You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "sinewin.h"
  23. #include "wma.h"
  24. #include "wma_common.h"
  25. #include "wmadata.h"
  26. #undef NDEBUG
  27. #include <assert.h>
  28. /* XXX: use same run/length optimization as mpeg decoders */
  29. //FIXME maybe split decode / encode or pass flag
  30. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  31. float **plevel_table, uint16_t **pint_table,
  32. const CoefVLCTable *vlc_table)
  33. {
  34. int n = vlc_table->n;
  35. const uint8_t *table_bits = vlc_table->huffbits;
  36. const uint32_t *table_codes = vlc_table->huffcodes;
  37. const uint16_t *levels_table = vlc_table->levels;
  38. uint16_t *run_table, *level_table, *int_table;
  39. float *flevel_table;
  40. int i, l, j, k, level;
  41. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  42. run_table = av_malloc(n * sizeof(uint16_t));
  43. level_table = av_malloc(n * sizeof(uint16_t));
  44. flevel_table= av_malloc(n * sizeof(*flevel_table));
  45. int_table = av_malloc(n * sizeof(uint16_t));
  46. i = 2;
  47. level = 1;
  48. k = 0;
  49. while (i < n) {
  50. int_table[k] = i;
  51. l = levels_table[k++];
  52. for (j = 0; j < l; j++) {
  53. run_table[i] = j;
  54. level_table[i] = level;
  55. flevel_table[i]= level;
  56. i++;
  57. }
  58. level++;
  59. }
  60. *prun_table = run_table;
  61. *plevel_table = flevel_table;
  62. *pint_table = int_table;
  63. av_free(level_table);
  64. }
  65. int ff_wma_init(AVCodecContext *avctx, int flags2)
  66. {
  67. WMACodecContext *s = avctx->priv_data;
  68. int i;
  69. float bps1, high_freq;
  70. volatile float bps;
  71. int sample_rate1;
  72. int coef_vlc_table;
  73. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  74. || avctx->channels <= 0 || avctx->channels > 2
  75. || avctx->bit_rate <= 0)
  76. return -1;
  77. ff_fmt_convert_init(&s->fmt_conv, avctx);
  78. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  79. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  80. s->version = 1;
  81. } else {
  82. s->version = 2;
  83. }
  84. /* compute MDCT block size */
  85. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  86. s->version, 0);
  87. s->next_block_len_bits = s->frame_len_bits;
  88. s->prev_block_len_bits = s->frame_len_bits;
  89. s->block_len_bits = s->frame_len_bits;
  90. s->frame_len = 1 << s->frame_len_bits;
  91. if (s->use_variable_block_len) {
  92. int nb_max, nb;
  93. nb = ((flags2 >> 3) & 3) + 1;
  94. if ((avctx->bit_rate / avctx->channels) >= 32000)
  95. nb += 2;
  96. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  97. if (nb > nb_max)
  98. nb = nb_max;
  99. s->nb_block_sizes = nb + 1;
  100. } else {
  101. s->nb_block_sizes = 1;
  102. }
  103. /* init rate dependent parameters */
  104. s->use_noise_coding = 1;
  105. high_freq = avctx->sample_rate * 0.5;
  106. /* if version 2, then the rates are normalized */
  107. sample_rate1 = avctx->sample_rate;
  108. if (s->version == 2) {
  109. if (sample_rate1 >= 44100) {
  110. sample_rate1 = 44100;
  111. } else if (sample_rate1 >= 22050) {
  112. sample_rate1 = 22050;
  113. } else if (sample_rate1 >= 16000) {
  114. sample_rate1 = 16000;
  115. } else if (sample_rate1 >= 11025) {
  116. sample_rate1 = 11025;
  117. } else if (sample_rate1 >= 8000) {
  118. sample_rate1 = 8000;
  119. }
  120. }
  121. bps = (float)avctx->bit_rate / (float)(avctx->channels * avctx->sample_rate);
  122. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  123. if (s->byte_offset_bits + 3 > MIN_CACHE_BITS) {
  124. av_log(avctx, AV_LOG_ERROR, "byte_offset_bits %d is too large\n", s->byte_offset_bits);
  125. return AVERROR_PATCHWELCOME;
  126. }
  127. /* compute high frequency value and choose if noise coding should
  128. be activated */
  129. bps1 = bps;
  130. if (avctx->channels == 2)
  131. bps1 = bps * 1.6;
  132. if (sample_rate1 == 44100) {
  133. if (bps1 >= 0.61) {
  134. s->use_noise_coding = 0;
  135. } else {
  136. high_freq = high_freq * 0.4;
  137. }
  138. } else if (sample_rate1 == 22050) {
  139. if (bps1 >= 1.16) {
  140. s->use_noise_coding = 0;
  141. } else if (bps1 >= 0.72) {
  142. high_freq = high_freq * 0.7;
  143. } else {
  144. high_freq = high_freq * 0.6;
  145. }
  146. } else if (sample_rate1 == 16000) {
  147. if (bps > 0.5) {
  148. high_freq = high_freq * 0.5;
  149. } else {
  150. high_freq = high_freq * 0.3;
  151. }
  152. } else if (sample_rate1 == 11025) {
  153. high_freq = high_freq * 0.7;
  154. } else if (sample_rate1 == 8000) {
  155. if (bps <= 0.625) {
  156. high_freq = high_freq * 0.5;
  157. } else if (bps > 0.75) {
  158. s->use_noise_coding = 0;
  159. } else {
  160. high_freq = high_freq * 0.65;
  161. }
  162. } else {
  163. if (bps >= 0.8) {
  164. high_freq = high_freq * 0.75;
  165. } else if (bps >= 0.6) {
  166. high_freq = high_freq * 0.6;
  167. } else {
  168. high_freq = high_freq * 0.5;
  169. }
  170. }
  171. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  172. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  173. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  174. avctx->block_align);
  175. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  176. bps, bps1, high_freq, s->byte_offset_bits);
  177. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  178. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  179. /* compute the scale factor band sizes for each MDCT block size */
  180. {
  181. int a, b, pos, lpos, k, block_len, i, j, n;
  182. const uint8_t *table;
  183. if (s->version == 1) {
  184. s->coefs_start = 3;
  185. } else {
  186. s->coefs_start = 0;
  187. }
  188. for (k = 0; k < s->nb_block_sizes; k++) {
  189. block_len = s->frame_len >> k;
  190. if (s->version == 1) {
  191. lpos = 0;
  192. for (i = 0; i < 25; i++) {
  193. a = ff_wma_critical_freqs[i];
  194. b = avctx->sample_rate;
  195. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  196. if (pos > block_len)
  197. pos = block_len;
  198. s->exponent_bands[0][i] = pos - lpos;
  199. if (pos >= block_len) {
  200. i++;
  201. break;
  202. }
  203. lpos = pos;
  204. }
  205. s->exponent_sizes[0] = i;
  206. } else {
  207. /* hardcoded tables */
  208. table = NULL;
  209. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  210. if (a < 3) {
  211. if (avctx->sample_rate >= 44100) {
  212. table = exponent_band_44100[a];
  213. } else if (avctx->sample_rate >= 32000) {
  214. table = exponent_band_32000[a];
  215. } else if (avctx->sample_rate >= 22050) {
  216. table = exponent_band_22050[a];
  217. }
  218. }
  219. if (table) {
  220. n = *table++;
  221. for (i = 0; i < n; i++)
  222. s->exponent_bands[k][i] = table[i];
  223. s->exponent_sizes[k] = n;
  224. } else {
  225. j = 0;
  226. lpos = 0;
  227. for (i = 0; i < 25; i++) {
  228. a = ff_wma_critical_freqs[i];
  229. b = avctx->sample_rate;
  230. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  231. pos <<= 2;
  232. if (pos > block_len)
  233. pos = block_len;
  234. if (pos > lpos)
  235. s->exponent_bands[k][j++] = pos - lpos;
  236. if (pos >= block_len)
  237. break;
  238. lpos = pos;
  239. }
  240. s->exponent_sizes[k] = j;
  241. }
  242. }
  243. /* max number of coefs */
  244. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  245. /* high freq computation */
  246. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  247. avctx->sample_rate + 0.5);
  248. n = s->exponent_sizes[k];
  249. j = 0;
  250. pos = 0;
  251. for (i = 0; i < n; i++) {
  252. int start, end;
  253. start = pos;
  254. pos += s->exponent_bands[k][i];
  255. end = pos;
  256. if (start < s->high_band_start[k])
  257. start = s->high_band_start[k];
  258. if (end > s->coefs_end[k])
  259. end = s->coefs_end[k];
  260. if (end > start)
  261. s->exponent_high_bands[k][j++] = end - start;
  262. }
  263. s->exponent_high_sizes[k] = j;
  264. #if 0
  265. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  266. s->frame_len >> k,
  267. s->coefs_end[k],
  268. s->high_band_start[k],
  269. s->exponent_high_sizes[k]);
  270. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  271. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  272. tprintf(s->avctx, "\n");
  273. #endif
  274. }
  275. }
  276. #ifdef TRACE
  277. {
  278. int i, j;
  279. for (i = 0; i < s->nb_block_sizes; i++) {
  280. tprintf(s->avctx, "%5d: n=%2d:",
  281. s->frame_len >> i,
  282. s->exponent_sizes[i]);
  283. for (j = 0; j < s->exponent_sizes[i]; j++)
  284. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  285. tprintf(s->avctx, "\n");
  286. }
  287. }
  288. #endif
  289. /* init MDCT windows : simple sinus window */
  290. for (i = 0; i < s->nb_block_sizes; i++) {
  291. ff_init_ff_sine_windows(s->frame_len_bits - i);
  292. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  293. }
  294. s->reset_block_lengths = 1;
  295. if (s->use_noise_coding) {
  296. /* init the noise generator */
  297. if (s->use_exp_vlc) {
  298. s->noise_mult = 0.02;
  299. } else {
  300. s->noise_mult = 0.04;
  301. }
  302. #ifdef TRACE
  303. for (i = 0; i < NOISE_TAB_SIZE; i++)
  304. s->noise_table[i] = 1.0 * s->noise_mult;
  305. #else
  306. {
  307. unsigned int seed;
  308. float norm;
  309. seed = 1;
  310. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  311. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  312. seed = seed * 314159 + 1;
  313. s->noise_table[i] = (float)((int)seed) * norm;
  314. }
  315. }
  316. #endif
  317. }
  318. /* choose the VLC tables for the coefficients */
  319. coef_vlc_table = 2;
  320. if (avctx->sample_rate >= 32000) {
  321. if (bps1 < 0.72) {
  322. coef_vlc_table = 0;
  323. } else if (bps1 < 1.16) {
  324. coef_vlc_table = 1;
  325. }
  326. }
  327. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  328. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  329. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  330. s->coef_vlcs[0]);
  331. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  332. s->coef_vlcs[1]);
  333. return 0;
  334. }
  335. int ff_wma_total_gain_to_bits(int total_gain)
  336. {
  337. if (total_gain < 15) return 13;
  338. else if (total_gain < 32) return 12;
  339. else if (total_gain < 40) return 11;
  340. else if (total_gain < 45) return 10;
  341. else return 9;
  342. }
  343. int ff_wma_end(AVCodecContext *avctx)
  344. {
  345. WMACodecContext *s = avctx->priv_data;
  346. int i;
  347. for (i = 0; i < s->nb_block_sizes; i++)
  348. ff_mdct_end(&s->mdct_ctx[i]);
  349. if (s->use_exp_vlc) {
  350. ff_free_vlc(&s->exp_vlc);
  351. }
  352. if (s->use_noise_coding) {
  353. ff_free_vlc(&s->hgain_vlc);
  354. }
  355. for (i = 0; i < 2; i++) {
  356. ff_free_vlc(&s->coef_vlc[i]);
  357. av_free(s->run_table[i]);
  358. av_free(s->level_table[i]);
  359. av_free(s->int_table[i]);
  360. }
  361. return 0;
  362. }
  363. /**
  364. * Decode an uncompressed coefficient.
  365. * @param gb GetBitContext
  366. * @return the decoded coefficient
  367. */
  368. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  369. {
  370. /** consumes up to 34 bits */
  371. int n_bits = 8;
  372. /** decode length */
  373. if (get_bits1(gb)) {
  374. n_bits += 8;
  375. if (get_bits1(gb)) {
  376. n_bits += 8;
  377. if (get_bits1(gb)) {
  378. n_bits += 7;
  379. }
  380. }
  381. }
  382. return get_bits_long(gb, n_bits);
  383. }
  384. /**
  385. * Decode run level compressed coefficients.
  386. * @param avctx codec context
  387. * @param gb bitstream reader context
  388. * @param vlc vlc table for get_vlc2
  389. * @param level_table level codes
  390. * @param run_table run codes
  391. * @param version 0 for wma1,2 1 for wmapro
  392. * @param ptr output buffer
  393. * @param offset offset in the output buffer
  394. * @param num_coefs number of input coefficents
  395. * @param block_len input buffer length (2^n)
  396. * @param frame_len_bits number of bits for escaped run codes
  397. * @param coef_nb_bits number of bits for escaped level codes
  398. * @return 0 on success, -1 otherwise
  399. */
  400. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  401. VLC *vlc,
  402. const float *level_table, const uint16_t *run_table,
  403. int version, WMACoef *ptr, int offset,
  404. int num_coefs, int block_len, int frame_len_bits,
  405. int coef_nb_bits)
  406. {
  407. int code, level, sign;
  408. const uint32_t *ilvl = (const uint32_t*)level_table;
  409. uint32_t *iptr = (uint32_t*)ptr;
  410. const unsigned int coef_mask = block_len - 1;
  411. for (; offset < num_coefs; offset++) {
  412. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  413. if (code > 1) {
  414. /** normal code */
  415. offset += run_table[code];
  416. sign = get_bits1(gb) - 1;
  417. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  418. } else if (code == 1) {
  419. /** EOB */
  420. break;
  421. } else {
  422. /** escape */
  423. if (!version) {
  424. level = get_bits(gb, coef_nb_bits);
  425. /** NOTE: this is rather suboptimal. reading
  426. block_len_bits would be better */
  427. offset += get_bits(gb, frame_len_bits);
  428. } else {
  429. level = ff_wma_get_large_val(gb);
  430. /** escape decode */
  431. if (get_bits1(gb)) {
  432. if (get_bits1(gb)) {
  433. if (get_bits1(gb)) {
  434. av_log(avctx,AV_LOG_ERROR,
  435. "broken escape sequence\n");
  436. return -1;
  437. } else
  438. offset += get_bits(gb, frame_len_bits) + 4;
  439. } else
  440. offset += get_bits(gb, 2) + 1;
  441. }
  442. }
  443. sign = get_bits1(gb) - 1;
  444. ptr[offset & coef_mask] = (level^sign) - sign;
  445. }
  446. }
  447. /** NOTE: EOB can be omitted */
  448. if (offset > num_coefs) {
  449. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  450. return -1;
  451. }
  452. return 0;
  453. }