You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

236 lines
6.8KB

  1. /*
  2. * LSP routines for ACELP-based codecs
  3. *
  4. * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5. * Copyright (c) 2008 Vladimir Voroshilov
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <inttypes.h>
  24. #include "avcodec.h"
  25. #define FRAC_BITS 14
  26. #include "mathops.h"
  27. #include "lsp.h"
  28. #include "libavcodec/mips/lsp_mips.h"
  29. #include "libavutil/avassert.h"
  30. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  31. {
  32. int i, j;
  33. /* sort lsfq in ascending order. float bubble agorithm,
  34. O(n) if data already sorted, O(n^2) - otherwise */
  35. for(i=0; i<lp_order-1; i++)
  36. for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  37. FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  38. for(i=0; i<lp_order; i++)
  39. {
  40. lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  41. lsfq_min = lsfq[i] + lsfq_min_distance;
  42. }
  43. lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  44. }
  45. void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
  46. {
  47. int i;
  48. float prev = 0.0;
  49. for (i = 0; i < size; i++)
  50. prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
  51. }
  52. /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
  53. static const int16_t tab_cos[65] =
  54. {
  55. 32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860,
  56. 30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285,
  57. 23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014,
  58. 12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609,
  59. 1, -1607, -3211, -4808, -6393, -7962, -9513, -11040,
  60. -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
  61. -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
  62. -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
  63. };
  64. static int16_t ff_cos(uint16_t arg)
  65. {
  66. uint8_t offset= arg;
  67. uint8_t ind = arg >> 8;
  68. av_assert2(arg <= 0x3fff);
  69. return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
  70. }
  71. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  72. {
  73. int i;
  74. /* Convert LSF to LSP, lsp=cos(lsf) */
  75. for(i=0; i<lp_order; i++)
  76. // 20861 = 2.0 / PI in (0.15)
  77. lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  78. }
  79. void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
  80. {
  81. int i;
  82. for(i = 0; i < lp_order; i++)
  83. lsp[i] = cos(2.0 * M_PI * lsf[i]);
  84. }
  85. /**
  86. * @brief decodes polynomial coefficients from LSP
  87. * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  88. * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  89. */
  90. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  91. {
  92. int i, j;
  93. f[0] = 0x400000; // 1.0 in (3.22)
  94. f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
  95. for(i=2; i<=lp_half_order; i++)
  96. {
  97. f[i] = f[i-2];
  98. for(j=i; j>1; j--)
  99. f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  100. f[1] -= lsp[2*i-2] << 8;
  101. }
  102. }
  103. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  104. {
  105. int i;
  106. int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
  107. int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
  108. lsp2poly(f1, lsp , lp_half_order);
  109. lsp2poly(f2, lsp+1, lp_half_order);
  110. /* 3.2.6 of G.729, Equations 25 and 26*/
  111. lp[0] = 4096;
  112. for(i=1; i<lp_half_order+1; i++)
  113. {
  114. int ff1 = f1[i] + f1[i-1]; // (3.22)
  115. int ff2 = f2[i] - f2[i-1]; // (3.22)
  116. ff1 += 1 << 10; // for rounding
  117. lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  118. lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  119. }
  120. }
  121. void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
  122. {
  123. int lp_half_order = lp_order >> 1;
  124. double buf[MAX_LP_HALF_ORDER + 1];
  125. double pa[MAX_LP_HALF_ORDER + 1];
  126. double *qa = buf + 1;
  127. int i,j;
  128. qa[-1] = 0.0;
  129. ff_lsp2polyf(lsp , pa, lp_half_order );
  130. ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
  131. for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
  132. double paf = pa[i] * (1 + lsp[lp_order - 1]);
  133. double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
  134. lp[i-1] = (paf + qaf) * 0.5;
  135. lp[j-1] = (paf - qaf) * 0.5;
  136. }
  137. lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
  138. pa[lp_half_order] * 0.5;
  139. lp[lp_order - 1] = lsp[lp_order - 1];
  140. }
  141. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  142. {
  143. int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
  144. int i;
  145. /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  146. for(i=0; i<lp_order; i++)
  147. #ifdef G729_BITEXACT
  148. lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
  149. #else
  150. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  151. #endif
  152. ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  153. /* LSP values for second subframe (3.2.5 of G.729)*/
  154. ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  155. }
  156. #ifndef ff_lsp2polyf
  157. void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
  158. {
  159. int i, j;
  160. f[0] = 1.0;
  161. f[1] = -2 * lsp[0];
  162. lsp -= 2;
  163. for(i=2; i<=lp_half_order; i++)
  164. {
  165. double val = -2 * lsp[2*i];
  166. f[i] = val * f[i-1] + 2*f[i-2];
  167. for(j=i-1; j>1; j--)
  168. f[j] += f[j-1] * val + f[j-2];
  169. f[1] += val;
  170. }
  171. }
  172. #endif /* ff_lsp2polyf */
  173. void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
  174. {
  175. double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
  176. float *lpc2 = lpc + (lp_half_order << 1) - 1;
  177. av_assert2(lp_half_order <= MAX_LP_HALF_ORDER);
  178. ff_lsp2polyf(lsp, pa, lp_half_order);
  179. ff_lsp2polyf(lsp + 1, qa, lp_half_order);
  180. while (lp_half_order--) {
  181. double paf = pa[lp_half_order+1] + pa[lp_half_order];
  182. double qaf = qa[lp_half_order+1] - qa[lp_half_order];
  183. lpc [ lp_half_order] = 0.5*(paf+qaf);
  184. lpc2[-lp_half_order] = 0.5*(paf-qaf);
  185. }
  186. }
  187. void ff_sort_nearly_sorted_floats(float *vals, int len)
  188. {
  189. int i,j;
  190. for (i = 0; i < len - 1; i++)
  191. for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
  192. FFSWAP(float, vals[j], vals[j+1]);
  193. }