALARPRODUCT_LOOP 10
  184. SCALARPRODUCT_LOOP 8
  185. SCALARPRODUCT_LOOP 6
  186. SCALARPRODUCT_LOOP 4
  187. SCALARPRODUCT_LOOP 2
  188. SCALARPRODUCT_LOOP 0
  189. .end:
  190. movhlps m0, m6
  191. paddd m6, m0
  192. pshuflw m0, m6, 0x4e
  193. paddd m6, m0
  194. movd eax, m6
  195. RET
  196. ;-----------------------------------------------------------------------------
  197. ; void ff_apply_window_int16(int16_t *output, const int16_t *input,
  198. ; const int16_t *window, unsigned int len)
  199. ;-----------------------------------------------------------------------------
  200. %macro REVERSE_WORDS 1-2
  201. %if cpuflag(ssse3) && notcpuflag(atom)
  202. pshufb %1, %2
  203. %elif cpuflag(sse2)
  204. pshuflw %1, %1, 0x1B
  205. pshufhw %1, %1, 0x1B
  206. pshufd %1, %1, 0x4E
  207. %elif cpuflag(mmxext)
  208. pshufw %1, %1, 0x1B
  209. %endif
  210. %endmacro
  211. %macro MUL16FIXED 3
  212. %if cpuflag(ssse3) ; dst, src, unused
  213. ; dst = ((dst * src) + (1<<14)) >> 15
  214. pmulhrsw %1, %2
  215. %elif cpuflag(mmxext) ; dst, src, temp
  216. ; dst = (dst * src) >> 15
  217. ; pmulhw cuts off the bottom bit, so we have to lshift by 1 and add it back
  218. ; in from the pmullw result.
  219. mova %3, %1
  220. pmulhw %1, %2
  221. pmullw %3, %2
  222. psrlw %3, 15
  223. psllw %1, 1
  224. por %1, %3
  225. %endif
  226. %endmacro
  227. %macro APPLY_WINDOW_INT16 1 ; %1 bitexact version
  228. %if %1
  229. cglobal apply_window_int16, 4,5,6, output, input, window, offset, offset2
  230. %else
  231. cglobal apply_window_int16_round, 4,5,6, output, input, window, offset, offset2
  232. %endif
  233. lea offset2q, [offsetq-mmsize]
  234. %if cpuflag(ssse3) && notcpuflag(atom)
  235. mova m5, [pb_revwords]
  236. ALIGN 16
  237. %elif %1
  238. mova m5, [pd_16384]
  239. %endif
  240. .loop:
  241. %if cpuflag(ssse3)
  242. ; This version does the 16x16->16 multiplication in-place without expanding
  243. ; to 32-bit. The ssse3 version is bit-identical.
  244. mova m0, [windowq+offset2q]
  245. mova m1, [ inputq+offset2q]
  246. pmulhrsw m1, m0
  247. REVERSE_WORDS m0, m5
  248. pmulhrsw m0, [ inputq+offsetq ]
  249. mova [outputq+offset2q], m1
  250. mova [outputq+offsetq ], m0
  251. %elif %1
  252. ; This version expands 16-bit to 32-bit, multiplies by the window,
  253. ; adds 16384 for rounding, right shifts 15, then repacks back to words to
  254. ; save to the output. The window is reversed for the second half.
  255. mova m3, [windowq+offset2q]
  256. mova m4, [ inputq+offset2q]
  257. pxor m0, m0
  258. punpcklwd m0, m3
  259. punpcklwd m1, m4
  260. pmaddwd m0, m1
  261. paddd m0, m5
  262. psrad m0, 15
  263. pxor m2, m2
  264. punpckhwd m2, m3
  265. punpckhwd m1, m4
  266. pmaddwd m2, m1
  267. paddd m2, m5
  268. psrad m2, 15
  269. packssdw m0, m2
  270. mova [outputq+offset2q], m0
  271. REVERSE_WORDS m3
  272. mova m4, [ inputq+offsetq]
  273. pxor m0, m0
  274. punpcklwd m0, m3
  275. punpcklwd m1, m4
  276. pmaddwd m0, m1
  277. paddd m0, m5
  278. psrad m0, 15
  279. pxor m2, m2
  280. punpckhwd m2, m3
  281. punpckhwd m1, m4
  282. pmaddwd m2, m1
  283. paddd m2, m5
  284. psrad m2, 15
  285. packssdw m0, m2
  286. mova [outputq+offsetq], m0
  287. %else
  288. ; This version does the 16x16->16 multiplication in-place without expanding
  289. ; to 32-bit. The mmxext and sse2 versions do not use rounding, and
  290. ; therefore are not bit-identical to the C version.
  291. mova m0, [windowq+offset2q]
  292. mova m1, [ inputq+offset2q]
  293. mova m2, [ inputq+offsetq ]
  294. MUL16FIXED m1, m0, m3
  295. REVERSE_WORDS m0
  296. MUL16FIXED m2, m0, m3
  297. mova [outputq+offset2q], m1
  298. mova [outputq+offsetq ], m2
  299. %endif
  300. add offsetd, mmsize
  301. sub offset2d, mmsize
  302. jae .loop
  303. REP_RET
  304. %endmacro
  305. INIT_MMX mmxext
  306. APPLY_WINDOW_INT16 0
  307. INIT_XMM sse2
  308. APPLY_WINDOW_INT16 0
  309. INIT_MMX mmxext
  310. APPLY_WINDOW_INT16 1
  311. INIT_XMM sse2
  312. APPLY_WINDOW_INT16 1
  313. INIT_XMM ssse3
  314. APPLY_WINDOW_INT16 1
  315. INIT_XMM ssse3, atom
  316. APPLY_WINDOW_INT16 1
  317. ; void add_hfyu_median_prediction_mmxext(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top)
  318. INIT_MMX mmxext
  319. cglobal add_hfyu_median_prediction, 6,6,0, dst, top, diff, w, left, left_top
  320. movq mm0, [topq]
  321. movq mm2, mm0
  322. movd mm4, [left_topq]
  323. psllq mm2, 8
  324. movq mm1, mm0
  325. por mm4, mm2
  326. movd mm3, [leftq]
  327. psubb mm0, mm4 ; t-tl
  328. add dstq, wq
  329. add topq, wq
  330. add diffq, wq
  331. neg wq
  332. jmp .skip
  333. .loop:
  334. movq mm4, [topq+wq]
  335. movq mm0, mm4
  336. psllq mm4, 8
  337. por mm4, mm1
  338. movq mm1, mm0 ; t
  339. psubb mm0, mm4 ; t-tl
  340. .skip:
  341. movq mm2, [diffq+wq]
  342. %assign i 0
  343. %rep 8
  344. movq mm4, mm0
  345. paddb mm4, mm3 ; t-tl+l
  346. movq mm5, mm3
  347. pmaxub mm3, mm1
  348. pminub mm5, mm1
  349. pminub mm3, mm4
  350. pmaxub mm3, mm5 ; median
  351. paddb mm3, mm2 ; +residual
  352. %if i==0
  353. movq mm7, mm3
  354. psllq mm7, 56
  355. %else
  356. movq mm6, mm3
  357. psrlq mm7, 8
  358. psllq mm6, 56
  359. por mm7, mm6
  360. %endif
  361. %if i<7
  362. psrlq mm0, 8
  363. psrlq mm1, 8
  364. psrlq mm2, 8
  365. %endif
  366. %assign i i+1
  367. %endrep
  368. movq [dstq+wq], mm7
  369. add wq, 8
  370. jl .loop
  371. movzx r2d, byte [dstq-1]
  372. mov [leftq], r2d
  373. movzx r2d, byte [topq-1]
  374. mov [left_topq], r2d
  375. RET
  376. %macro ADD_HFYU_LEFT_LOOP 2 ; %1 = dst_is_aligned, %2 = src_is_aligned
  377. add srcq, wq
  378. add dstq, wq
  379. neg wq
  380. %%.loop:
  381. %if %2
  382. mova m1, [srcq+wq]
  383. %else
  384. movu m1, [srcq+wq]
  385. %endif
  386. mova m2, m1
  387. psllw m1, 8
  388. paddb m1, m2
  389. mova m2, m1
  390. pshufb m1, m3
  391. paddb m1, m2
  392. pshufb m0, m5
  393. mova m2, m1
  394. pshufb m1, m4
  395. paddb m1, m2
  396. %if mmsize == 16
  397. mova m2, m1
  398. pshufb m1, m6
  399. paddb m1, m2
  400. %endif
  401. paddb m0, m1
  402. %if %1
  403. mova [dstq+wq], m0
  404. %else
  405. movq [dstq+wq], m0
  406. movhps [dstq+wq+8], m0
  407. %endif
  408. add wq, mmsize
  409. jl %%.loop
  410. mov eax, mmsize-1
  411. sub eax, wd
  412. movd m1, eax
  413. pshufb m0, m1
  414. movd eax, m0
  415. RET
  416. %endmacro
  417. ; int add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src, int w, int left)
  418. INIT_MMX ssse3
  419. cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left
  420. .skip_prologue:
  421. mova m5, [pb_7]
  422. mova m4, [pb_zzzz3333zzzzbbbb]
  423. mova m3, [pb_zz11zz55zz99zzdd]
  424. movd m0, leftm
  425. psllq m0, 56
  426. ADD_HFYU_LEFT_LOOP 1, 1
  427. INIT_XMM sse4
  428. cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left
  429. mova m5, [pb_f]
  430. mova m6, [pb_zzzzzzzz77777777]
  431. mova m4, [pb_zzzz3333zzzzbbbb]
  432. mova m3, [pb_zz11zz55zz99zzdd]
  433. movd m0, leftm
  434. pslldq m0, 15
  435. test srcq, 15
  436. jnz .src_unaligned
  437. test dstq, 15
  438. jnz .dst_unaligned
  439. ADD_HFYU_LEFT_LOOP 1, 1
  440. .dst_unaligned:
  441. ADD_HFYU_LEFT_LOOP 0, 1
  442. .src_unaligned:
  443. ADD_HFYU_LEFT_LOOP 0, 0
  444. ;-----------------------------------------------------------------------------
  445. ; void ff_vector_clip_int32(int32_t *dst, const int32_t *src, int32_t min,
  446. ; int32_t max, unsigned int len)
  447. ;-----------------------------------------------------------------------------
  448. ; %1 = number of xmm registers used
  449. ; %2 = number of inline load/process/store loops per asm loop
  450. ; %3 = process 4*mmsize (%3=0) or 8*mmsize (%3=1) bytes per loop
  451. ; %4 = CLIPD function takes min/max as float instead of int (CLIPD_SSE2)
  452. ; %5 = suffix
  453. %macro VECTOR_CLIP_INT32 4-5
  454. cglobal vector_clip_int32%5, 5,5,%1, dst, src, min, max, len
  455. %if %4
  456. cvtsi2ss m4, minm
  457. cvtsi2ss m5, maxm
  458. %else
  459. movd m4, minm
  460. movd m5, maxm
  461. %endif
  462. SPLATD m4
  463. SPLATD m5
  464. .loop:
  465. %assign %%i 1
  466. %rep %2
  467. mova m0, [srcq+mmsize*0*%%i]
  468. mova m1, [srcq+mmsize*1*%%i]
  469. mova m2, [srcq+mmsize*2*%%i]
  470. mova m3, [srcq+mmsize*3*%%i]
  471. %if %3
  472. mova m7, [srcq+mmsize*4*%%i]
  473. mova m8, [srcq+mmsize*5*%%i]
  474. mova m9, [srcq+mmsize*6*%%i]
  475. mova m10, [srcq+mmsize*7*%%i]
  476. %endif
  477. CLIPD m0, m4, m5, m6
  478. CLIPD m1, m4, m5, m6
  479. CLIPD m2, m4, m5, m6
  480. CLIPD m3, m4, m5, m6
  481. %if %3
  482. CLIPD m7, m4, m5, m6
  483. CLIPD m8, m4, m5, m6
  484. CLIPD m9, m4, m5, m6
  485. CLIPD m10, m4, m5, m6
  486. %endif
  487. mova [dstq+mmsize*0*%%i], m0
  488. mova [dstq+mmsize*1*%%i], m1
  489. mova [dstq+mmsize*2*%%i], m2
  490. mova [dstq+mmsize*3*%%i], m3
  491. %if %3
  492. mova [dstq+mmsize*4*%%i], m7
  493. mova [dstq+mmsize*5*%%i], m8
  494. mova [dstq+mmsize*6*%%i], m9
  495. mova [dstq+mmsize*7*%%i], m10
  496. %endif
  497. %assign %%i %%i+1
  498. %endrep
  499. add srcq, mmsize*4*(%2+%3)
  500. add dstq, mmsize*4*(%2+%3)
  501. sub lend, mmsize*(%2+%3)
  502. jg .loop
  503. REP_RET
  504. %endmacro
  505. INIT_MMX mmx
  506. %define CLIPD CLIPD_MMX
  507. VECTOR_CLIP_INT32 0, 1, 0, 0
  508. INIT_XMM sse2
  509. VECTOR_CLIP_INT32 6, 1, 0, 0, _int
  510. %define CLIPD CLIPD_SSE2
  511. VECTOR_CLIP_INT32 6, 2, 0, 1
  512. INIT_XMM sse4
  513. %define CLIPD CLIPD_SSE41
  514. %ifdef m8
  515. VECTOR_CLIP_INT32 11, 1, 1, 0
  516. %else
  517. VECTOR_CLIP_INT32 6, 1, 0, 0
  518. %endif
  519. ; %1 = aligned/unaligned
  520. %macro BSWAP_LOOPS 1
  521. mov r3, r2
  522. sar r2, 3
  523. jz .left4_%1
  524. .loop8_%1:
  525. mov%1 m0, [r1 + 0]
  526. mov%1 m1, [r1 + 16]
  527. %if cpuflag(ssse3)
  528. pshufb m0, m2
  529. pshufb m1, m2
  530. mova [r0 + 0], m0
  531. mova [r0 + 16], m1
  532. %else
  533. pshuflw m0, m0, 10110001b
  534. pshuflw m1, m1, 10110001b
  535. pshufhw m0, m0, 10110001b
  536. pshufhw m1, m1, 10110001b
  537. mova m2, m0
  538. mova m3, m1
  539. psllw m0, 8
  540. psllw m1, 8
  541. psrlw m2, 8
  542. psrlw m3, 8
  543. por m2, m0
  544. por m3, m1
  545. mova [r0 + 0], m2
  546. mova [r0 + 16], m3
  547. %endif
  548. add r0, 32
  549. add r1, 32
  550. dec r2
  551. jnz .loop8_%1
  552. .left4_%1:
  553. mov r2, r3
  554. and r3, 4
  555. jz .left
  556. mov%1 m0, [r1]
  557. %if cpuflag(ssse3)
  558. pshufb m0, m2
  559. mova [r0], m0
  560. %else
  561. pshuflw m0, m0, 10110001b
  562. pshufhw m0, m0, 10110001b
  563. mova m2, m0
  564. psllw m0, 8
  565. psrlw m2, 8
  566. por m2, m0
  567. mova [r0], m2
  568. %endif
  569. add r1, 16
  570. add r0, 16
  571. %endmacro
  572. ; void bswap_buf(uint32_t *dst, const uint32_t *src, int w);
  573. %macro BSWAP32_BUF 0
  574. %if cpuflag(ssse3)
  575. cglobal bswap32_buf, 3,4,3
  576. mov r3, r1
  577. mova m2, [pb_bswap32]
  578. %else
  579. cglobal bswap32_buf, 3,4,5
  580. mov r3, r1
  581. %endif
  582. and r3, 15
  583. jz .start_align
  584. BSWAP_LOOPS u
  585. jmp .left
  586. .start_align:
  587. BSWAP_LOOPS a
  588. .left:
  589. %if cpuflag(ssse3)
  590. mov r3, r2
  591. and r2, 2
  592. jz .left1
  593. movq m0, [r1]
  594. pshufb m0, m2
  595. movq [r0], m0
  596. add r1, 8
  597. add r0, 8
  598. .left1:
  599. and r3, 1
  600. jz .end
  601. mov r2d, [r1]
  602. bswap r2d
  603. mov [r0], r2d
  604. %else
  605. and r2, 3
  606. jz .end
  607. .loop2:
  608. mov r3d, [r1]
  609. bswap r3d
  610. mov [r0], r3d
  611. add r1, 4
  612. add r0, 4
  613. dec r2
  614. jnz .loop2
  615. %endif
  616. .end:
  617. RET
  618. %endmacro
  619. INIT_XMM sse2
  620. BSWAP32_BUF
  621. INIT_XMM ssse3
  622. BSWAP32_BUF