You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1935 lines
66KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "get_bits.h"
  30. #include "bytestream.h"
  31. #include "internal.h"
  32. #include "golomb.h"
  33. #include "dirac_arith.h"
  34. #include "mpeg12data.h"
  35. #include "dirac_dwt.h"
  36. #include "dirac.h"
  37. #include "diracdsp.h"
  38. /**
  39. * The spec limits the number of wavelet decompositions to 4 for both
  40. * level 1 (VC-2) and 128 (long-gop default).
  41. * 5 decompositions is the maximum before >16-bit buffers are needed.
  42. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  43. * the others to 4 decompositions (or 3 for the fidelity filter).
  44. *
  45. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  46. */
  47. #define MAX_DWT_LEVELS 5
  48. /**
  49. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  50. */
  51. #define MAX_REFERENCE_FRAMES 8
  52. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  53. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  54. #define MAX_QUANT 68 /* max quant for VC-2 */
  55. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  56. /**
  57. * DiracBlock->ref flags, if set then the block does MC from the given ref
  58. */
  59. #define DIRAC_REF_MASK_REF1 1
  60. #define DIRAC_REF_MASK_REF2 2
  61. #define DIRAC_REF_MASK_GLOBAL 4
  62. /**
  63. * Value of Picture.reference when Picture is not a reference picture, but
  64. * is held for delayed output.
  65. */
  66. #define DELAYED_PIC_REF 4
  67. #define ff_emulated_edge_mc ff_emulated_edge_mc_8 /* Fix: change the calls to this function regarding bit depth */
  68. #define CALC_PADDING(size, depth) \
  69. (((size + (1 << depth) - 1) >> depth) << depth)
  70. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  71. typedef struct {
  72. AVFrame avframe;
  73. int interpolated[3]; /* 1 if hpel[] is valid */
  74. uint8_t *hpel[3][4];
  75. uint8_t *hpel_base[3][4];
  76. } DiracFrame;
  77. typedef struct {
  78. union {
  79. int16_t mv[2][2];
  80. int16_t dc[3];
  81. } u; /* anonymous unions aren't in C99 :( */
  82. uint8_t ref;
  83. } DiracBlock;
  84. typedef struct SubBand {
  85. int level;
  86. int orientation;
  87. int stride;
  88. int width;
  89. int height;
  90. int quant;
  91. IDWTELEM *ibuf;
  92. struct SubBand *parent;
  93. /* for low delay */
  94. unsigned length;
  95. const uint8_t *coeff_data;
  96. } SubBand;
  97. typedef struct Plane {
  98. int width;
  99. int height;
  100. int stride;
  101. int idwt_width;
  102. int idwt_height;
  103. int idwt_stride;
  104. IDWTELEM *idwt_buf;
  105. IDWTELEM *idwt_buf_base;
  106. IDWTELEM *idwt_tmp;
  107. /* block length */
  108. uint8_t xblen;
  109. uint8_t yblen;
  110. /* block separation (block n+1 starts after this many pixels in block n) */
  111. uint8_t xbsep;
  112. uint8_t ybsep;
  113. /* amount of overspill on each edge (half of the overlap between blocks) */
  114. uint8_t xoffset;
  115. uint8_t yoffset;
  116. SubBand band[MAX_DWT_LEVELS][4];
  117. } Plane;
  118. typedef struct DiracContext {
  119. AVCodecContext *avctx;
  120. DSPContext dsp;
  121. DiracDSPContext diracdsp;
  122. GetBitContext gb;
  123. dirac_source_params source;
  124. int seen_sequence_header;
  125. int frame_number; /* number of the next frame to display */
  126. Plane plane[3];
  127. int chroma_x_shift;
  128. int chroma_y_shift;
  129. int zero_res; /* zero residue flag */
  130. int is_arith; /* whether coeffs use arith or golomb coding */
  131. int low_delay; /* use the low delay syntax */
  132. int globalmc_flag; /* use global motion compensation */
  133. int num_refs; /* number of reference pictures */
  134. /* wavelet decoding */
  135. unsigned wavelet_depth; /* depth of the IDWT */
  136. unsigned wavelet_idx;
  137. /**
  138. * schroedinger older than 1.0.8 doesn't store
  139. * quant delta if only one codebook exists in a band
  140. */
  141. unsigned old_delta_quant;
  142. unsigned codeblock_mode;
  143. struct {
  144. unsigned width;
  145. unsigned height;
  146. } codeblock[MAX_DWT_LEVELS+1];
  147. struct {
  148. unsigned num_x; /* number of horizontal slices */
  149. unsigned num_y; /* number of vertical slices */
  150. AVRational bytes; /* average bytes per slice */
  151. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  152. } lowdelay;
  153. struct {
  154. int pan_tilt[2]; /* pan/tilt vector */
  155. int zrs[2][2]; /* zoom/rotate/shear matrix */
  156. int perspective[2]; /* perspective vector */
  157. unsigned zrs_exp;
  158. unsigned perspective_exp;
  159. } globalmc[2];
  160. /* motion compensation */
  161. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  162. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  163. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  164. int blwidth; /* number of blocks (horizontally) */
  165. int blheight; /* number of blocks (vertically) */
  166. int sbwidth; /* number of superblocks (horizontally) */
  167. int sbheight; /* number of superblocks (vertically) */
  168. uint8_t *sbsplit;
  169. DiracBlock *blmotion;
  170. uint8_t *edge_emu_buffer[4];
  171. uint8_t *edge_emu_buffer_base;
  172. uint16_t *mctmp; /* buffer holding the MC data multipled by OBMC weights */
  173. uint8_t *mcscratch;
  174. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  175. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  176. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  177. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  178. dirac_weight_func weight_func;
  179. dirac_biweight_func biweight_func;
  180. DiracFrame *current_picture;
  181. DiracFrame *ref_pics[2];
  182. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  183. DiracFrame *delay_frames[MAX_DELAY+1];
  184. DiracFrame all_frames[MAX_FRAMES];
  185. } DiracContext;
  186. /**
  187. * Dirac Specification ->
  188. * Parse code values. 9.6.1 Table 9.1
  189. */
  190. enum dirac_parse_code {
  191. pc_seq_header = 0x00,
  192. pc_eos = 0x10,
  193. pc_aux_data = 0x20,
  194. pc_padding = 0x30,
  195. };
  196. enum dirac_subband {
  197. subband_ll = 0,
  198. subband_hl = 1,
  199. subband_lh = 2,
  200. subband_hh = 3
  201. };
  202. static const uint8_t default_qmat[][4][4] = {
  203. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  204. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  205. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  206. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  207. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  208. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  209. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  210. };
  211. static const int qscale_tab[MAX_QUANT+1] = {
  212. 4, 5, 6, 7, 8, 10, 11, 13,
  213. 16, 19, 23, 27, 32, 38, 45, 54,
  214. 64, 76, 91, 108, 128, 152, 181, 215,
  215. 256, 304, 362, 431, 512, 609, 724, 861,
  216. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  217. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  218. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  219. 65536, 77936
  220. };
  221. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  222. 1, 2, 3, 4, 4, 5, 6, 7,
  223. 8, 10, 12, 14, 16, 19, 23, 27,
  224. 32, 38, 46, 54, 64, 76, 91, 108,
  225. 128, 152, 181, 216, 256, 305, 362, 431,
  226. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  227. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  228. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  229. 32768, 38968
  230. };
  231. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  232. 1, 2, 2, 3, 3, 4, 4, 5,
  233. 6, 7, 9, 10, 12, 14, 17, 20,
  234. 24, 29, 34, 41, 48, 57, 68, 81,
  235. 96, 114, 136, 162, 192, 228, 272, 323,
  236. 384, 457, 543, 646, 768, 913, 1086, 1292,
  237. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  238. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  239. 24576, 29226
  240. };
  241. /* magic number division by 3 from schroedinger */
  242. static inline int divide3(int x)
  243. {
  244. return ((x+1)*21845 + 10922) >> 16;
  245. }
  246. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  247. {
  248. DiracFrame *remove_pic = NULL;
  249. int i, remove_idx = -1;
  250. for (i = 0; framelist[i]; i++)
  251. if (framelist[i]->avframe.display_picture_number == picnum) {
  252. remove_pic = framelist[i];
  253. remove_idx = i;
  254. }
  255. if (remove_pic)
  256. for (i = remove_idx; framelist[i]; i++)
  257. framelist[i] = framelist[i+1];
  258. return remove_pic;
  259. }
  260. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  261. {
  262. int i;
  263. for (i = 0; i < maxframes; i++)
  264. if (!framelist[i]) {
  265. framelist[i] = frame;
  266. return 0;
  267. }
  268. return -1;
  269. }
  270. static int alloc_sequence_buffers(DiracContext *s)
  271. {
  272. int sbwidth = DIVRNDUP(s->source.width, 4);
  273. int sbheight = DIVRNDUP(s->source.height, 4);
  274. int i, w, h, top_padding;
  275. /* todo: think more about this / use or set Plane here */
  276. for (i = 0; i < 3; i++) {
  277. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  278. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  279. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  280. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  281. /* we allocate the max we support here since num decompositions can
  282. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  283. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  284. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  285. * on each side */
  286. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  287. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  288. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  289. s->plane[i].idwt_buf_base = av_mallocz((w+max_xblen)*h * sizeof(IDWTELEM));
  290. s->plane[i].idwt_tmp = av_malloc((w+16) * sizeof(IDWTELEM));
  291. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
  292. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  293. return AVERROR(ENOMEM);
  294. }
  295. w = s->source.width;
  296. h = s->source.height;
  297. /* fixme: allocate using real stride here */
  298. s->sbsplit = av_malloc(sbwidth * sbheight);
  299. s->blmotion = av_malloc(sbwidth * sbheight * 16 * sizeof(*s->blmotion));
  300. s->edge_emu_buffer_base = av_malloc((w+64)*MAX_BLOCKSIZE);
  301. s->mctmp = av_malloc((w+64+MAX_BLOCKSIZE) * (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  302. s->mcscratch = av_malloc((w+64)*MAX_BLOCKSIZE);
  303. if (!s->sbsplit || !s->blmotion || !s->mctmp || !s->mcscratch)
  304. return AVERROR(ENOMEM);
  305. return 0;
  306. }
  307. static void free_sequence_buffers(DiracContext *s)
  308. {
  309. int i, j, k;
  310. for (i = 0; i < MAX_FRAMES; i++) {
  311. if (s->all_frames[i].avframe.data[0]) {
  312. s->avctx->release_buffer(s->avctx, &s->all_frames[i].avframe);
  313. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  314. }
  315. for (j = 0; j < 3; j++)
  316. for (k = 1; k < 4; k++)
  317. av_freep(&s->all_frames[i].hpel_base[j][k]);
  318. }
  319. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  320. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  321. for (i = 0; i < 3; i++) {
  322. av_freep(&s->plane[i].idwt_buf_base);
  323. av_freep(&s->plane[i].idwt_tmp);
  324. }
  325. av_freep(&s->sbsplit);
  326. av_freep(&s->blmotion);
  327. av_freep(&s->edge_emu_buffer_base);
  328. av_freep(&s->mctmp);
  329. av_freep(&s->mcscratch);
  330. }
  331. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  332. {
  333. DiracContext *s = avctx->priv_data;
  334. s->avctx = avctx;
  335. s->frame_number = -1;
  336. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  337. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported!\n");
  338. return AVERROR_PATCHWELCOME;
  339. }
  340. ff_dsputil_init(&s->dsp, avctx);
  341. ff_diracdsp_init(&s->diracdsp);
  342. return 0;
  343. }
  344. static void dirac_decode_flush(AVCodecContext *avctx)
  345. {
  346. DiracContext *s = avctx->priv_data;
  347. free_sequence_buffers(s);
  348. s->seen_sequence_header = 0;
  349. s->frame_number = -1;
  350. }
  351. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  352. {
  353. dirac_decode_flush(avctx);
  354. return 0;
  355. }
  356. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  357. static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
  358. SubBand *b, IDWTELEM *buf, int x, int y)
  359. {
  360. int coeff, sign;
  361. int sign_pred = 0;
  362. int pred_ctx = CTX_ZPZN_F1;
  363. /* Check if the parent subband has a 0 in the corresponding position */
  364. if (b->parent)
  365. pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
  366. if (b->orientation == subband_hl)
  367. sign_pred = buf[-b->stride];
  368. /* Determine if the pixel has only zeros in its neighbourhood */
  369. if (x) {
  370. pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
  371. if (b->orientation == subband_lh)
  372. sign_pred = buf[-1];
  373. } else {
  374. pred_ctx += !buf[-b->stride];
  375. }
  376. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
  377. if (coeff) {
  378. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  379. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
  380. coeff = (coeff ^ -sign) + sign;
  381. }
  382. *buf = coeff;
  383. }
  384. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  385. {
  386. int sign, coeff;
  387. coeff = svq3_get_ue_golomb(gb);
  388. if (coeff) {
  389. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  390. sign = get_bits1(gb);
  391. coeff = (coeff ^ -sign) + sign;
  392. }
  393. return coeff;
  394. }
  395. /**
  396. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  397. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  398. */
  399. static inline void codeblock(DiracContext *s, SubBand *b,
  400. GetBitContext *gb, DiracArith *c,
  401. int left, int right, int top, int bottom,
  402. int blockcnt_one, int is_arith)
  403. {
  404. int x, y, zero_block;
  405. int qoffset, qfactor;
  406. IDWTELEM *buf;
  407. /* check for any coded coefficients in this codeblock */
  408. if (!blockcnt_one) {
  409. if (is_arith)
  410. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  411. else
  412. zero_block = get_bits1(gb);
  413. if (zero_block)
  414. return;
  415. }
  416. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  417. int quant = b->quant;
  418. if (is_arith)
  419. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  420. else
  421. quant += dirac_get_se_golomb(gb);
  422. if (quant < 0) {
  423. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  424. return;
  425. }
  426. b->quant = quant;
  427. }
  428. b->quant = FFMIN(b->quant, MAX_QUANT);
  429. qfactor = qscale_tab[b->quant];
  430. /* TODO: context pointer? */
  431. if (!s->num_refs)
  432. qoffset = qoffset_intra_tab[b->quant];
  433. else
  434. qoffset = qoffset_inter_tab[b->quant];
  435. buf = b->ibuf + top * b->stride;
  436. for (y = top; y < bottom; y++) {
  437. for (x = left; x < right; x++) {
  438. /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
  439. if (is_arith)
  440. coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
  441. else
  442. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  443. }
  444. buf += b->stride;
  445. }
  446. }
  447. /**
  448. * Dirac Specification ->
  449. * 13.3 intra_dc_prediction(band)
  450. */
  451. static inline void intra_dc_prediction(SubBand *b)
  452. {
  453. IDWTELEM *buf = b->ibuf;
  454. int x, y;
  455. for (x = 1; x < b->width; x++)
  456. buf[x] += buf[x-1];
  457. buf += b->stride;
  458. for (y = 1; y < b->height; y++) {
  459. buf[0] += buf[-b->stride];
  460. for (x = 1; x < b->width; x++) {
  461. int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
  462. buf[x] += divide3(pred);
  463. }
  464. buf += b->stride;
  465. }
  466. }
  467. /**
  468. * Dirac Specification ->
  469. * 13.4.2 Non-skipped subbands. subband_coeffs()
  470. */
  471. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  472. {
  473. int cb_x, cb_y, left, right, top, bottom;
  474. DiracArith c;
  475. GetBitContext gb;
  476. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  477. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  478. int blockcnt_one = (cb_width + cb_height) == 2;
  479. if (!b->length)
  480. return;
  481. init_get_bits(&gb, b->coeff_data, b->length*8);
  482. if (is_arith)
  483. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  484. top = 0;
  485. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  486. bottom = (b->height * (cb_y+1)) / cb_height;
  487. left = 0;
  488. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  489. right = (b->width * (cb_x+1)) / cb_width;
  490. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  491. left = right;
  492. }
  493. top = bottom;
  494. }
  495. if (b->orientation == subband_ll && s->num_refs == 0)
  496. intra_dc_prediction(b);
  497. }
  498. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  499. {
  500. DiracContext *s = avctx->priv_data;
  501. decode_subband_internal(s, b, 1);
  502. return 0;
  503. }
  504. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  505. {
  506. DiracContext *s = avctx->priv_data;
  507. SubBand **b = arg;
  508. decode_subband_internal(s, *b, 0);
  509. return 0;
  510. }
  511. /**
  512. * Dirac Specification ->
  513. * [DIRAC_STD] 13.4.1 core_transform_data()
  514. */
  515. static void decode_component(DiracContext *s, int comp)
  516. {
  517. AVCodecContext *avctx = s->avctx;
  518. SubBand *bands[3*MAX_DWT_LEVELS+1];
  519. enum dirac_subband orientation;
  520. int level, num_bands = 0;
  521. /* Unpack all subbands at all levels. */
  522. for (level = 0; level < s->wavelet_depth; level++) {
  523. for (orientation = !!level; orientation < 4; orientation++) {
  524. SubBand *b = &s->plane[comp].band[level][orientation];
  525. bands[num_bands++] = b;
  526. align_get_bits(&s->gb);
  527. /* [DIRAC_STD] 13.4.2 subband() */
  528. b->length = svq3_get_ue_golomb(&s->gb);
  529. if (b->length) {
  530. b->quant = svq3_get_ue_golomb(&s->gb);
  531. align_get_bits(&s->gb);
  532. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  533. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  534. skip_bits_long(&s->gb, b->length*8);
  535. }
  536. }
  537. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  538. if (s->is_arith)
  539. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  540. NULL, 4-!!level, sizeof(SubBand));
  541. }
  542. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  543. if (!s->is_arith)
  544. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  545. }
  546. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  547. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  548. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  549. int slice_x, int slice_y, int bits_end,
  550. SubBand *b1, SubBand *b2)
  551. {
  552. int left = b1->width * slice_x / s->lowdelay.num_x;
  553. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  554. int top = b1->height * slice_y / s->lowdelay.num_y;
  555. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  556. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  557. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  558. IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
  559. IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
  560. int x, y;
  561. /* we have to constantly check for overread since the spec explictly
  562. requires this, with the meaning that all remaining coeffs are set to 0 */
  563. if (get_bits_count(gb) >= bits_end)
  564. return;
  565. for (y = top; y < bottom; y++) {
  566. for (x = left; x < right; x++) {
  567. buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  568. if (get_bits_count(gb) >= bits_end)
  569. return;
  570. if (buf2) {
  571. buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  572. if (get_bits_count(gb) >= bits_end)
  573. return;
  574. }
  575. }
  576. buf1 += b1->stride;
  577. if (buf2)
  578. buf2 += b2->stride;
  579. }
  580. }
  581. struct lowdelay_slice {
  582. GetBitContext gb;
  583. int slice_x;
  584. int slice_y;
  585. int bytes;
  586. };
  587. /**
  588. * Dirac Specification ->
  589. * 13.5.2 Slices. slice(sx,sy)
  590. */
  591. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  592. {
  593. DiracContext *s = avctx->priv_data;
  594. struct lowdelay_slice *slice = arg;
  595. GetBitContext *gb = &slice->gb;
  596. enum dirac_subband orientation;
  597. int level, quant, chroma_bits, chroma_end;
  598. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  599. int length_bits = av_log2(8 * slice->bytes)+1;
  600. int luma_bits = get_bits_long(gb, length_bits);
  601. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  602. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  603. for (level = 0; level < s->wavelet_depth; level++)
  604. for (orientation = !!level; orientation < 4; orientation++) {
  605. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  606. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  607. &s->plane[0].band[level][orientation], NULL);
  608. }
  609. /* consume any unused bits from luma */
  610. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  611. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  612. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  613. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  614. for (level = 0; level < s->wavelet_depth; level++)
  615. for (orientation = !!level; orientation < 4; orientation++) {
  616. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  617. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  618. &s->plane[1].band[level][orientation],
  619. &s->plane[2].band[level][orientation]);
  620. }
  621. return 0;
  622. }
  623. /**
  624. * Dirac Specification ->
  625. * 13.5.1 low_delay_transform_data()
  626. */
  627. static void decode_lowdelay(DiracContext *s)
  628. {
  629. AVCodecContext *avctx = s->avctx;
  630. int slice_x, slice_y, bytes, bufsize;
  631. const uint8_t *buf;
  632. struct lowdelay_slice *slices;
  633. int slice_num = 0;
  634. slices = av_mallocz(s->lowdelay.num_x * s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  635. align_get_bits(&s->gb);
  636. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  637. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  638. bufsize = get_bits_left(&s->gb);
  639. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  640. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  641. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  642. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  643. slices[slice_num].bytes = bytes;
  644. slices[slice_num].slice_x = slice_x;
  645. slices[slice_num].slice_y = slice_y;
  646. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  647. slice_num++;
  648. buf += bytes;
  649. bufsize -= bytes*8;
  650. }
  651. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  652. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  653. intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  654. intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  655. intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  656. av_free(slices);
  657. }
  658. static void init_planes(DiracContext *s)
  659. {
  660. int i, w, h, level, orientation;
  661. for (i = 0; i < 3; i++) {
  662. Plane *p = &s->plane[i];
  663. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  664. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  665. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  666. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  667. p->idwt_stride = FFALIGN(p->idwt_width, 8);
  668. for (level = s->wavelet_depth-1; level >= 0; level--) {
  669. w = w>>1;
  670. h = h>>1;
  671. for (orientation = !!level; orientation < 4; orientation++) {
  672. SubBand *b = &p->band[level][orientation];
  673. b->ibuf = p->idwt_buf;
  674. b->level = level;
  675. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  676. b->width = w;
  677. b->height = h;
  678. b->orientation = orientation;
  679. if (orientation & 1)
  680. b->ibuf += w;
  681. if (orientation > 1)
  682. b->ibuf += b->stride>>1;
  683. if (level)
  684. b->parent = &p->band[level-1][orientation];
  685. }
  686. }
  687. if (i > 0) {
  688. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  689. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  690. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  691. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  692. }
  693. p->xoffset = (p->xblen - p->xbsep)/2;
  694. p->yoffset = (p->yblen - p->ybsep)/2;
  695. }
  696. }
  697. /**
  698. * Unpack the motion compensation parameters
  699. * Dirac Specification ->
  700. * 11.2 Picture prediction data. picture_prediction()
  701. */
  702. static int dirac_unpack_prediction_parameters(DiracContext *s)
  703. {
  704. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  705. static const uint8_t default_bsep[] = { 4, 8, 12, 16 };
  706. GetBitContext *gb = &s->gb;
  707. unsigned idx, ref;
  708. align_get_bits(gb);
  709. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  710. /* Luma and Chroma are equal. 11.2.3 */
  711. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  712. if (idx > 4) {
  713. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  714. return -1;
  715. }
  716. if (idx == 0) {
  717. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  718. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  719. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  720. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  721. } else {
  722. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  723. s->plane[0].xblen = default_blen[idx-1];
  724. s->plane[0].yblen = default_blen[idx-1];
  725. s->plane[0].xbsep = default_bsep[idx-1];
  726. s->plane[0].ybsep = default_bsep[idx-1];
  727. }
  728. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  729. Calculated in function dirac_unpack_block_motion_data */
  730. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  731. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  732. return -1;
  733. }
  734. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  735. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  736. return -1;
  737. }
  738. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  739. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  740. return -1;
  741. }
  742. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  743. Read motion vector precision */
  744. s->mv_precision = svq3_get_ue_golomb(gb);
  745. if (s->mv_precision > 3) {
  746. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  747. return -1;
  748. }
  749. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  750. Read the global motion compensation parameters */
  751. s->globalmc_flag = get_bits1(gb);
  752. if (s->globalmc_flag) {
  753. memset(s->globalmc, 0, sizeof(s->globalmc));
  754. /* [DIRAC_STD] pan_tilt(gparams) */
  755. for (ref = 0; ref < s->num_refs; ref++) {
  756. if (get_bits1(gb)) {
  757. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  758. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  759. }
  760. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  761. zoom/rotation/shear parameters */
  762. if (get_bits1(gb)) {
  763. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  764. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  765. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  766. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  767. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  768. } else {
  769. s->globalmc[ref].zrs[0][0] = 1;
  770. s->globalmc[ref].zrs[1][1] = 1;
  771. }
  772. /* [DIRAC_STD] perspective(gparams) */
  773. if (get_bits1(gb)) {
  774. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  775. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  776. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  777. }
  778. }
  779. }
  780. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  781. Picture prediction mode, not currently used. */
  782. if (svq3_get_ue_golomb(gb)) {
  783. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  784. return -1;
  785. }
  786. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  787. just data read, weight calculation will be done later on. */
  788. s->weight_log2denom = 1;
  789. s->weight[0] = 1;
  790. s->weight[1] = 1;
  791. if (get_bits1(gb)) {
  792. s->weight_log2denom = svq3_get_ue_golomb(gb);
  793. s->weight[0] = dirac_get_se_golomb(gb);
  794. if (s->num_refs == 2)
  795. s->weight[1] = dirac_get_se_golomb(gb);
  796. }
  797. return 0;
  798. }
  799. /**
  800. * Dirac Specification ->
  801. * 11.3 Wavelet transform data. wavelet_transform()
  802. */
  803. static int dirac_unpack_idwt_params(DiracContext *s)
  804. {
  805. GetBitContext *gb = &s->gb;
  806. int i, level;
  807. unsigned tmp;
  808. #define CHECKEDREAD(dst, cond, errmsg) \
  809. tmp = svq3_get_ue_golomb(gb); \
  810. if (cond) { \
  811. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  812. return -1; \
  813. }\
  814. dst = tmp;
  815. align_get_bits(gb);
  816. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  817. if (s->zero_res)
  818. return 0;
  819. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  820. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  821. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  822. if (!s->low_delay) {
  823. /* Codeblock parameters (core syntax only) */
  824. if (get_bits1(gb)) {
  825. for (i = 0; i <= s->wavelet_depth; i++) {
  826. CHECKEDREAD(s->codeblock[i].width , tmp < 1, "codeblock width invalid\n")
  827. CHECKEDREAD(s->codeblock[i].height, tmp < 1, "codeblock height invalid\n")
  828. }
  829. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  830. } else
  831. for (i = 0; i <= s->wavelet_depth; i++)
  832. s->codeblock[i].width = s->codeblock[i].height = 1;
  833. } else {
  834. /* Slice parameters + quantization matrix*/
  835. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  836. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  837. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  838. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  839. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  840. if (s->lowdelay.bytes.den <= 0) {
  841. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  842. return AVERROR_INVALIDDATA;
  843. }
  844. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  845. if (get_bits1(gb)) {
  846. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  847. /* custom quantization matrix */
  848. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  849. for (level = 0; level < s->wavelet_depth; level++) {
  850. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  851. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  852. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  853. }
  854. } else {
  855. if (s->wavelet_depth > 4) {
  856. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  857. return AVERROR_INVALIDDATA;
  858. }
  859. /* default quantization matrix */
  860. for (level = 0; level < s->wavelet_depth; level++)
  861. for (i = 0; i < 4; i++) {
  862. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  863. /* haar with no shift differs for different depths */
  864. if (s->wavelet_idx == 3)
  865. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  866. }
  867. }
  868. }
  869. return 0;
  870. }
  871. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  872. {
  873. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  874. if (!(x|y))
  875. return 0;
  876. else if (!y)
  877. return sbsplit[-1];
  878. else if (!x)
  879. return sbsplit[-stride];
  880. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  881. }
  882. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  883. {
  884. int pred;
  885. if (!(x|y))
  886. return 0;
  887. else if (!y)
  888. return block[-1].ref & refmask;
  889. else if (!x)
  890. return block[-stride].ref & refmask;
  891. /* return the majority */
  892. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  893. return (pred >> 1) & refmask;
  894. }
  895. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  896. {
  897. int i, n = 0;
  898. memset(block->u.dc, 0, sizeof(block->u.dc));
  899. if (x && !(block[-1].ref & 3)) {
  900. for (i = 0; i < 3; i++)
  901. block->u.dc[i] += block[-1].u.dc[i];
  902. n++;
  903. }
  904. if (y && !(block[-stride].ref & 3)) {
  905. for (i = 0; i < 3; i++)
  906. block->u.dc[i] += block[-stride].u.dc[i];
  907. n++;
  908. }
  909. if (x && y && !(block[-1-stride].ref & 3)) {
  910. for (i = 0; i < 3; i++)
  911. block->u.dc[i] += block[-1-stride].u.dc[i];
  912. n++;
  913. }
  914. if (n == 2) {
  915. for (i = 0; i < 3; i++)
  916. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  917. } else if (n == 3) {
  918. for (i = 0; i < 3; i++)
  919. block->u.dc[i] = divide3(block->u.dc[i]);
  920. }
  921. }
  922. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  923. {
  924. int16_t *pred[3];
  925. int refmask = ref+1;
  926. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  927. int n = 0;
  928. if (x && (block[-1].ref & mask) == refmask)
  929. pred[n++] = block[-1].u.mv[ref];
  930. if (y && (block[-stride].ref & mask) == refmask)
  931. pred[n++] = block[-stride].u.mv[ref];
  932. if (x && y && (block[-stride-1].ref & mask) == refmask)
  933. pred[n++] = block[-stride-1].u.mv[ref];
  934. switch (n) {
  935. case 0:
  936. block->u.mv[ref][0] = 0;
  937. block->u.mv[ref][1] = 0;
  938. break;
  939. case 1:
  940. block->u.mv[ref][0] = pred[0][0];
  941. block->u.mv[ref][1] = pred[0][1];
  942. break;
  943. case 2:
  944. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  945. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  946. break;
  947. case 3:
  948. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  949. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  950. break;
  951. }
  952. }
  953. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  954. {
  955. int ez = s->globalmc[ref].zrs_exp;
  956. int ep = s->globalmc[ref].perspective_exp;
  957. int (*A)[2] = s->globalmc[ref].zrs;
  958. int *b = s->globalmc[ref].pan_tilt;
  959. int *c = s->globalmc[ref].perspective;
  960. int m = (1<<ep) - (c[0]*x + c[1]*y);
  961. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  962. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  963. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  964. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  965. }
  966. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  967. int stride, int x, int y)
  968. {
  969. int i;
  970. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  971. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  972. if (s->num_refs == 2) {
  973. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  974. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  975. }
  976. if (!block->ref) {
  977. pred_block_dc(block, stride, x, y);
  978. for (i = 0; i < 3; i++)
  979. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  980. return;
  981. }
  982. if (s->globalmc_flag) {
  983. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  984. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  985. }
  986. for (i = 0; i < s->num_refs; i++)
  987. if (block->ref & (i+1)) {
  988. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  989. global_mv(s, block, x, y, i);
  990. } else {
  991. pred_mv(block, stride, x, y, i);
  992. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  993. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  994. }
  995. }
  996. }
  997. /**
  998. * Copies the current block to the other blocks covered by the current superblock split mode
  999. */
  1000. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1001. {
  1002. int x, y;
  1003. DiracBlock *dst = block;
  1004. for (x = 1; x < size; x++)
  1005. dst[x] = *block;
  1006. for (y = 1; y < size; y++) {
  1007. dst += stride;
  1008. for (x = 0; x < size; x++)
  1009. dst[x] = *block;
  1010. }
  1011. }
  1012. /**
  1013. * Dirac Specification ->
  1014. * 12. Block motion data syntax
  1015. */
  1016. static int dirac_unpack_block_motion_data(DiracContext *s)
  1017. {
  1018. GetBitContext *gb = &s->gb;
  1019. uint8_t *sbsplit = s->sbsplit;
  1020. int i, x, y, q, p;
  1021. DiracArith arith[8];
  1022. align_get_bits(gb);
  1023. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1024. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1025. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1026. s->blwidth = 4 * s->sbwidth;
  1027. s->blheight = 4 * s->sbheight;
  1028. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1029. decode superblock split modes */
  1030. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1031. for (y = 0; y < s->sbheight; y++) {
  1032. for (x = 0; x < s->sbwidth; x++) {
  1033. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1034. if (split > 2)
  1035. return -1;
  1036. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1037. }
  1038. sbsplit += s->sbwidth;
  1039. }
  1040. /* setup arith decoding */
  1041. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1042. for (i = 0; i < s->num_refs; i++) {
  1043. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1044. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1045. }
  1046. for (i = 0; i < 3; i++)
  1047. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1048. for (y = 0; y < s->sbheight; y++)
  1049. for (x = 0; x < s->sbwidth; x++) {
  1050. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1051. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1052. for (q = 0; q < blkcnt; q++)
  1053. for (p = 0; p < blkcnt; p++) {
  1054. int bx = 4 * x + p*step;
  1055. int by = 4 * y + q*step;
  1056. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1057. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1058. propagate_block_data(block, s->blwidth, step);
  1059. }
  1060. }
  1061. return 0;
  1062. }
  1063. static int weight(int i, int blen, int offset)
  1064. {
  1065. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1066. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1067. if (i < 2*offset)
  1068. return ROLLOFF(i);
  1069. else if (i > blen-1 - 2*offset)
  1070. return ROLLOFF(blen-1 - i);
  1071. return 8;
  1072. }
  1073. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1074. int left, int right, int wy)
  1075. {
  1076. int x;
  1077. for (x = 0; left && x < p->xblen >> 1; x++)
  1078. obmc_weight[x] = wy*8;
  1079. for (; x < p->xblen >> right; x++)
  1080. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1081. for (; x < p->xblen; x++)
  1082. obmc_weight[x] = wy*8;
  1083. for (; x < stride; x++)
  1084. obmc_weight[x] = 0;
  1085. }
  1086. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1087. int left, int right, int top, int bottom)
  1088. {
  1089. int y;
  1090. for (y = 0; top && y < p->yblen >> 1; y++) {
  1091. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1092. obmc_weight += stride;
  1093. }
  1094. for (; y < p->yblen >> bottom; y++) {
  1095. int wy = weight(y, p->yblen, p->yoffset);
  1096. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1097. obmc_weight += stride;
  1098. }
  1099. for (; y < p->yblen; y++) {
  1100. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1101. obmc_weight += stride;
  1102. }
  1103. }
  1104. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1105. {
  1106. int top = !by;
  1107. int bottom = by == s->blheight-1;
  1108. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1109. if (top || bottom || by == 1) {
  1110. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1111. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1112. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1113. }
  1114. }
  1115. static const uint8_t epel_weights[4][4][4] = {
  1116. {{ 16, 0, 0, 0 },
  1117. { 12, 4, 0, 0 },
  1118. { 8, 8, 0, 0 },
  1119. { 4, 12, 0, 0 }},
  1120. {{ 12, 0, 4, 0 },
  1121. { 9, 3, 3, 1 },
  1122. { 6, 6, 2, 2 },
  1123. { 3, 9, 1, 3 }},
  1124. {{ 8, 0, 8, 0 },
  1125. { 6, 2, 6, 2 },
  1126. { 4, 4, 4, 4 },
  1127. { 2, 6, 2, 6 }},
  1128. {{ 4, 0, 12, 0 },
  1129. { 3, 1, 9, 3 },
  1130. { 2, 2, 6, 6 },
  1131. { 1, 3, 3, 9 }}
  1132. };
  1133. /**
  1134. * For block x,y, determine which of the hpel planes to do bilinear
  1135. * interpolation from and set src[] to the location in each hpel plane
  1136. * to MC from.
  1137. *
  1138. * @return the index of the put_dirac_pixels_tab function to use
  1139. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1140. */
  1141. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1142. int x, int y, int ref, int plane)
  1143. {
  1144. Plane *p = &s->plane[plane];
  1145. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1146. int motion_x = block->u.mv[ref][0];
  1147. int motion_y = block->u.mv[ref][1];
  1148. int mx, my, i, epel, nplanes = 0;
  1149. if (plane) {
  1150. motion_x >>= s->chroma_x_shift;
  1151. motion_y >>= s->chroma_y_shift;
  1152. }
  1153. mx = motion_x & ~(-1 << s->mv_precision);
  1154. my = motion_y & ~(-1 << s->mv_precision);
  1155. motion_x >>= s->mv_precision;
  1156. motion_y >>= s->mv_precision;
  1157. /* normalize subpel coordinates to epel */
  1158. /* TODO: template this function? */
  1159. mx <<= 3 - s->mv_precision;
  1160. my <<= 3 - s->mv_precision;
  1161. x += motion_x;
  1162. y += motion_y;
  1163. epel = (mx|my)&1;
  1164. /* hpel position */
  1165. if (!((mx|my)&3)) {
  1166. nplanes = 1;
  1167. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1168. } else {
  1169. /* qpel or epel */
  1170. nplanes = 4;
  1171. for (i = 0; i < 4; i++)
  1172. src[i] = ref_hpel[i] + y*p->stride + x;
  1173. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1174. we increment x/y because the edge changes for half of the pixels */
  1175. if (mx > 4) {
  1176. src[0] += 1;
  1177. src[2] += 1;
  1178. x++;
  1179. }
  1180. if (my > 4) {
  1181. src[0] += p->stride;
  1182. src[1] += p->stride;
  1183. y++;
  1184. }
  1185. /* hpel planes are:
  1186. [0]: F [1]: H
  1187. [2]: V [3]: C */
  1188. if (!epel) {
  1189. /* check if we really only need 2 planes since either mx or my is
  1190. a hpel position. (epel weights of 0 handle this there) */
  1191. if (!(mx&3)) {
  1192. /* mx == 0: average [0] and [2]
  1193. mx == 4: average [1] and [3] */
  1194. src[!mx] = src[2 + !!mx];
  1195. nplanes = 2;
  1196. } else if (!(my&3)) {
  1197. src[0] = src[(my>>1) ];
  1198. src[1] = src[(my>>1)+1];
  1199. nplanes = 2;
  1200. }
  1201. } else {
  1202. /* adjust the ordering if needed so the weights work */
  1203. if (mx > 4) {
  1204. FFSWAP(const uint8_t *, src[0], src[1]);
  1205. FFSWAP(const uint8_t *, src[2], src[3]);
  1206. }
  1207. if (my > 4) {
  1208. FFSWAP(const uint8_t *, src[0], src[2]);
  1209. FFSWAP(const uint8_t *, src[1], src[3]);
  1210. }
  1211. src[4] = epel_weights[my&3][mx&3];
  1212. }
  1213. }
  1214. /* fixme: v/h _edge_pos */
  1215. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1216. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1217. x < 0 || y < 0) {
  1218. for (i = 0; i < nplanes; i++) {
  1219. ff_emulated_edge_mc(s->edge_emu_buffer[i], src[i], p->stride,
  1220. p->xblen, p->yblen, x, y,
  1221. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1222. src[i] = s->edge_emu_buffer[i];
  1223. }
  1224. }
  1225. return (nplanes>>1) + epel;
  1226. }
  1227. static void add_dc(uint16_t *dst, int dc, int stride,
  1228. uint8_t *obmc_weight, int xblen, int yblen)
  1229. {
  1230. int x, y;
  1231. dc += 128;
  1232. for (y = 0; y < yblen; y++) {
  1233. for (x = 0; x < xblen; x += 2) {
  1234. dst[x ] += dc * obmc_weight[x ];
  1235. dst[x+1] += dc * obmc_weight[x+1];
  1236. }
  1237. dst += stride;
  1238. obmc_weight += MAX_BLOCKSIZE;
  1239. }
  1240. }
  1241. static void block_mc(DiracContext *s, DiracBlock *block,
  1242. uint16_t *mctmp, uint8_t *obmc_weight,
  1243. int plane, int dstx, int dsty)
  1244. {
  1245. Plane *p = &s->plane[plane];
  1246. const uint8_t *src[5];
  1247. int idx;
  1248. switch (block->ref&3) {
  1249. case 0: /* DC */
  1250. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1251. return;
  1252. case 1:
  1253. case 2:
  1254. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1255. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1256. if (s->weight_func)
  1257. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1258. s->weight[0] + s->weight[1], p->yblen);
  1259. break;
  1260. case 3:
  1261. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1262. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1263. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1264. if (s->biweight_func) {
  1265. /* fixme: +32 is a quick hack */
  1266. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1267. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1268. s->weight[0], s->weight[1], p->yblen);
  1269. } else
  1270. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1271. break;
  1272. }
  1273. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1274. }
  1275. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1276. {
  1277. Plane *p = &s->plane[plane];
  1278. int x, dstx = p->xbsep - p->xoffset;
  1279. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1280. mctmp += p->xbsep;
  1281. for (x = 1; x < s->blwidth-1; x++) {
  1282. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1283. dstx += p->xbsep;
  1284. mctmp += p->xbsep;
  1285. }
  1286. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1287. }
  1288. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1289. {
  1290. int idx = 0;
  1291. if (xblen > 8)
  1292. idx = 1;
  1293. if (xblen > 16)
  1294. idx = 2;
  1295. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1296. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1297. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1298. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1299. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1300. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1301. } else {
  1302. s->weight_func = NULL;
  1303. s->biweight_func = NULL;
  1304. }
  1305. }
  1306. static void interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1307. {
  1308. /* chroma allocates an edge of 8 when subsampled
  1309. which for 4:2:2 means an h edge of 16 and v edge of 8
  1310. just use 8 for everything for the moment */
  1311. int i, edge = EDGE_WIDTH/2;
  1312. ref->hpel[plane][0] = ref->avframe.data[plane];
  1313. s->dsp.draw_edges(ref->hpel[plane][0], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1314. /* no need for hpel if we only have fpel vectors */
  1315. if (!s->mv_precision)
  1316. return;
  1317. for (i = 1; i < 4; i++) {
  1318. if (!ref->hpel_base[plane][i])
  1319. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe.linesize[plane] + 32);
  1320. /* we need to be 16-byte aligned even for chroma */
  1321. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe.linesize[plane] + 16;
  1322. }
  1323. if (!ref->interpolated[plane]) {
  1324. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1325. ref->hpel[plane][3], ref->hpel[plane][0],
  1326. ref->avframe.linesize[plane], width, height);
  1327. s->dsp.draw_edges(ref->hpel[plane][1], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1328. s->dsp.draw_edges(ref->hpel[plane][2], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1329. s->dsp.draw_edges(ref->hpel[plane][3], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1330. }
  1331. ref->interpolated[plane] = 1;
  1332. }
  1333. /**
  1334. * Dirac Specification ->
  1335. * 13.0 Transform data syntax. transform_data()
  1336. */
  1337. static int dirac_decode_frame_internal(DiracContext *s)
  1338. {
  1339. DWTContext d;
  1340. int y, i, comp, dsty;
  1341. if (s->low_delay) {
  1342. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1343. for (comp = 0; comp < 3; comp++) {
  1344. Plane *p = &s->plane[comp];
  1345. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1346. }
  1347. if (!s->zero_res)
  1348. decode_lowdelay(s);
  1349. }
  1350. for (comp = 0; comp < 3; comp++) {
  1351. Plane *p = &s->plane[comp];
  1352. uint8_t *frame = s->current_picture->avframe.data[comp];
  1353. /* FIXME: small resolutions */
  1354. for (i = 0; i < 4; i++)
  1355. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1356. if (!s->zero_res && !s->low_delay)
  1357. {
  1358. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1359. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1360. }
  1361. if (ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1362. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp))
  1363. return -1;
  1364. if (!s->num_refs) { /* intra */
  1365. for (y = 0; y < p->height; y += 16) {
  1366. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1367. s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
  1368. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1369. }
  1370. } else { /* inter */
  1371. int rowheight = p->ybsep*p->stride;
  1372. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1373. for (i = 0; i < s->num_refs; i++)
  1374. interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1375. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1376. dsty = -p->yoffset;
  1377. for (y = 0; y < s->blheight; y++) {
  1378. int h = 0,
  1379. start = FFMAX(dsty, 0);
  1380. uint16_t *mctmp = s->mctmp + y*rowheight;
  1381. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1382. init_obmc_weights(s, p, y);
  1383. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1384. h = p->height - start;
  1385. else
  1386. h = p->ybsep - (start - dsty);
  1387. if (h < 0)
  1388. break;
  1389. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1390. mc_row(s, blocks, mctmp, comp, dsty);
  1391. mctmp += (start - dsty)*p->stride + p->xoffset;
  1392. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1393. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1394. p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
  1395. dsty += p->ybsep;
  1396. }
  1397. }
  1398. }
  1399. return 0;
  1400. }
  1401. /**
  1402. * Dirac Specification ->
  1403. * 11.1.1 Picture Header. picture_header()
  1404. */
  1405. static int dirac_decode_picture_header(DiracContext *s)
  1406. {
  1407. int retire, picnum;
  1408. int i, j, refnum, refdist;
  1409. GetBitContext *gb = &s->gb;
  1410. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1411. picnum = s->current_picture->avframe.display_picture_number = get_bits_long(gb, 32);
  1412. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1413. /* if this is the first keyframe after a sequence header, start our
  1414. reordering from here */
  1415. if (s->frame_number < 0)
  1416. s->frame_number = picnum;
  1417. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1418. for (i = 0; i < s->num_refs; i++) {
  1419. refnum = picnum + dirac_get_se_golomb(gb);
  1420. refdist = INT_MAX;
  1421. /* find the closest reference to the one we want */
  1422. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1423. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1424. if (s->ref_frames[j]
  1425. && FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum) < refdist) {
  1426. s->ref_pics[i] = s->ref_frames[j];
  1427. refdist = FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum);
  1428. }
  1429. if (!s->ref_pics[i] || refdist)
  1430. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1431. /* if there were no references at all, allocate one */
  1432. if (!s->ref_pics[i])
  1433. for (j = 0; j < MAX_FRAMES; j++)
  1434. if (!s->all_frames[j].avframe.data[0]) {
  1435. s->ref_pics[i] = &s->all_frames[j];
  1436. ff_get_buffer(s->avctx, &s->ref_pics[i]->avframe);
  1437. break;
  1438. }
  1439. }
  1440. /* retire the reference frames that are not used anymore */
  1441. if (s->current_picture->avframe.reference) {
  1442. retire = picnum + dirac_get_se_golomb(gb);
  1443. if (retire != picnum) {
  1444. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1445. if (retire_pic)
  1446. retire_pic->avframe.reference &= DELAYED_PIC_REF;
  1447. else
  1448. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1449. }
  1450. /* if reference array is full, remove the oldest as per the spec */
  1451. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1452. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1453. remove_frame(s->ref_frames, s->ref_frames[0]->avframe.display_picture_number)->avframe.reference &= DELAYED_PIC_REF;
  1454. }
  1455. }
  1456. if (s->num_refs) {
  1457. if (dirac_unpack_prediction_parameters(s)) /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1458. return -1;
  1459. if (dirac_unpack_block_motion_data(s)) /* [DIRAC_STD] 12. Block motion data syntax */
  1460. return -1;
  1461. }
  1462. if (dirac_unpack_idwt_params(s)) /* [DIRAC_STD] 11.3 Wavelet transform data */
  1463. return -1;
  1464. init_planes(s);
  1465. return 0;
  1466. }
  1467. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1468. {
  1469. DiracFrame *out = s->delay_frames[0];
  1470. int i, out_idx = 0;
  1471. /* find frame with lowest picture number */
  1472. for (i = 1; s->delay_frames[i]; i++)
  1473. if (s->delay_frames[i]->avframe.display_picture_number < out->avframe.display_picture_number) {
  1474. out = s->delay_frames[i];
  1475. out_idx = i;
  1476. }
  1477. for (i = out_idx; s->delay_frames[i]; i++)
  1478. s->delay_frames[i] = s->delay_frames[i+1];
  1479. if (out) {
  1480. out->avframe.reference ^= DELAYED_PIC_REF;
  1481. *got_frame = 1;
  1482. *(AVFrame *)picture = out->avframe;
  1483. }
  1484. return 0;
  1485. }
  1486. /**
  1487. * Dirac Specification ->
  1488. * 9.6 Parse Info Header Syntax. parse_info()
  1489. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1490. */
  1491. #define DATA_UNIT_HEADER_SIZE 13
  1492. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1493. inside the function parse_sequence() */
  1494. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1495. {
  1496. DiracContext *s = avctx->priv_data;
  1497. DiracFrame *pic = NULL;
  1498. int i, parse_code = buf[4];
  1499. unsigned tmp;
  1500. if (size < DATA_UNIT_HEADER_SIZE)
  1501. return -1;
  1502. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1503. if (parse_code == pc_seq_header) {
  1504. if (s->seen_sequence_header)
  1505. return 0;
  1506. /* [DIRAC_STD] 10. Sequence header */
  1507. if (avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source))
  1508. return -1;
  1509. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1510. if (alloc_sequence_buffers(s))
  1511. return -1;
  1512. s->seen_sequence_header = 1;
  1513. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1514. free_sequence_buffers(s);
  1515. s->seen_sequence_header = 0;
  1516. } else if (parse_code == pc_aux_data) {
  1517. if (buf[13] == 1) { /* encoder implementation/version */
  1518. int ver[3];
  1519. /* versions older than 1.0.8 don't store quant delta for
  1520. subbands with only one codeblock */
  1521. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1522. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1523. s->old_delta_quant = 1;
  1524. }
  1525. } else if (parse_code & 0x8) { /* picture data unit */
  1526. if (!s->seen_sequence_header) {
  1527. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1528. return -1;
  1529. }
  1530. /* find an unused frame */
  1531. for (i = 0; i < MAX_FRAMES; i++)
  1532. if (s->all_frames[i].avframe.data[0] == NULL)
  1533. pic = &s->all_frames[i];
  1534. if (!pic) {
  1535. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1536. return -1;
  1537. }
  1538. avcodec_get_frame_defaults(&pic->avframe);
  1539. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1540. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1541. if (tmp > 2) {
  1542. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1543. return -1;
  1544. }
  1545. s->num_refs = tmp;
  1546. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1547. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1548. pic->avframe.reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1549. pic->avframe.key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1550. pic->avframe.pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1551. if (ff_get_buffer(avctx, &pic->avframe) < 0) {
  1552. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1553. return -1;
  1554. }
  1555. s->current_picture = pic;
  1556. s->plane[0].stride = pic->avframe.linesize[0];
  1557. s->plane[1].stride = pic->avframe.linesize[1];
  1558. s->plane[2].stride = pic->avframe.linesize[2];
  1559. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1560. if (dirac_decode_picture_header(s))
  1561. return -1;
  1562. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1563. if (dirac_decode_frame_internal(s))
  1564. return -1;
  1565. }
  1566. return 0;
  1567. }
  1568. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1569. {
  1570. DiracContext *s = avctx->priv_data;
  1571. DiracFrame *picture = data;
  1572. uint8_t *buf = pkt->data;
  1573. int buf_size = pkt->size;
  1574. int i, data_unit_size, buf_idx = 0;
  1575. /* release unused frames */
  1576. for (i = 0; i < MAX_FRAMES; i++)
  1577. if (s->all_frames[i].avframe.data[0] && !s->all_frames[i].avframe.reference) {
  1578. avctx->release_buffer(avctx, &s->all_frames[i].avframe);
  1579. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1580. }
  1581. s->current_picture = NULL;
  1582. *got_frame = 0;
  1583. /* end of stream, so flush delayed pics */
  1584. if (buf_size == 0)
  1585. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1586. for (;;) {
  1587. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1588. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1589. BBCD start code search */
  1590. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1591. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1592. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1593. break;
  1594. }
  1595. /* BBCD found or end of data */
  1596. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1597. break;
  1598. data_unit_size = AV_RB32(buf+buf_idx+5);
  1599. if (buf_idx + data_unit_size > buf_size || !data_unit_size) {
  1600. if(buf_idx + data_unit_size > buf_size)
  1601. av_log(s->avctx, AV_LOG_ERROR,
  1602. "Data unit with size %d is larger than input buffer, discarding\n",
  1603. data_unit_size);
  1604. buf_idx += 4;
  1605. continue;
  1606. }
  1607. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1608. if (dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size))
  1609. {
  1610. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1611. return -1;
  1612. }
  1613. buf_idx += data_unit_size;
  1614. }
  1615. if (!s->current_picture)
  1616. return buf_size;
  1617. if (s->current_picture->avframe.display_picture_number > s->frame_number) {
  1618. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1619. s->current_picture->avframe.reference |= DELAYED_PIC_REF;
  1620. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1621. int min_num = s->delay_frames[0]->avframe.display_picture_number;
  1622. /* Too many delayed frames, so we display the frame with the lowest pts */
  1623. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1624. delayed_frame = s->delay_frames[0];
  1625. for (i = 1; s->delay_frames[i]; i++)
  1626. if (s->delay_frames[i]->avframe.display_picture_number < min_num)
  1627. min_num = s->delay_frames[i]->avframe.display_picture_number;
  1628. delayed_frame = remove_frame(s->delay_frames, min_num);
  1629. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1630. }
  1631. if (delayed_frame) {
  1632. delayed_frame->avframe.reference ^= DELAYED_PIC_REF;
  1633. *(AVFrame*)data = delayed_frame->avframe;
  1634. *got_frame = 1;
  1635. }
  1636. } else if (s->current_picture->avframe.display_picture_number == s->frame_number) {
  1637. /* The right frame at the right time :-) */
  1638. *(AVFrame*)data = s->current_picture->avframe;
  1639. *got_frame = 1;
  1640. }
  1641. if (*got_frame)
  1642. s->frame_number = picture->avframe.display_picture_number + 1;
  1643. return buf_idx;
  1644. }
  1645. AVCodec ff_dirac_decoder = {
  1646. .name = "dirac",
  1647. .type = AVMEDIA_TYPE_VIDEO,
  1648. .id = AV_CODEC_ID_DIRAC,
  1649. .priv_data_size = sizeof(DiracContext),
  1650. .init = dirac_decode_init,
  1651. .close = dirac_decode_end,
  1652. .decode = dirac_decode_frame,
  1653. .capabilities = CODEC_CAP_DELAY,
  1654. .flush = dirac_decode_flush,
  1655. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1656. };