You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

588 lines
22KB

  1. /*
  2. * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/intmath.h"
  21. #include "libavutil/log.h"
  22. #include "libavutil/opt.h"
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "snow_dwt.h"
  26. #include "internal.h"
  27. #include "snow.h"
  28. #include "rangecoder.h"
  29. #include "mathops.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
  35. Plane *p= &s->plane[plane_index];
  36. const int mb_w= s->b_width << s->block_max_depth;
  37. const int mb_h= s->b_height << s->block_max_depth;
  38. int x, y, mb_x;
  39. int block_size = MB_SIZE >> s->block_max_depth;
  40. int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
  41. int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
  42. const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
  43. int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
  44. int ref_stride= s->current_picture.linesize[plane_index];
  45. uint8_t *dst8= s->current_picture.data[plane_index];
  46. int w= p->width;
  47. int h= p->height;
  48. if(s->keyframe || (s->avctx->debug&512)){
  49. if(mb_y==mb_h)
  50. return;
  51. if(add){
  52. for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
  53. // DWTELEM * line = slice_buffer_get_line(sb, y);
  54. IDWTELEM * line = sb->line[y];
  55. for(x=0; x<w; x++){
  56. // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  57. int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  58. v >>= FRAC_BITS;
  59. if(v&(~255)) v= ~(v>>31);
  60. dst8[x + y*ref_stride]= v;
  61. }
  62. }
  63. }else{
  64. for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
  65. // DWTELEM * line = slice_buffer_get_line(sb, y);
  66. IDWTELEM * line = sb->line[y];
  67. for(x=0; x<w; x++){
  68. line[x] -= 128 << FRAC_BITS;
  69. // buf[x + y*w]-= 128<<FRAC_BITS;
  70. }
  71. }
  72. }
  73. return;
  74. }
  75. for(mb_x=0; mb_x<=mb_w; mb_x++){
  76. add_yblock(s, 1, sb, old_buffer, dst8, obmc,
  77. block_w*mb_x - block_w/2,
  78. block_h*mb_y - block_h/2,
  79. block_w, block_h,
  80. w, h,
  81. w, ref_stride, obmc_stride,
  82. mb_x - 1, mb_y - 1,
  83. add, 0, plane_index);
  84. }
  85. }
  86. static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
  87. const int w= b->width;
  88. int y;
  89. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  90. int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  91. int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  92. int new_index = 0;
  93. if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
  94. qadd= 0;
  95. qmul= 1<<QEXPSHIFT;
  96. }
  97. /* If we are on the second or later slice, restore our index. */
  98. if (start_y != 0)
  99. new_index = save_state[0];
  100. for(y=start_y; y<h; y++){
  101. int x = 0;
  102. int v;
  103. IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
  104. memset(line, 0, b->width*sizeof(IDWTELEM));
  105. v = b->x_coeff[new_index].coeff;
  106. x = b->x_coeff[new_index++].x;
  107. while(x < w){
  108. register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
  109. register int u= -(v&1);
  110. line[x] = (t^u) - u;
  111. v = b->x_coeff[new_index].coeff;
  112. x = b->x_coeff[new_index++].x;
  113. }
  114. }
  115. /* Save our variables for the next slice. */
  116. save_state[0] = new_index;
  117. return;
  118. }
  119. static int decode_q_branch(SnowContext *s, int level, int x, int y){
  120. const int w= s->b_width << s->block_max_depth;
  121. const int rem_depth= s->block_max_depth - level;
  122. const int index= (x + y*w) << rem_depth;
  123. int trx= (x+1)<<rem_depth;
  124. const BlockNode *left = x ? &s->block[index-1] : &null_block;
  125. const BlockNode *top = y ? &s->block[index-w] : &null_block;
  126. const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
  127. const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
  128. int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
  129. int res;
  130. if(s->keyframe){
  131. set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
  132. return 0;
  133. }
  134. if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
  135. int type, mx, my;
  136. int l = left->color[0];
  137. int cb= left->color[1];
  138. int cr= left->color[2];
  139. int ref = 0;
  140. int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
  141. int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
  142. int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
  143. type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
  144. if(type){
  145. pred_mv(s, &mx, &my, 0, left, top, tr);
  146. l += get_symbol(&s->c, &s->block_state[32], 1);
  147. cb+= get_symbol(&s->c, &s->block_state[64], 1);
  148. cr+= get_symbol(&s->c, &s->block_state[96], 1);
  149. }else{
  150. if(s->ref_frames > 1)
  151. ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
  152. if (ref >= s->ref_frames) {
  153. av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
  154. return AVERROR_INVALIDDATA;
  155. }
  156. pred_mv(s, &mx, &my, ref, left, top, tr);
  157. mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
  158. my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
  159. }
  160. set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
  161. }else{
  162. if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
  163. (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
  164. (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
  165. (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
  166. return res;
  167. }
  168. return 0;
  169. }
  170. static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
  171. const int w= b->width;
  172. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  173. const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  174. const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  175. int x,y;
  176. if(s->qlog == LOSSLESS_QLOG) return;
  177. for(y=start_y; y<end_y; y++){
  178. // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  179. IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  180. for(x=0; x<w; x++){
  181. int i= line[x];
  182. if(i<0){
  183. line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
  184. }else if(i>0){
  185. line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
  186. }
  187. }
  188. }
  189. }
  190. static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
  191. const int w= b->width;
  192. int x,y;
  193. IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
  194. IDWTELEM * prev;
  195. if (start_y != 0)
  196. line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  197. for(y=start_y; y<end_y; y++){
  198. prev = line;
  199. // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  200. line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  201. for(x=0; x<w; x++){
  202. if(x){
  203. if(use_median){
  204. if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
  205. else line[x] += line[x - 1];
  206. }else{
  207. if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
  208. else line[x] += line[x - 1];
  209. }
  210. }else{
  211. if(y) line[x] += prev[x];
  212. }
  213. }
  214. }
  215. }
  216. static void decode_qlogs(SnowContext *s){
  217. int plane_index, level, orientation;
  218. for(plane_index=0; plane_index<3; plane_index++){
  219. for(level=0; level<s->spatial_decomposition_count; level++){
  220. for(orientation=level ? 1:0; orientation<4; orientation++){
  221. int q;
  222. if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
  223. else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
  224. else q= get_symbol(&s->c, s->header_state, 1);
  225. s->plane[plane_index].band[level][orientation].qlog= q;
  226. }
  227. }
  228. }
  229. }
  230. #define GET_S(dst, check) \
  231. tmp= get_symbol(&s->c, s->header_state, 0);\
  232. if(!(check)){\
  233. av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
  234. return -1;\
  235. }\
  236. dst= tmp;
  237. static int decode_header(SnowContext *s){
  238. int plane_index, tmp;
  239. uint8_t kstate[32];
  240. memset(kstate, MID_STATE, sizeof(kstate));
  241. s->keyframe= get_rac(&s->c, kstate);
  242. if(s->keyframe || s->always_reset){
  243. ff_snow_reset_contexts(s);
  244. s->spatial_decomposition_type=
  245. s->qlog=
  246. s->qbias=
  247. s->mv_scale=
  248. s->block_max_depth= 0;
  249. }
  250. if(s->keyframe){
  251. GET_S(s->version, tmp <= 0U)
  252. s->always_reset= get_rac(&s->c, s->header_state);
  253. s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
  254. s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
  255. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  256. s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
  257. s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
  258. s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
  259. if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
  260. s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
  261. }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
  262. s->avctx->pix_fmt= AV_PIX_FMT_YUV444P;
  263. }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
  264. s->avctx->pix_fmt= AV_PIX_FMT_YUV410P;
  265. } else {
  266. av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
  267. s->chroma_h_shift = s->chroma_v_shift = 1;
  268. s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
  269. return AVERROR_INVALIDDATA;
  270. }
  271. s->spatial_scalability= get_rac(&s->c, s->header_state);
  272. // s->rate_scalability= get_rac(&s->c, s->header_state);
  273. GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
  274. s->max_ref_frames++;
  275. decode_qlogs(s);
  276. }
  277. if(!s->keyframe){
  278. if(get_rac(&s->c, s->header_state)){
  279. for(plane_index=0; plane_index<2; plane_index++){
  280. int htaps, i, sum=0;
  281. Plane *p= &s->plane[plane_index];
  282. p->diag_mc= get_rac(&s->c, s->header_state);
  283. htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
  284. if((unsigned)htaps > HTAPS_MAX || htaps==0)
  285. return -1;
  286. p->htaps= htaps;
  287. for(i= htaps/2; i; i--){
  288. p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
  289. sum += p->hcoeff[i];
  290. }
  291. p->hcoeff[0]= 32-sum;
  292. }
  293. s->plane[2].diag_mc= s->plane[1].diag_mc;
  294. s->plane[2].htaps = s->plane[1].htaps;
  295. memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
  296. }
  297. if(get_rac(&s->c, s->header_state)){
  298. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  299. decode_qlogs(s);
  300. }
  301. }
  302. s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
  303. if(s->spatial_decomposition_type > 1U){
  304. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
  305. return -1;
  306. }
  307. if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
  308. s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 0){
  309. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
  310. return -1;
  311. }
  312. s->qlog += get_symbol(&s->c, s->header_state, 1);
  313. s->mv_scale += get_symbol(&s->c, s->header_state, 1);
  314. s->qbias += get_symbol(&s->c, s->header_state, 1);
  315. s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
  316. if(s->block_max_depth > 1 || s->block_max_depth < 0){
  317. av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
  318. s->block_max_depth= 0;
  319. return -1;
  320. }
  321. return 0;
  322. }
  323. static av_cold int decode_init(AVCodecContext *avctx)
  324. {
  325. int ret;
  326. if ((ret = ff_snow_common_init(avctx)) < 0) {
  327. ff_snow_common_end(avctx->priv_data);
  328. return ret;
  329. }
  330. return 0;
  331. }
  332. static int decode_blocks(SnowContext *s){
  333. int x, y;
  334. int w= s->b_width;
  335. int h= s->b_height;
  336. int res;
  337. for(y=0; y<h; y++){
  338. for(x=0; x<w; x++){
  339. if ((res = decode_q_branch(s, 0, x, y)) < 0)
  340. return res;
  341. }
  342. }
  343. return 0;
  344. }
  345. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  346. AVPacket *avpkt)
  347. {
  348. const uint8_t *buf = avpkt->data;
  349. int buf_size = avpkt->size;
  350. SnowContext *s = avctx->priv_data;
  351. RangeCoder * const c= &s->c;
  352. int bytes_read;
  353. AVFrame *picture = data;
  354. int level, orientation, plane_index;
  355. int res;
  356. ff_init_range_decoder(c, buf, buf_size);
  357. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  358. s->current_picture.pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  359. if(decode_header(s)<0)
  360. return -1;
  361. if ((res=ff_snow_common_init_after_header(avctx)) < 0)
  362. return res;
  363. // realloc slice buffer for the case that spatial_decomposition_count changed
  364. ff_slice_buffer_destroy(&s->sb);
  365. if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
  366. (MB_SIZE >> s->block_max_depth) +
  367. s->spatial_decomposition_count * 11 + 1,
  368. s->plane[0].width,
  369. s->spatial_idwt_buffer)) < 0)
  370. return res;
  371. for(plane_index=0; plane_index<3; plane_index++){
  372. Plane *p= &s->plane[plane_index];
  373. p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
  374. && p->hcoeff[1]==-10
  375. && p->hcoeff[2]==2;
  376. }
  377. ff_snow_alloc_blocks(s);
  378. if(ff_snow_frame_start(s) < 0)
  379. return -1;
  380. //keyframe flag duplication mess FIXME
  381. if(avctx->debug&FF_DEBUG_PICT_INFO)
  382. av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
  383. if ((res = decode_blocks(s)) < 0)
  384. return res;
  385. for(plane_index=0; plane_index<3; plane_index++){
  386. Plane *p= &s->plane[plane_index];
  387. int w= p->width;
  388. int h= p->height;
  389. int x, y;
  390. int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
  391. if(s->avctx->debug&2048){
  392. memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
  393. predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
  394. for(y=0; y<h; y++){
  395. for(x=0; x<w; x++){
  396. int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
  397. s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
  398. }
  399. }
  400. }
  401. {
  402. for(level=0; level<s->spatial_decomposition_count; level++){
  403. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  404. SubBand *b= &p->band[level][orientation];
  405. unpack_coeffs(s, b, b->parent, orientation);
  406. }
  407. }
  408. }
  409. {
  410. const int mb_h= s->b_height << s->block_max_depth;
  411. const int block_size = MB_SIZE >> s->block_max_depth;
  412. const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
  413. int mb_y;
  414. DWTCompose cs[MAX_DECOMPOSITIONS];
  415. int yd=0, yq=0;
  416. int y;
  417. int end_y;
  418. ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
  419. for(mb_y=0; mb_y<=mb_h; mb_y++){
  420. int slice_starty = block_h*mb_y;
  421. int slice_h = block_h*(mb_y+1);
  422. if (!(s->keyframe || s->avctx->debug&512)){
  423. slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
  424. slice_h -= (block_h >> 1);
  425. }
  426. for(level=0; level<s->spatial_decomposition_count; level++){
  427. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  428. SubBand *b= &p->band[level][orientation];
  429. int start_y;
  430. int end_y;
  431. int our_mb_start = mb_y;
  432. int our_mb_end = (mb_y + 1);
  433. const int extra= 3;
  434. start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
  435. end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
  436. if (!(s->keyframe || s->avctx->debug&512)){
  437. start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
  438. end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
  439. }
  440. start_y = FFMIN(b->height, start_y);
  441. end_y = FFMIN(b->height, end_y);
  442. if (start_y != end_y){
  443. if (orientation == 0){
  444. SubBand * correlate_band = &p->band[0][0];
  445. int correlate_end_y = FFMIN(b->height, end_y + 1);
  446. int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
  447. decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
  448. correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
  449. dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
  450. }
  451. else
  452. decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
  453. }
  454. }
  455. }
  456. for(; yd<slice_h; yd+=4){
  457. ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
  458. }
  459. if(s->qlog == LOSSLESS_QLOG){
  460. for(; yq<slice_h && yq<h; yq++){
  461. IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
  462. for(x=0; x<w; x++){
  463. line[x] <<= FRAC_BITS;
  464. }
  465. }
  466. }
  467. predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
  468. y = FFMIN(p->height, slice_starty);
  469. end_y = FFMIN(p->height, slice_h);
  470. while(y < end_y)
  471. ff_slice_buffer_release(&s->sb, y++);
  472. }
  473. ff_slice_buffer_flush(&s->sb);
  474. }
  475. }
  476. emms_c();
  477. ff_snow_release_buffer(avctx);
  478. if(!(s->avctx->debug&2048))
  479. *picture= s->current_picture;
  480. else
  481. *picture= s->mconly_picture;
  482. *got_frame = 1;
  483. bytes_read= c->bytestream - c->bytestream_start;
  484. if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
  485. return bytes_read;
  486. }
  487. static av_cold int decode_end(AVCodecContext *avctx)
  488. {
  489. SnowContext *s = avctx->priv_data;
  490. ff_slice_buffer_destroy(&s->sb);
  491. ff_snow_common_end(s);
  492. return 0;
  493. }
  494. AVCodec ff_snow_decoder = {
  495. .name = "snow",
  496. .type = AVMEDIA_TYPE_VIDEO,
  497. .id = AV_CODEC_ID_SNOW,
  498. .priv_data_size = sizeof(SnowContext),
  499. .init = decode_init,
  500. .close = decode_end,
  501. .decode = decode_frame,
  502. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  503. .long_name = NULL_IF_CONFIG_SMALL("Snow"),
  504. };