You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1286 lines
47KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/lfg.h"
  29. #include "avcodec.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "celp_math.h"
  33. #include "acelp_filters.h"
  34. #include "acelp_vectors.h"
  35. #include "acelp_pitch_delay.h"
  36. #include "internal.h"
  37. #define AMR_USE_16BIT_TABLES
  38. #include "amr.h"
  39. #include "amrwbdata.h"
  40. #include "mips/amrwbdec_mips.h"
  41. typedef struct {
  42. AVFrame avframe; ///< AVFrame for decoded samples
  43. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  44. enum Mode fr_cur_mode; ///< mode index of current frame
  45. uint8_t fr_quality; ///< frame quality index (FQI)
  46. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  47. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  48. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  49. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  50. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  51. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  52. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  53. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  54. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  55. float *excitation; ///< points to current excitation in excitation_buf[]
  56. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  57. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  58. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  59. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  60. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  61. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  62. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  63. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  64. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  65. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  66. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  67. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  68. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  69. float demph_mem[1]; ///< previous value in the de-emphasis filter
  70. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  71. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  72. AVLFG prng; ///< random number generator for white noise excitation
  73. uint8_t first_frame; ///< flag active during decoding of the first frame
  74. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  75. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  76. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  77. CELPMContext celpm_ctx; ///< context for fixed point math operations
  78. } AMRWBContext;
  79. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  80. {
  81. AMRWBContext *ctx = avctx->priv_data;
  82. int i;
  83. if (avctx->channels > 1) {
  84. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  85. return AVERROR_PATCHWELCOME;
  86. }
  87. avctx->channels = 1;
  88. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  89. if (!avctx->sample_rate)
  90. avctx->sample_rate = 16000;
  91. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  92. av_lfg_init(&ctx->prng, 1);
  93. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  94. ctx->first_frame = 1;
  95. for (i = 0; i < LP_ORDER; i++)
  96. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  97. for (i = 0; i < 4; i++)
  98. ctx->prediction_error[i] = MIN_ENERGY;
  99. avcodec_get_frame_defaults(&ctx->avframe);
  100. avctx->coded_frame = &ctx->avframe;
  101. ff_acelp_filter_init(&ctx->acelpf_ctx);
  102. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  103. ff_celp_filter_init(&ctx->celpf_ctx);
  104. ff_celp_math_init(&ctx->celpm_ctx);
  105. return 0;
  106. }
  107. /**
  108. * Decode the frame header in the "MIME/storage" format. This format
  109. * is simpler and does not carry the auxiliary frame information.
  110. *
  111. * @param[in] ctx The Context
  112. * @param[in] buf Pointer to the input buffer
  113. *
  114. * @return The decoded header length in bytes
  115. */
  116. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  117. {
  118. /* Decode frame header (1st octet) */
  119. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  120. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  121. return 1;
  122. }
  123. /**
  124. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  125. *
  126. * @param[in] ind Array of 5 indexes
  127. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  128. *
  129. */
  130. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  131. {
  132. int i;
  133. for (i = 0; i < 9; i++)
  134. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  135. for (i = 0; i < 7; i++)
  136. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  137. for (i = 0; i < 5; i++)
  138. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  139. for (i = 0; i < 4; i++)
  140. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  141. for (i = 0; i < 7; i++)
  142. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  143. }
  144. /**
  145. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  146. *
  147. * @param[in] ind Array of 7 indexes
  148. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  149. *
  150. */
  151. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  152. {
  153. int i;
  154. for (i = 0; i < 9; i++)
  155. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  156. for (i = 0; i < 7; i++)
  157. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  158. for (i = 0; i < 3; i++)
  159. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  160. for (i = 0; i < 3; i++)
  161. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  162. for (i = 0; i < 3; i++)
  163. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  164. for (i = 0; i < 3; i++)
  165. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  166. for (i = 0; i < 4; i++)
  167. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  168. }
  169. /**
  170. * Apply mean and past ISF values using the prediction factor.
  171. * Updates past ISF vector.
  172. *
  173. * @param[in,out] isf_q Current quantized ISF
  174. * @param[in,out] isf_past Past quantized ISF
  175. *
  176. */
  177. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  178. {
  179. int i;
  180. float tmp;
  181. for (i = 0; i < LP_ORDER; i++) {
  182. tmp = isf_q[i];
  183. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  184. isf_q[i] += PRED_FACTOR * isf_past[i];
  185. isf_past[i] = tmp;
  186. }
  187. }
  188. /**
  189. * Interpolate the fourth ISP vector from current and past frames
  190. * to obtain an ISP vector for each subframe.
  191. *
  192. * @param[in,out] isp_q ISPs for each subframe
  193. * @param[in] isp4_past Past ISP for subframe 4
  194. */
  195. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  196. {
  197. int i, k;
  198. for (k = 0; k < 3; k++) {
  199. float c = isfp_inter[k];
  200. for (i = 0; i < LP_ORDER; i++)
  201. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  202. }
  203. }
  204. /**
  205. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  206. * Calculate integer lag and fractional lag always using 1/4 resolution.
  207. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  208. *
  209. * @param[out] lag_int Decoded integer pitch lag
  210. * @param[out] lag_frac Decoded fractional pitch lag
  211. * @param[in] pitch_index Adaptive codebook pitch index
  212. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  213. * @param[in] subframe Current subframe index (0 to 3)
  214. */
  215. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  216. uint8_t *base_lag_int, int subframe)
  217. {
  218. if (subframe == 0 || subframe == 2) {
  219. if (pitch_index < 376) {
  220. *lag_int = (pitch_index + 137) >> 2;
  221. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  222. } else if (pitch_index < 440) {
  223. *lag_int = (pitch_index + 257 - 376) >> 1;
  224. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  225. /* the actual resolution is 1/2 but expressed as 1/4 */
  226. } else {
  227. *lag_int = pitch_index - 280;
  228. *lag_frac = 0;
  229. }
  230. /* minimum lag for next subframe */
  231. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  232. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  233. // XXX: the spec states clearly that *base_lag_int should be
  234. // the nearest integer to *lag_int (minus 8), but the ref code
  235. // actually always uses its floor, I'm following the latter
  236. } else {
  237. *lag_int = (pitch_index + 1) >> 2;
  238. *lag_frac = pitch_index - (*lag_int << 2);
  239. *lag_int += *base_lag_int;
  240. }
  241. }
  242. /**
  243. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  244. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  245. * relative index is used for all subframes except the first.
  246. */
  247. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  248. uint8_t *base_lag_int, int subframe, enum Mode mode)
  249. {
  250. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  251. if (pitch_index < 116) {
  252. *lag_int = (pitch_index + 69) >> 1;
  253. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  254. } else {
  255. *lag_int = pitch_index - 24;
  256. *lag_frac = 0;
  257. }
  258. // XXX: same problem as before
  259. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  260. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  261. } else {
  262. *lag_int = (pitch_index + 1) >> 1;
  263. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  264. *lag_int += *base_lag_int;
  265. }
  266. }
  267. /**
  268. * Find the pitch vector by interpolating the past excitation at the
  269. * pitch delay, which is obtained in this function.
  270. *
  271. * @param[in,out] ctx The context
  272. * @param[in] amr_subframe Current subframe data
  273. * @param[in] subframe Current subframe index (0 to 3)
  274. */
  275. static void decode_pitch_vector(AMRWBContext *ctx,
  276. const AMRWBSubFrame *amr_subframe,
  277. const int subframe)
  278. {
  279. int pitch_lag_int, pitch_lag_frac;
  280. int i;
  281. float *exc = ctx->excitation;
  282. enum Mode mode = ctx->fr_cur_mode;
  283. if (mode <= MODE_8k85) {
  284. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  285. &ctx->base_pitch_lag, subframe, mode);
  286. } else
  287. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  288. &ctx->base_pitch_lag, subframe);
  289. ctx->pitch_lag_int = pitch_lag_int;
  290. pitch_lag_int += pitch_lag_frac > 0;
  291. /* Calculate the pitch vector by interpolating the past excitation at the
  292. pitch lag using a hamming windowed sinc function */
  293. ctx->acelpf_ctx.acelp_interpolatef(exc,
  294. exc + 1 - pitch_lag_int,
  295. ac_inter, 4,
  296. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  297. LP_ORDER, AMRWB_SFR_SIZE + 1);
  298. /* Check which pitch signal path should be used
  299. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  300. if (amr_subframe->ltp) {
  301. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  302. } else {
  303. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  304. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  305. 0.18 * exc[i + 1];
  306. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  307. }
  308. }
  309. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  310. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  311. /** Get the bit at specified position */
  312. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  313. /**
  314. * The next six functions decode_[i]p_track decode exactly i pulses
  315. * positions and amplitudes (-1 or 1) in a subframe track using
  316. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  317. *
  318. * The results are given in out[], in which a negative number means
  319. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  320. *
  321. * @param[out] out Output buffer (writes i elements)
  322. * @param[in] code Pulse index (no. of bits varies, see below)
  323. * @param[in] m (log2) Number of potential positions
  324. * @param[in] off Offset for decoded positions
  325. */
  326. static inline void decode_1p_track(int *out, int code, int m, int off)
  327. {
  328. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  329. out[0] = BIT_POS(code, m) ? -pos : pos;
  330. }
  331. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  332. {
  333. int pos0 = BIT_STR(code, m, m) + off;
  334. int pos1 = BIT_STR(code, 0, m) + off;
  335. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  336. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  337. out[1] = pos0 > pos1 ? -out[1] : out[1];
  338. }
  339. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  340. {
  341. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  342. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  343. m - 1, off + half_2p);
  344. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  345. }
  346. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  347. {
  348. int half_4p, subhalf_2p;
  349. int b_offset = 1 << (m - 1);
  350. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  351. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  352. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  353. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  354. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  355. m - 2, off + half_4p + subhalf_2p);
  356. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  357. m - 1, off + half_4p);
  358. break;
  359. case 1: /* 1 pulse in A, 3 pulses in B */
  360. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  361. m - 1, off);
  362. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  363. m - 1, off + b_offset);
  364. break;
  365. case 2: /* 2 pulses in each half */
  366. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  367. m - 1, off);
  368. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  369. m - 1, off + b_offset);
  370. break;
  371. case 3: /* 3 pulses in A, 1 pulse in B */
  372. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  373. m - 1, off);
  374. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  375. m - 1, off + b_offset);
  376. break;
  377. }
  378. }
  379. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  380. {
  381. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  382. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  383. m - 1, off + half_3p);
  384. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  385. }
  386. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  387. {
  388. int b_offset = 1 << (m - 1);
  389. /* which half has more pulses in cases 0 to 2 */
  390. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  391. int half_other = b_offset - half_more;
  392. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  393. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  394. decode_1p_track(out, BIT_STR(code, 0, m),
  395. m - 1, off + half_more);
  396. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  397. m - 1, off + half_more);
  398. break;
  399. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  400. decode_1p_track(out, BIT_STR(code, 0, m),
  401. m - 1, off + half_other);
  402. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  403. m - 1, off + half_more);
  404. break;
  405. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  406. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  407. m - 1, off + half_other);
  408. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  409. m - 1, off + half_more);
  410. break;
  411. case 3: /* 3 pulses in A, 3 pulses in B */
  412. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  413. m - 1, off);
  414. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  415. m - 1, off + b_offset);
  416. break;
  417. }
  418. }
  419. /**
  420. * Decode the algebraic codebook index to pulse positions and signs,
  421. * then construct the algebraic codebook vector.
  422. *
  423. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  424. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  425. * @param[in] pulse_lo LSBs part of the pulse index array
  426. * @param[in] mode Mode of the current frame
  427. */
  428. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  429. const uint16_t *pulse_lo, const enum Mode mode)
  430. {
  431. /* sig_pos stores for each track the decoded pulse position indexes
  432. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  433. int sig_pos[4][6];
  434. int spacing = (mode == MODE_6k60) ? 2 : 4;
  435. int i, j;
  436. switch (mode) {
  437. case MODE_6k60:
  438. for (i = 0; i < 2; i++)
  439. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  440. break;
  441. case MODE_8k85:
  442. for (i = 0; i < 4; i++)
  443. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  444. break;
  445. case MODE_12k65:
  446. for (i = 0; i < 4; i++)
  447. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  448. break;
  449. case MODE_14k25:
  450. for (i = 0; i < 2; i++)
  451. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  452. for (i = 2; i < 4; i++)
  453. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  454. break;
  455. case MODE_15k85:
  456. for (i = 0; i < 4; i++)
  457. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  458. break;
  459. case MODE_18k25:
  460. for (i = 0; i < 4; i++)
  461. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  462. ((int) pulse_hi[i] << 14), 4, 1);
  463. break;
  464. case MODE_19k85:
  465. for (i = 0; i < 2; i++)
  466. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  467. ((int) pulse_hi[i] << 10), 4, 1);
  468. for (i = 2; i < 4; i++)
  469. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  470. ((int) pulse_hi[i] << 14), 4, 1);
  471. break;
  472. case MODE_23k05:
  473. case MODE_23k85:
  474. for (i = 0; i < 4; i++)
  475. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  476. ((int) pulse_hi[i] << 11), 4, 1);
  477. break;
  478. }
  479. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  480. for (i = 0; i < 4; i++)
  481. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  482. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  483. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  484. }
  485. }
  486. /**
  487. * Decode pitch gain and fixed gain correction factor.
  488. *
  489. * @param[in] vq_gain Vector-quantized index for gains
  490. * @param[in] mode Mode of the current frame
  491. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  492. * @param[out] pitch_gain Decoded pitch gain
  493. */
  494. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  495. float *fixed_gain_factor, float *pitch_gain)
  496. {
  497. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  498. qua_gain_7b[vq_gain]);
  499. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  500. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  501. }
  502. /**
  503. * Apply pitch sharpening filters to the fixed codebook vector.
  504. *
  505. * @param[in] ctx The context
  506. * @param[in,out] fixed_vector Fixed codebook excitation
  507. */
  508. // XXX: Spec states this procedure should be applied when the pitch
  509. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  510. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  511. {
  512. int i;
  513. /* Tilt part */
  514. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  515. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  516. /* Periodicity enhancement part */
  517. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  518. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  519. }
  520. /**
  521. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  522. *
  523. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  524. * @param[in] p_gain, f_gain Pitch and fixed gains
  525. * @param[in] ctx The context
  526. */
  527. // XXX: There is something wrong with the precision here! The magnitudes
  528. // of the energies are not correct. Please check the reference code carefully
  529. static float voice_factor(float *p_vector, float p_gain,
  530. float *f_vector, float f_gain,
  531. CELPMContext *ctx)
  532. {
  533. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  534. AMRWB_SFR_SIZE) *
  535. p_gain * p_gain;
  536. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  537. AMRWB_SFR_SIZE) *
  538. f_gain * f_gain;
  539. return (p_ener - f_ener) / (p_ener + f_ener);
  540. }
  541. /**
  542. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  543. * also known as "adaptive phase dispersion".
  544. *
  545. * @param[in] ctx The context
  546. * @param[in,out] fixed_vector Unfiltered fixed vector
  547. * @param[out] buf Space for modified vector if necessary
  548. *
  549. * @return The potentially overwritten filtered fixed vector address
  550. */
  551. static float *anti_sparseness(AMRWBContext *ctx,
  552. float *fixed_vector, float *buf)
  553. {
  554. int ir_filter_nr;
  555. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  556. return fixed_vector;
  557. if (ctx->pitch_gain[0] < 0.6) {
  558. ir_filter_nr = 0; // strong filtering
  559. } else if (ctx->pitch_gain[0] < 0.9) {
  560. ir_filter_nr = 1; // medium filtering
  561. } else
  562. ir_filter_nr = 2; // no filtering
  563. /* detect 'onset' */
  564. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  565. if (ir_filter_nr < 2)
  566. ir_filter_nr++;
  567. } else {
  568. int i, count = 0;
  569. for (i = 0; i < 6; i++)
  570. if (ctx->pitch_gain[i] < 0.6)
  571. count++;
  572. if (count > 2)
  573. ir_filter_nr = 0;
  574. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  575. ir_filter_nr--;
  576. }
  577. /* update ir filter strength history */
  578. ctx->prev_ir_filter_nr = ir_filter_nr;
  579. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  580. if (ir_filter_nr < 2) {
  581. int i;
  582. const float *coef = ir_filters_lookup[ir_filter_nr];
  583. /* Circular convolution code in the reference
  584. * decoder was modified to avoid using one
  585. * extra array. The filtered vector is given by:
  586. *
  587. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  588. */
  589. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  590. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  591. if (fixed_vector[i])
  592. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  593. AMRWB_SFR_SIZE);
  594. fixed_vector = buf;
  595. }
  596. return fixed_vector;
  597. }
  598. /**
  599. * Calculate a stability factor {teta} based on distance between
  600. * current and past isf. A value of 1 shows maximum signal stability.
  601. */
  602. static float stability_factor(const float *isf, const float *isf_past)
  603. {
  604. int i;
  605. float acc = 0.0;
  606. for (i = 0; i < LP_ORDER - 1; i++)
  607. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  608. // XXX: This part is not so clear from the reference code
  609. // the result is more accurate changing the "/ 256" to "* 512"
  610. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  611. }
  612. /**
  613. * Apply a non-linear fixed gain smoothing in order to reduce
  614. * fluctuation in the energy of excitation.
  615. *
  616. * @param[in] fixed_gain Unsmoothed fixed gain
  617. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  618. * @param[in] voice_fac Frame voicing factor
  619. * @param[in] stab_fac Frame stability factor
  620. *
  621. * @return The smoothed gain
  622. */
  623. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  624. float voice_fac, float stab_fac)
  625. {
  626. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  627. float g0;
  628. // XXX: the following fixed-point constants used to in(de)crement
  629. // gain by 1.5dB were taken from the reference code, maybe it could
  630. // be simpler
  631. if (fixed_gain < *prev_tr_gain) {
  632. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  633. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  634. } else
  635. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  636. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  637. *prev_tr_gain = g0; // update next frame threshold
  638. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  639. }
  640. /**
  641. * Filter the fixed_vector to emphasize the higher frequencies.
  642. *
  643. * @param[in,out] fixed_vector Fixed codebook vector
  644. * @param[in] voice_fac Frame voicing factor
  645. */
  646. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  647. {
  648. int i;
  649. float cpe = 0.125 * (1 + voice_fac);
  650. float last = fixed_vector[0]; // holds c(i - 1)
  651. fixed_vector[0] -= cpe * fixed_vector[1];
  652. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  653. float cur = fixed_vector[i];
  654. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  655. last = cur;
  656. }
  657. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  658. }
  659. /**
  660. * Conduct 16th order linear predictive coding synthesis from excitation.
  661. *
  662. * @param[in] ctx Pointer to the AMRWBContext
  663. * @param[in] lpc Pointer to the LPC coefficients
  664. * @param[out] excitation Buffer for synthesis final excitation
  665. * @param[in] fixed_gain Fixed codebook gain for synthesis
  666. * @param[in] fixed_vector Algebraic codebook vector
  667. * @param[in,out] samples Pointer to the output samples and memory
  668. */
  669. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  670. float fixed_gain, const float *fixed_vector,
  671. float *samples)
  672. {
  673. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  674. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  675. /* emphasize pitch vector contribution in low bitrate modes */
  676. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  677. int i;
  678. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  679. AMRWB_SFR_SIZE);
  680. // XXX: Weird part in both ref code and spec. A unknown parameter
  681. // {beta} seems to be identical to the current pitch gain
  682. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  683. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  684. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  685. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  686. energy, AMRWB_SFR_SIZE);
  687. }
  688. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  689. AMRWB_SFR_SIZE, LP_ORDER);
  690. }
  691. /**
  692. * Apply to synthesis a de-emphasis filter of the form:
  693. * H(z) = 1 / (1 - m * z^-1)
  694. *
  695. * @param[out] out Output buffer
  696. * @param[in] in Input samples array with in[-1]
  697. * @param[in] m Filter coefficient
  698. * @param[in,out] mem State from last filtering
  699. */
  700. static void de_emphasis(float *out, float *in, float m, float mem[1])
  701. {
  702. int i;
  703. out[0] = in[0] + m * mem[0];
  704. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  705. out[i] = in[i] + out[i - 1] * m;
  706. mem[0] = out[AMRWB_SFR_SIZE - 1];
  707. }
  708. /**
  709. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  710. * a FIR interpolation filter. Uses past data from before *in address.
  711. *
  712. * @param[out] out Buffer for interpolated signal
  713. * @param[in] in Current signal data (length 0.8*o_size)
  714. * @param[in] o_size Output signal length
  715. * @param[in] ctx The context
  716. */
  717. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  718. {
  719. const float *in0 = in - UPS_FIR_SIZE + 1;
  720. int i, j, k;
  721. int int_part = 0, frac_part;
  722. i = 0;
  723. for (j = 0; j < o_size / 5; j++) {
  724. out[i] = in[int_part];
  725. frac_part = 4;
  726. i++;
  727. for (k = 1; k < 5; k++) {
  728. out[i] = ctx->dot_productf(in0 + int_part,
  729. upsample_fir[4 - frac_part],
  730. UPS_MEM_SIZE);
  731. int_part++;
  732. frac_part--;
  733. i++;
  734. }
  735. }
  736. }
  737. /**
  738. * Calculate the high-band gain based on encoded index (23k85 mode) or
  739. * on the low-band speech signal and the Voice Activity Detection flag.
  740. *
  741. * @param[in] ctx The context
  742. * @param[in] synth LB speech synthesis at 12.8k
  743. * @param[in] hb_idx Gain index for mode 23k85 only
  744. * @param[in] vad VAD flag for the frame
  745. */
  746. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  747. uint16_t hb_idx, uint8_t vad)
  748. {
  749. int wsp = (vad > 0);
  750. float tilt;
  751. if (ctx->fr_cur_mode == MODE_23k85)
  752. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  753. tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  754. ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  755. /* return gain bounded by [0.1, 1.0] */
  756. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  757. }
  758. /**
  759. * Generate the high-band excitation with the same energy from the lower
  760. * one and scaled by the given gain.
  761. *
  762. * @param[in] ctx The context
  763. * @param[out] hb_exc Buffer for the excitation
  764. * @param[in] synth_exc Low-band excitation used for synthesis
  765. * @param[in] hb_gain Wanted excitation gain
  766. */
  767. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  768. const float *synth_exc, float hb_gain)
  769. {
  770. int i;
  771. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc,
  772. AMRWB_SFR_SIZE);
  773. /* Generate a white-noise excitation */
  774. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  775. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  776. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  777. energy * hb_gain * hb_gain,
  778. AMRWB_SFR_SIZE_16k);
  779. }
  780. /**
  781. * Calculate the auto-correlation for the ISF difference vector.
  782. */
  783. static float auto_correlation(float *diff_isf, float mean, int lag)
  784. {
  785. int i;
  786. float sum = 0.0;
  787. for (i = 7; i < LP_ORDER - 2; i++) {
  788. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  789. sum += prod * prod;
  790. }
  791. return sum;
  792. }
  793. /**
  794. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  795. * used at mode 6k60 LP filter for the high frequency band.
  796. *
  797. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  798. * values on input
  799. */
  800. static void extrapolate_isf(float isf[LP_ORDER_16k])
  801. {
  802. float diff_isf[LP_ORDER - 2], diff_mean;
  803. float corr_lag[3];
  804. float est, scale;
  805. int i, j, i_max_corr;
  806. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  807. /* Calculate the difference vector */
  808. for (i = 0; i < LP_ORDER - 2; i++)
  809. diff_isf[i] = isf[i + 1] - isf[i];
  810. diff_mean = 0.0;
  811. for (i = 2; i < LP_ORDER - 2; i++)
  812. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  813. /* Find which is the maximum autocorrelation */
  814. i_max_corr = 0;
  815. for (i = 0; i < 3; i++) {
  816. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  817. if (corr_lag[i] > corr_lag[i_max_corr])
  818. i_max_corr = i;
  819. }
  820. i_max_corr++;
  821. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  822. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  823. - isf[i - 2 - i_max_corr];
  824. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  825. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  826. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  827. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  828. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  829. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  830. /* Stability insurance */
  831. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  832. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  833. if (diff_isf[i] > diff_isf[i - 1]) {
  834. diff_isf[i - 1] = 5.0 - diff_isf[i];
  835. } else
  836. diff_isf[i] = 5.0 - diff_isf[i - 1];
  837. }
  838. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  839. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  840. /* Scale the ISF vector for 16000 Hz */
  841. for (i = 0; i < LP_ORDER_16k - 1; i++)
  842. isf[i] *= 0.8;
  843. }
  844. /**
  845. * Spectral expand the LP coefficients using the equation:
  846. * y[i] = x[i] * (gamma ** i)
  847. *
  848. * @param[out] out Output buffer (may use input array)
  849. * @param[in] lpc LP coefficients array
  850. * @param[in] gamma Weighting factor
  851. * @param[in] size LP array size
  852. */
  853. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  854. {
  855. int i;
  856. float fac = gamma;
  857. for (i = 0; i < size; i++) {
  858. out[i] = lpc[i] * fac;
  859. fac *= gamma;
  860. }
  861. }
  862. /**
  863. * Conduct 20th order linear predictive coding synthesis for the high
  864. * frequency band excitation at 16kHz.
  865. *
  866. * @param[in] ctx The context
  867. * @param[in] subframe Current subframe index (0 to 3)
  868. * @param[in,out] samples Pointer to the output speech samples
  869. * @param[in] exc Generated white-noise scaled excitation
  870. * @param[in] isf Current frame isf vector
  871. * @param[in] isf_past Past frame final isf vector
  872. */
  873. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  874. const float *exc, const float *isf, const float *isf_past)
  875. {
  876. float hb_lpc[LP_ORDER_16k];
  877. enum Mode mode = ctx->fr_cur_mode;
  878. if (mode == MODE_6k60) {
  879. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  880. double e_isp[LP_ORDER_16k];
  881. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  882. 1.0 - isfp_inter[subframe], LP_ORDER);
  883. extrapolate_isf(e_isf);
  884. e_isf[LP_ORDER_16k - 1] *= 2.0;
  885. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  886. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  887. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  888. } else {
  889. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  890. }
  891. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  892. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  893. }
  894. /**
  895. * Apply a 15th order filter to high-band samples.
  896. * The filter characteristic depends on the given coefficients.
  897. *
  898. * @param[out] out Buffer for filtered output
  899. * @param[in] fir_coef Filter coefficients
  900. * @param[in,out] mem State from last filtering (updated)
  901. * @param[in] in Input speech data (high-band)
  902. *
  903. * @remark It is safe to pass the same array in in and out parameters
  904. */
  905. #ifndef hb_fir_filter
  906. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  907. float mem[HB_FIR_SIZE], const float *in)
  908. {
  909. int i, j;
  910. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  911. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  912. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  913. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  914. out[i] = 0.0;
  915. for (j = 0; j <= HB_FIR_SIZE; j++)
  916. out[i] += data[i + j] * fir_coef[j];
  917. }
  918. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  919. }
  920. #endif /* hb_fir_filter */
  921. /**
  922. * Update context state before the next subframe.
  923. */
  924. static void update_sub_state(AMRWBContext *ctx)
  925. {
  926. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  927. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  928. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  929. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  930. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  931. LP_ORDER * sizeof(float));
  932. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  933. UPS_MEM_SIZE * sizeof(float));
  934. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  935. LP_ORDER_16k * sizeof(float));
  936. }
  937. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  938. int *got_frame_ptr, AVPacket *avpkt)
  939. {
  940. AMRWBContext *ctx = avctx->priv_data;
  941. AMRWBFrame *cf = &ctx->frame;
  942. const uint8_t *buf = avpkt->data;
  943. int buf_size = avpkt->size;
  944. int expected_fr_size, header_size;
  945. float *buf_out;
  946. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  947. float fixed_gain_factor; // fixed gain correction factor (gamma)
  948. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  949. float synth_fixed_gain; // the fixed gain that synthesis should use
  950. float voice_fac, stab_fac; // parameters used for gain smoothing
  951. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  952. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  953. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  954. float hb_gain;
  955. int sub, i, ret;
  956. /* get output buffer */
  957. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  958. if ((ret = ff_get_buffer(avctx, &ctx->avframe)) < 0) {
  959. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  960. return ret;
  961. }
  962. buf_out = (float *)ctx->avframe.data[0];
  963. header_size = decode_mime_header(ctx, buf);
  964. if (ctx->fr_cur_mode > MODE_SID) {
  965. av_log(avctx, AV_LOG_ERROR,
  966. "Invalid mode %d\n", ctx->fr_cur_mode);
  967. return AVERROR_INVALIDDATA;
  968. }
  969. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  970. if (buf_size < expected_fr_size) {
  971. av_log(avctx, AV_LOG_ERROR,
  972. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  973. *got_frame_ptr = 0;
  974. return AVERROR_INVALIDDATA;
  975. }
  976. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  977. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  978. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  979. av_log_missing_feature(avctx, "SID mode", 1);
  980. return AVERROR_PATCHWELCOME;
  981. }
  982. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  983. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  984. /* Decode the quantized ISF vector */
  985. if (ctx->fr_cur_mode == MODE_6k60) {
  986. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  987. } else {
  988. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  989. }
  990. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  991. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  992. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  993. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  994. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  995. /* Generate a ISP vector for each subframe */
  996. if (ctx->first_frame) {
  997. ctx->first_frame = 0;
  998. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  999. }
  1000. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  1001. for (sub = 0; sub < 4; sub++)
  1002. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  1003. for (sub = 0; sub < 4; sub++) {
  1004. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  1005. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  1006. /* Decode adaptive codebook (pitch vector) */
  1007. decode_pitch_vector(ctx, cur_subframe, sub);
  1008. /* Decode innovative codebook (fixed vector) */
  1009. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  1010. cur_subframe->pul_il, ctx->fr_cur_mode);
  1011. pitch_sharpening(ctx, ctx->fixed_vector);
  1012. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  1013. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1014. ctx->fixed_gain[0] =
  1015. ff_amr_set_fixed_gain(fixed_gain_factor,
  1016. ctx->celpm_ctx.dot_productf(ctx->fixed_vector,
  1017. ctx->fixed_vector,
  1018. AMRWB_SFR_SIZE) /
  1019. AMRWB_SFR_SIZE,
  1020. ctx->prediction_error,
  1021. ENERGY_MEAN, energy_pred_fac);
  1022. /* Calculate voice factor and store tilt for next subframe */
  1023. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1024. ctx->fixed_vector, ctx->fixed_gain[0],
  1025. &ctx->celpm_ctx);
  1026. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1027. /* Construct current excitation */
  1028. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1029. ctx->excitation[i] *= ctx->pitch_gain[0];
  1030. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1031. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1032. }
  1033. /* Post-processing of excitation elements */
  1034. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1035. voice_fac, stab_fac);
  1036. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1037. spare_vector);
  1038. pitch_enhancer(synth_fixed_vector, voice_fac);
  1039. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1040. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1041. /* Synthesis speech post-processing */
  1042. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1043. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1044. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1045. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1046. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1047. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1048. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1049. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1050. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1051. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1052. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1053. hb_gain = find_hb_gain(ctx, hb_samples,
  1054. cur_subframe->hb_gain, cf->vad);
  1055. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1056. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1057. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1058. /* High-band post-processing filters */
  1059. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1060. &ctx->samples_hb[LP_ORDER_16k]);
  1061. if (ctx->fr_cur_mode == MODE_23k85)
  1062. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1063. hb_samples);
  1064. /* Add the low and high frequency bands */
  1065. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1066. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1067. /* Update buffers and history */
  1068. update_sub_state(ctx);
  1069. }
  1070. /* update state for next frame */
  1071. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1072. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1073. *got_frame_ptr = 1;
  1074. *(AVFrame *)data = ctx->avframe;
  1075. return expected_fr_size;
  1076. }
  1077. AVCodec ff_amrwb_decoder = {
  1078. .name = "amrwb",
  1079. .type = AVMEDIA_TYPE_AUDIO,
  1080. .id = AV_CODEC_ID_AMR_WB,
  1081. .priv_data_size = sizeof(AMRWBContext),
  1082. .init = amrwb_decode_init,
  1083. .decode = amrwb_decode_frame,
  1084. .capabilities = CODEC_CAP_DR1,
  1085. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1086. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1087. AV_SAMPLE_FMT_NONE },
  1088. };