You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1793 lines
63KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. //#define DEBUG
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "dsputil.h"
  34. #include "internal.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct {
  171. AVCodecContext *avctx;
  172. AVFrame frame;
  173. ALSSpecificConfig sconf;
  174. GetBitContext gb;
  175. DSPContext dsp;
  176. const AVCRC *crc_table;
  177. uint32_t crc_org; ///< CRC value of the original input data
  178. uint32_t crc; ///< CRC value calculated from decoded data
  179. unsigned int cur_frame_length; ///< length of the current frame to decode
  180. unsigned int frame_id; ///< the frame ID / number of the current frame
  181. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  182. unsigned int cs_switch; ///< if true, channel rearrangement is done
  183. unsigned int num_blocks; ///< number of blocks used in the current frame
  184. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  185. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  186. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  187. int ltp_lag_length; ///< number of bits used for ltp lag value
  188. int *const_block; ///< contains const_block flags for all channels
  189. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  190. unsigned int *opt_order; ///< contains opt_order flags for all channels
  191. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  192. int *use_ltp; ///< contains use_ltp flags for all channels
  193. int *ltp_lag; ///< contains ltp lag values for all channels
  194. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  195. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  196. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  197. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  198. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  199. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  200. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  201. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  202. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  203. int *reverted_channels; ///< stores a flag for each reverted channel
  204. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  205. int32_t **raw_samples; ///< decoded raw samples for each channel
  206. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  207. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  208. } ALSDecContext;
  209. typedef struct {
  210. unsigned int block_length; ///< number of samples within the block
  211. unsigned int ra_block; ///< if true, this is a random access block
  212. int *const_block; ///< if true, this is a constant value block
  213. int js_blocks; ///< true if this block contains a difference signal
  214. unsigned int *shift_lsbs; ///< shift of values for this block
  215. unsigned int *opt_order; ///< prediction order of this block
  216. int *store_prev_samples;///< if true, carryover samples have to be stored
  217. int *use_ltp; ///< if true, long-term prediction is used
  218. int *ltp_lag; ///< lag value for long-term prediction
  219. int *ltp_gain; ///< gain values for ltp 5-tap filter
  220. int32_t *quant_cof; ///< quantized parcor coefficients
  221. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  222. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  223. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  224. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  225. } ALSBlockData;
  226. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  227. {
  228. #ifdef DEBUG
  229. AVCodecContext *avctx = ctx->avctx;
  230. ALSSpecificConfig *sconf = &ctx->sconf;
  231. av_dlog(avctx, "resolution = %i\n", sconf->resolution);
  232. av_dlog(avctx, "floating = %i\n", sconf->floating);
  233. av_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  234. av_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  235. av_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  236. av_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  237. av_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  238. av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  239. av_dlog(avctx, "max_order = %i\n", sconf->max_order);
  240. av_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  241. av_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  242. av_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  243. av_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  244. av_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  245. av_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  246. av_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  247. av_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  248. av_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  249. #endif
  250. }
  251. /** Read an ALSSpecificConfig from a buffer into the output struct.
  252. */
  253. static av_cold int read_specific_config(ALSDecContext *ctx)
  254. {
  255. GetBitContext gb;
  256. uint64_t ht_size;
  257. int i, config_offset;
  258. MPEG4AudioConfig m4ac;
  259. ALSSpecificConfig *sconf = &ctx->sconf;
  260. AVCodecContext *avctx = ctx->avctx;
  261. uint32_t als_id, header_size, trailer_size;
  262. int ret;
  263. if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
  264. return ret;
  265. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  266. avctx->extradata_size * 8, 1);
  267. if (config_offset < 0)
  268. return -1;
  269. skip_bits_long(&gb, config_offset);
  270. if (get_bits_left(&gb) < (30 << 3))
  271. return -1;
  272. // read the fixed items
  273. als_id = get_bits_long(&gb, 32);
  274. avctx->sample_rate = m4ac.sample_rate;
  275. skip_bits_long(&gb, 32); // sample rate already known
  276. sconf->samples = get_bits_long(&gb, 32);
  277. avctx->channels = m4ac.channels;
  278. skip_bits(&gb, 16); // number of channels already known
  279. skip_bits(&gb, 3); // skip file_type
  280. sconf->resolution = get_bits(&gb, 3);
  281. sconf->floating = get_bits1(&gb);
  282. sconf->msb_first = get_bits1(&gb);
  283. sconf->frame_length = get_bits(&gb, 16) + 1;
  284. sconf->ra_distance = get_bits(&gb, 8);
  285. sconf->ra_flag = get_bits(&gb, 2);
  286. sconf->adapt_order = get_bits1(&gb);
  287. sconf->coef_table = get_bits(&gb, 2);
  288. sconf->long_term_prediction = get_bits1(&gb);
  289. sconf->max_order = get_bits(&gb, 10);
  290. sconf->block_switching = get_bits(&gb, 2);
  291. sconf->bgmc = get_bits1(&gb);
  292. sconf->sb_part = get_bits1(&gb);
  293. sconf->joint_stereo = get_bits1(&gb);
  294. sconf->mc_coding = get_bits1(&gb);
  295. sconf->chan_config = get_bits1(&gb);
  296. sconf->chan_sort = get_bits1(&gb);
  297. sconf->crc_enabled = get_bits1(&gb);
  298. sconf->rlslms = get_bits1(&gb);
  299. skip_bits(&gb, 5); // skip 5 reserved bits
  300. skip_bits1(&gb); // skip aux_data_enabled
  301. // check for ALSSpecificConfig struct
  302. if (als_id != MKBETAG('A','L','S','\0'))
  303. return -1;
  304. ctx->cur_frame_length = sconf->frame_length;
  305. // read channel config
  306. if (sconf->chan_config)
  307. sconf->chan_config_info = get_bits(&gb, 16);
  308. // TODO: use this to set avctx->channel_layout
  309. // read channel sorting
  310. if (sconf->chan_sort && avctx->channels > 1) {
  311. int chan_pos_bits = av_ceil_log2(avctx->channels);
  312. int bits_needed = avctx->channels * chan_pos_bits + 7;
  313. if (get_bits_left(&gb) < bits_needed)
  314. return -1;
  315. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  316. return AVERROR(ENOMEM);
  317. ctx->cs_switch = 1;
  318. for (i = 0; i < avctx->channels; i++) {
  319. int idx;
  320. idx = get_bits(&gb, chan_pos_bits);
  321. if (idx >= avctx->channels) {
  322. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  323. ctx->cs_switch = 0;
  324. break;
  325. }
  326. sconf->chan_pos[idx] = i;
  327. }
  328. align_get_bits(&gb);
  329. }
  330. // read fixed header and trailer sizes,
  331. // if size = 0xFFFFFFFF then there is no data field!
  332. if (get_bits_left(&gb) < 64)
  333. return -1;
  334. header_size = get_bits_long(&gb, 32);
  335. trailer_size = get_bits_long(&gb, 32);
  336. if (header_size == 0xFFFFFFFF)
  337. header_size = 0;
  338. if (trailer_size == 0xFFFFFFFF)
  339. trailer_size = 0;
  340. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  341. // skip the header and trailer data
  342. if (get_bits_left(&gb) < ht_size)
  343. return -1;
  344. if (ht_size > INT32_MAX)
  345. return -1;
  346. skip_bits_long(&gb, ht_size);
  347. // initialize CRC calculation
  348. if (sconf->crc_enabled) {
  349. if (get_bits_left(&gb) < 32)
  350. return -1;
  351. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  352. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  353. ctx->crc = 0xFFFFFFFF;
  354. ctx->crc_org = ~get_bits_long(&gb, 32);
  355. } else
  356. skip_bits_long(&gb, 32);
  357. }
  358. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  359. dprint_specific_config(ctx);
  360. return 0;
  361. }
  362. /** Check the ALSSpecificConfig for unsupported features.
  363. */
  364. static int check_specific_config(ALSDecContext *ctx)
  365. {
  366. ALSSpecificConfig *sconf = &ctx->sconf;
  367. int error = 0;
  368. // report unsupported feature and set error value
  369. #define MISSING_ERR(cond, str, errval) \
  370. { \
  371. if (cond) { \
  372. av_log_missing_feature(ctx->avctx, str, 0); \
  373. error = errval; \
  374. } \
  375. }
  376. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  377. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  378. return error;
  379. }
  380. /** Parse the bs_info field to extract the block partitioning used in
  381. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  382. */
  383. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  384. unsigned int div, unsigned int **div_blocks,
  385. unsigned int *num_blocks)
  386. {
  387. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  388. // if the level is valid and the investigated bit n is set
  389. // then recursively check both children at bits (2n+1) and (2n+2)
  390. n *= 2;
  391. div += 1;
  392. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  393. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  394. } else {
  395. // else the bit is not set or the last level has been reached
  396. // (bit implicitly not set)
  397. **div_blocks = div;
  398. (*div_blocks)++;
  399. (*num_blocks)++;
  400. }
  401. }
  402. /** Read and decode a Rice codeword.
  403. */
  404. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  405. {
  406. int max = get_bits_left(gb) - k;
  407. int q = get_unary(gb, 0, max);
  408. int r = k ? get_bits1(gb) : !(q & 1);
  409. if (k > 1) {
  410. q <<= (k - 1);
  411. q += get_bits_long(gb, k - 1);
  412. } else if (!k) {
  413. q >>= 1;
  414. }
  415. return r ? q : ~q;
  416. }
  417. /** Convert PARCOR coefficient k to direct filter coefficient.
  418. */
  419. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  420. {
  421. int i, j;
  422. for (i = 0, j = k - 1; i < j; i++, j--) {
  423. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  424. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  425. cof[i] += tmp1;
  426. }
  427. if (i == j)
  428. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  429. cof[k] = par[k];
  430. }
  431. /** Read block switching field if necessary and set actual block sizes.
  432. * Also assure that the block sizes of the last frame correspond to the
  433. * actual number of samples.
  434. */
  435. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  436. uint32_t *bs_info)
  437. {
  438. ALSSpecificConfig *sconf = &ctx->sconf;
  439. GetBitContext *gb = &ctx->gb;
  440. unsigned int *ptr_div_blocks = div_blocks;
  441. unsigned int b;
  442. if (sconf->block_switching) {
  443. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  444. *bs_info = get_bits_long(gb, bs_info_len);
  445. *bs_info <<= (32 - bs_info_len);
  446. }
  447. ctx->num_blocks = 0;
  448. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  449. // The last frame may have an overdetermined block structure given in
  450. // the bitstream. In that case the defined block structure would need
  451. // more samples than available to be consistent.
  452. // The block structure is actually used but the block sizes are adapted
  453. // to fit the actual number of available samples.
  454. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  455. // This results in the actual block sizes: 2 2 1 0.
  456. // This is not specified in 14496-3 but actually done by the reference
  457. // codec RM22 revision 2.
  458. // This appears to happen in case of an odd number of samples in the last
  459. // frame which is actually not allowed by the block length switching part
  460. // of 14496-3.
  461. // The ALS conformance files feature an odd number of samples in the last
  462. // frame.
  463. for (b = 0; b < ctx->num_blocks; b++)
  464. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  465. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  466. unsigned int remaining = ctx->cur_frame_length;
  467. for (b = 0; b < ctx->num_blocks; b++) {
  468. if (remaining <= div_blocks[b]) {
  469. div_blocks[b] = remaining;
  470. ctx->num_blocks = b + 1;
  471. break;
  472. }
  473. remaining -= div_blocks[b];
  474. }
  475. }
  476. }
  477. /** Read the block data for a constant block
  478. */
  479. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  480. {
  481. ALSSpecificConfig *sconf = &ctx->sconf;
  482. AVCodecContext *avctx = ctx->avctx;
  483. GetBitContext *gb = &ctx->gb;
  484. if (bd->block_length <= 0)
  485. return AVERROR_INVALIDDATA;
  486. *bd->raw_samples = 0;
  487. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  488. bd->js_blocks = get_bits1(gb);
  489. // skip 5 reserved bits
  490. skip_bits(gb, 5);
  491. if (*bd->const_block) {
  492. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  493. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  494. }
  495. // ensure constant block decoding by reusing this field
  496. *bd->const_block = 1;
  497. return 0;
  498. }
  499. /** Decode the block data for a constant block
  500. */
  501. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  502. {
  503. int smp = bd->block_length - 1;
  504. int32_t val = *bd->raw_samples;
  505. int32_t *dst = bd->raw_samples + 1;
  506. // write raw samples into buffer
  507. for (; smp; smp--)
  508. *dst++ = val;
  509. }
  510. /** Read the block data for a non-constant block
  511. */
  512. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  513. {
  514. ALSSpecificConfig *sconf = &ctx->sconf;
  515. AVCodecContext *avctx = ctx->avctx;
  516. GetBitContext *gb = &ctx->gb;
  517. unsigned int k;
  518. unsigned int s[8];
  519. unsigned int sx[8];
  520. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  521. unsigned int start = 0;
  522. unsigned int opt_order;
  523. int sb;
  524. int32_t *quant_cof = bd->quant_cof;
  525. int32_t *current_res;
  526. // ensure variable block decoding by reusing this field
  527. *bd->const_block = 0;
  528. *bd->opt_order = 1;
  529. bd->js_blocks = get_bits1(gb);
  530. opt_order = *bd->opt_order;
  531. // determine the number of subblocks for entropy decoding
  532. if (!sconf->bgmc && !sconf->sb_part) {
  533. log2_sub_blocks = 0;
  534. } else {
  535. if (sconf->bgmc && sconf->sb_part)
  536. log2_sub_blocks = get_bits(gb, 2);
  537. else
  538. log2_sub_blocks = 2 * get_bits1(gb);
  539. }
  540. sub_blocks = 1 << log2_sub_blocks;
  541. // do not continue in case of a damaged stream since
  542. // block_length must be evenly divisible by sub_blocks
  543. if (bd->block_length & (sub_blocks - 1)) {
  544. av_log(avctx, AV_LOG_WARNING,
  545. "Block length is not evenly divisible by the number of subblocks.\n");
  546. return -1;
  547. }
  548. sb_length = bd->block_length >> log2_sub_blocks;
  549. if (sconf->bgmc) {
  550. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  551. for (k = 1; k < sub_blocks; k++)
  552. s[k] = s[k - 1] + decode_rice(gb, 2);
  553. for (k = 0; k < sub_blocks; k++) {
  554. sx[k] = s[k] & 0x0F;
  555. s [k] >>= 4;
  556. }
  557. } else {
  558. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  559. for (k = 1; k < sub_blocks; k++)
  560. s[k] = s[k - 1] + decode_rice(gb, 0);
  561. }
  562. for (k = 1; k < sub_blocks; k++)
  563. if (s[k] > 32) {
  564. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  565. return AVERROR_INVALIDDATA;
  566. }
  567. if (get_bits1(gb))
  568. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  569. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  570. if (!sconf->rlslms) {
  571. if (sconf->adapt_order) {
  572. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  573. 2, sconf->max_order + 1));
  574. *bd->opt_order = get_bits(gb, opt_order_length);
  575. if (*bd->opt_order > sconf->max_order) {
  576. *bd->opt_order = sconf->max_order;
  577. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  578. return AVERROR_INVALIDDATA;
  579. }
  580. } else {
  581. *bd->opt_order = sconf->max_order;
  582. }
  583. opt_order = *bd->opt_order;
  584. if (opt_order) {
  585. int add_base;
  586. if (sconf->coef_table == 3) {
  587. add_base = 0x7F;
  588. // read coefficient 0
  589. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  590. // read coefficient 1
  591. if (opt_order > 1)
  592. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  593. // read coefficients 2 to opt_order
  594. for (k = 2; k < opt_order; k++)
  595. quant_cof[k] = get_bits(gb, 7);
  596. } else {
  597. int k_max;
  598. add_base = 1;
  599. // read coefficient 0 to 19
  600. k_max = FFMIN(opt_order, 20);
  601. for (k = 0; k < k_max; k++) {
  602. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  603. int offset = parcor_rice_table[sconf->coef_table][k][0];
  604. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  605. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  606. av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range.\n", quant_cof[k]);
  607. return AVERROR_INVALIDDATA;
  608. }
  609. }
  610. // read coefficients 20 to 126
  611. k_max = FFMIN(opt_order, 127);
  612. for (; k < k_max; k++)
  613. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  614. // read coefficients 127 to opt_order
  615. for (; k < opt_order; k++)
  616. quant_cof[k] = decode_rice(gb, 1);
  617. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  618. if (opt_order > 1)
  619. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  620. }
  621. for (k = 2; k < opt_order; k++)
  622. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  623. }
  624. }
  625. // read LTP gain and lag values
  626. if (sconf->long_term_prediction) {
  627. *bd->use_ltp = get_bits1(gb);
  628. if (*bd->use_ltp) {
  629. int r, c;
  630. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  631. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  632. r = get_unary(gb, 0, 3);
  633. c = get_bits(gb, 2);
  634. bd->ltp_gain[2] = ltp_gain_values[r][c];
  635. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  636. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  637. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  638. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  639. }
  640. }
  641. // read first value and residuals in case of a random access block
  642. if (bd->ra_block) {
  643. if (opt_order)
  644. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  645. if (opt_order > 1)
  646. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  647. if (opt_order > 2)
  648. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  649. start = FFMIN(opt_order, 3);
  650. }
  651. // read all residuals
  652. if (sconf->bgmc) {
  653. int delta[8];
  654. unsigned int k [8];
  655. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  656. // read most significant bits
  657. unsigned int high;
  658. unsigned int low;
  659. unsigned int value;
  660. ff_bgmc_decode_init(gb, &high, &low, &value);
  661. current_res = bd->raw_samples + start;
  662. for (sb = 0; sb < sub_blocks; sb++) {
  663. unsigned int sb_len = sb_length - (sb ? 0 : start);
  664. k [sb] = s[sb] > b ? s[sb] - b : 0;
  665. delta[sb] = 5 - s[sb] + k[sb];
  666. ff_bgmc_decode(gb, sb_len, current_res,
  667. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  668. current_res += sb_len;
  669. }
  670. ff_bgmc_decode_end(gb);
  671. // read least significant bits and tails
  672. current_res = bd->raw_samples + start;
  673. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  674. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  675. unsigned int cur_k = k[sb];
  676. unsigned int cur_s = s[sb];
  677. for (; start < sb_length; start++) {
  678. int32_t res = *current_res;
  679. if (res == cur_tail_code) {
  680. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  681. << (5 - delta[sb]);
  682. res = decode_rice(gb, cur_s);
  683. if (res >= 0) {
  684. res += (max_msb ) << cur_k;
  685. } else {
  686. res -= (max_msb - 1) << cur_k;
  687. }
  688. } else {
  689. if (res > cur_tail_code)
  690. res--;
  691. if (res & 1)
  692. res = -res;
  693. res >>= 1;
  694. if (cur_k) {
  695. res <<= cur_k;
  696. res |= get_bits_long(gb, cur_k);
  697. }
  698. }
  699. *current_res++ = res;
  700. }
  701. }
  702. } else {
  703. current_res = bd->raw_samples + start;
  704. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  705. for (; start < sb_length; start++)
  706. *current_res++ = decode_rice(gb, s[sb]);
  707. }
  708. if (!sconf->mc_coding || ctx->js_switch)
  709. align_get_bits(gb);
  710. return 0;
  711. }
  712. /** Decode the block data for a non-constant block
  713. */
  714. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  715. {
  716. ALSSpecificConfig *sconf = &ctx->sconf;
  717. unsigned int block_length = bd->block_length;
  718. unsigned int smp = 0;
  719. unsigned int k;
  720. int opt_order = *bd->opt_order;
  721. int sb;
  722. int64_t y;
  723. int32_t *quant_cof = bd->quant_cof;
  724. int32_t *lpc_cof = bd->lpc_cof;
  725. int32_t *raw_samples = bd->raw_samples;
  726. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  727. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  728. // reverse long-term prediction
  729. if (*bd->use_ltp) {
  730. int ltp_smp;
  731. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  732. int center = ltp_smp - *bd->ltp_lag;
  733. int begin = FFMAX(0, center - 2);
  734. int end = center + 3;
  735. int tab = 5 - (end - begin);
  736. int base;
  737. y = 1 << 6;
  738. for (base = begin; base < end; base++, tab++)
  739. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  740. raw_samples[ltp_smp] += y >> 7;
  741. }
  742. }
  743. // reconstruct all samples from residuals
  744. if (bd->ra_block) {
  745. for (smp = 0; smp < opt_order; smp++) {
  746. y = 1 << 19;
  747. for (sb = 0; sb < smp; sb++)
  748. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  749. *raw_samples++ -= y >> 20;
  750. parcor_to_lpc(smp, quant_cof, lpc_cof);
  751. }
  752. } else {
  753. for (k = 0; k < opt_order; k++)
  754. parcor_to_lpc(k, quant_cof, lpc_cof);
  755. // store previous samples in case that they have to be altered
  756. if (*bd->store_prev_samples)
  757. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  758. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  759. // reconstruct difference signal for prediction (joint-stereo)
  760. if (bd->js_blocks && bd->raw_other) {
  761. int32_t *left, *right;
  762. if (bd->raw_other > raw_samples) { // D = R - L
  763. left = raw_samples;
  764. right = bd->raw_other;
  765. } else { // D = R - L
  766. left = bd->raw_other;
  767. right = raw_samples;
  768. }
  769. for (sb = -1; sb >= -sconf->max_order; sb--)
  770. raw_samples[sb] = right[sb] - left[sb];
  771. }
  772. // reconstruct shifted signal
  773. if (*bd->shift_lsbs)
  774. for (sb = -1; sb >= -sconf->max_order; sb--)
  775. raw_samples[sb] >>= *bd->shift_lsbs;
  776. }
  777. // reverse linear prediction coefficients for efficiency
  778. lpc_cof = lpc_cof + opt_order;
  779. for (sb = 0; sb < opt_order; sb++)
  780. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  781. // reconstruct raw samples
  782. raw_samples = bd->raw_samples + smp;
  783. lpc_cof = lpc_cof_reversed + opt_order;
  784. for (; raw_samples < raw_samples_end; raw_samples++) {
  785. y = 1 << 19;
  786. for (sb = -opt_order; sb < 0; sb++)
  787. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  788. *raw_samples -= y >> 20;
  789. }
  790. raw_samples = bd->raw_samples;
  791. // restore previous samples in case that they have been altered
  792. if (*bd->store_prev_samples)
  793. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  794. sizeof(*raw_samples) * sconf->max_order);
  795. return 0;
  796. }
  797. /** Read the block data.
  798. */
  799. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  800. {
  801. GetBitContext *gb = &ctx->gb;
  802. int ret;
  803. *bd->shift_lsbs = 0;
  804. // read block type flag and read the samples accordingly
  805. if (get_bits1(gb)) {
  806. if ((ret = read_var_block_data(ctx, bd)) < 0)
  807. return ret;
  808. } else {
  809. if ((ret = read_const_block_data(ctx, bd)) < 0)
  810. return ret;
  811. }
  812. return 0;
  813. }
  814. /** Decode the block data.
  815. */
  816. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  817. {
  818. unsigned int smp;
  819. // read block type flag and read the samples accordingly
  820. if (*bd->const_block)
  821. decode_const_block_data(ctx, bd);
  822. else if (decode_var_block_data(ctx, bd))
  823. return -1;
  824. // TODO: read RLSLMS extension data
  825. if (*bd->shift_lsbs)
  826. for (smp = 0; smp < bd->block_length; smp++)
  827. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  828. return 0;
  829. }
  830. /** Read and decode block data successively.
  831. */
  832. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  833. {
  834. int ret;
  835. ret = read_block(ctx, bd);
  836. if (ret)
  837. return ret;
  838. ret = decode_block(ctx, bd);
  839. return ret;
  840. }
  841. /** Compute the number of samples left to decode for the current frame and
  842. * sets these samples to zero.
  843. */
  844. static void zero_remaining(unsigned int b, unsigned int b_max,
  845. const unsigned int *div_blocks, int32_t *buf)
  846. {
  847. unsigned int count = 0;
  848. while (b < b_max)
  849. count += div_blocks[b++];
  850. if (count)
  851. memset(buf, 0, sizeof(*buf) * count);
  852. }
  853. /** Decode blocks independently.
  854. */
  855. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  856. unsigned int c, const unsigned int *div_blocks,
  857. unsigned int *js_blocks)
  858. {
  859. unsigned int b;
  860. ALSBlockData bd = { 0 };
  861. bd.ra_block = ra_frame;
  862. bd.const_block = ctx->const_block;
  863. bd.shift_lsbs = ctx->shift_lsbs;
  864. bd.opt_order = ctx->opt_order;
  865. bd.store_prev_samples = ctx->store_prev_samples;
  866. bd.use_ltp = ctx->use_ltp;
  867. bd.ltp_lag = ctx->ltp_lag;
  868. bd.ltp_gain = ctx->ltp_gain[0];
  869. bd.quant_cof = ctx->quant_cof[0];
  870. bd.lpc_cof = ctx->lpc_cof[0];
  871. bd.prev_raw_samples = ctx->prev_raw_samples;
  872. bd.raw_samples = ctx->raw_samples[c];
  873. for (b = 0; b < ctx->num_blocks; b++) {
  874. bd.block_length = div_blocks[b];
  875. if (read_decode_block(ctx, &bd)) {
  876. // damaged block, write zero for the rest of the frame
  877. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  878. return -1;
  879. }
  880. bd.raw_samples += div_blocks[b];
  881. bd.ra_block = 0;
  882. }
  883. return 0;
  884. }
  885. /** Decode blocks dependently.
  886. */
  887. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  888. unsigned int c, const unsigned int *div_blocks,
  889. unsigned int *js_blocks)
  890. {
  891. ALSSpecificConfig *sconf = &ctx->sconf;
  892. unsigned int offset = 0;
  893. unsigned int b;
  894. ALSBlockData bd[2] = { { 0 } };
  895. bd[0].ra_block = ra_frame;
  896. bd[0].const_block = ctx->const_block;
  897. bd[0].shift_lsbs = ctx->shift_lsbs;
  898. bd[0].opt_order = ctx->opt_order;
  899. bd[0].store_prev_samples = ctx->store_prev_samples;
  900. bd[0].use_ltp = ctx->use_ltp;
  901. bd[0].ltp_lag = ctx->ltp_lag;
  902. bd[0].ltp_gain = ctx->ltp_gain[0];
  903. bd[0].quant_cof = ctx->quant_cof[0];
  904. bd[0].lpc_cof = ctx->lpc_cof[0];
  905. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  906. bd[0].js_blocks = *js_blocks;
  907. bd[1].ra_block = ra_frame;
  908. bd[1].const_block = ctx->const_block;
  909. bd[1].shift_lsbs = ctx->shift_lsbs;
  910. bd[1].opt_order = ctx->opt_order;
  911. bd[1].store_prev_samples = ctx->store_prev_samples;
  912. bd[1].use_ltp = ctx->use_ltp;
  913. bd[1].ltp_lag = ctx->ltp_lag;
  914. bd[1].ltp_gain = ctx->ltp_gain[0];
  915. bd[1].quant_cof = ctx->quant_cof[0];
  916. bd[1].lpc_cof = ctx->lpc_cof[0];
  917. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  918. bd[1].js_blocks = *(js_blocks + 1);
  919. // decode all blocks
  920. for (b = 0; b < ctx->num_blocks; b++) {
  921. unsigned int s;
  922. bd[0].block_length = div_blocks[b];
  923. bd[1].block_length = div_blocks[b];
  924. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  925. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  926. bd[0].raw_other = bd[1].raw_samples;
  927. bd[1].raw_other = bd[0].raw_samples;
  928. if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
  929. // damaged block, write zero for the rest of the frame
  930. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  931. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  932. return -1;
  933. }
  934. // reconstruct joint-stereo blocks
  935. if (bd[0].js_blocks) {
  936. if (bd[1].js_blocks)
  937. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  938. for (s = 0; s < div_blocks[b]; s++)
  939. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  940. } else if (bd[1].js_blocks) {
  941. for (s = 0; s < div_blocks[b]; s++)
  942. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  943. }
  944. offset += div_blocks[b];
  945. bd[0].ra_block = 0;
  946. bd[1].ra_block = 0;
  947. }
  948. // store carryover raw samples,
  949. // the others channel raw samples are stored by the calling function.
  950. memmove(ctx->raw_samples[c] - sconf->max_order,
  951. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  952. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  953. return 0;
  954. }
  955. /** Read the channel data.
  956. */
  957. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  958. {
  959. GetBitContext *gb = &ctx->gb;
  960. ALSChannelData *current = cd;
  961. unsigned int channels = ctx->avctx->channels;
  962. int entries = 0;
  963. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  964. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  965. if (current->master_channel >= channels) {
  966. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
  967. return -1;
  968. }
  969. if (current->master_channel != c) {
  970. current->time_diff_flag = get_bits1(gb);
  971. current->weighting[0] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  972. current->weighting[1] = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 31)];
  973. current->weighting[2] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  974. if (current->time_diff_flag) {
  975. current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  976. current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  977. current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  978. current->time_diff_sign = get_bits1(gb);
  979. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  980. }
  981. }
  982. current++;
  983. entries++;
  984. }
  985. if (entries == channels) {
  986. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
  987. return -1;
  988. }
  989. align_get_bits(gb);
  990. return 0;
  991. }
  992. /** Recursively reverts the inter-channel correlation for a block.
  993. */
  994. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  995. ALSChannelData **cd, int *reverted,
  996. unsigned int offset, int c)
  997. {
  998. ALSChannelData *ch = cd[c];
  999. unsigned int dep = 0;
  1000. unsigned int channels = ctx->avctx->channels;
  1001. if (reverted[c])
  1002. return 0;
  1003. reverted[c] = 1;
  1004. while (dep < channels && !ch[dep].stop_flag) {
  1005. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1006. ch[dep].master_channel);
  1007. dep++;
  1008. }
  1009. if (dep == channels) {
  1010. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1011. return -1;
  1012. }
  1013. bd->const_block = ctx->const_block + c;
  1014. bd->shift_lsbs = ctx->shift_lsbs + c;
  1015. bd->opt_order = ctx->opt_order + c;
  1016. bd->store_prev_samples = ctx->store_prev_samples + c;
  1017. bd->use_ltp = ctx->use_ltp + c;
  1018. bd->ltp_lag = ctx->ltp_lag + c;
  1019. bd->ltp_gain = ctx->ltp_gain[c];
  1020. bd->lpc_cof = ctx->lpc_cof[c];
  1021. bd->quant_cof = ctx->quant_cof[c];
  1022. bd->raw_samples = ctx->raw_samples[c] + offset;
  1023. dep = 0;
  1024. while (!ch[dep].stop_flag) {
  1025. unsigned int smp;
  1026. unsigned int begin = 1;
  1027. unsigned int end = bd->block_length - 1;
  1028. int64_t y;
  1029. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1030. if (ch[dep].time_diff_flag) {
  1031. int t = ch[dep].time_diff_index;
  1032. if (ch[dep].time_diff_sign) {
  1033. t = -t;
  1034. begin -= t;
  1035. } else {
  1036. end -= t;
  1037. }
  1038. for (smp = begin; smp < end; smp++) {
  1039. y = (1 << 6) +
  1040. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1041. MUL64(ch[dep].weighting[1], master[smp ]) +
  1042. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1043. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1044. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1045. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1046. bd->raw_samples[smp] += y >> 7;
  1047. }
  1048. } else {
  1049. for (smp = begin; smp < end; smp++) {
  1050. y = (1 << 6) +
  1051. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1052. MUL64(ch[dep].weighting[1], master[smp ]) +
  1053. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1054. bd->raw_samples[smp] += y >> 7;
  1055. }
  1056. }
  1057. dep++;
  1058. }
  1059. return 0;
  1060. }
  1061. /** Read the frame data.
  1062. */
  1063. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1064. {
  1065. ALSSpecificConfig *sconf = &ctx->sconf;
  1066. AVCodecContext *avctx = ctx->avctx;
  1067. GetBitContext *gb = &ctx->gb;
  1068. unsigned int div_blocks[32]; ///< block sizes.
  1069. unsigned int c;
  1070. unsigned int js_blocks[2];
  1071. uint32_t bs_info = 0;
  1072. // skip the size of the ra unit if present in the frame
  1073. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1074. skip_bits_long(gb, 32);
  1075. if (sconf->mc_coding && sconf->joint_stereo) {
  1076. ctx->js_switch = get_bits1(gb);
  1077. align_get_bits(gb);
  1078. }
  1079. if (!sconf->mc_coding || ctx->js_switch) {
  1080. int independent_bs = !sconf->joint_stereo;
  1081. for (c = 0; c < avctx->channels; c++) {
  1082. js_blocks[0] = 0;
  1083. js_blocks[1] = 0;
  1084. get_block_sizes(ctx, div_blocks, &bs_info);
  1085. // if joint_stereo and block_switching is set, independent decoding
  1086. // is signaled via the first bit of bs_info
  1087. if (sconf->joint_stereo && sconf->block_switching)
  1088. if (bs_info >> 31)
  1089. independent_bs = 2;
  1090. // if this is the last channel, it has to be decoded independently
  1091. if (c == avctx->channels - 1)
  1092. independent_bs = 1;
  1093. if (independent_bs) {
  1094. if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
  1095. return -1;
  1096. independent_bs--;
  1097. } else {
  1098. if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
  1099. return -1;
  1100. c++;
  1101. }
  1102. // store carryover raw samples
  1103. memmove(ctx->raw_samples[c] - sconf->max_order,
  1104. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1105. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1106. }
  1107. } else { // multi-channel coding
  1108. ALSBlockData bd = { 0 };
  1109. int b, ret;
  1110. int *reverted_channels = ctx->reverted_channels;
  1111. unsigned int offset = 0;
  1112. for (c = 0; c < avctx->channels; c++)
  1113. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1114. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
  1115. return -1;
  1116. }
  1117. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1118. bd.ra_block = ra_frame;
  1119. bd.prev_raw_samples = ctx->prev_raw_samples;
  1120. get_block_sizes(ctx, div_blocks, &bs_info);
  1121. for (b = 0; b < ctx->num_blocks; b++) {
  1122. bd.block_length = div_blocks[b];
  1123. for (c = 0; c < avctx->channels; c++) {
  1124. bd.const_block = ctx->const_block + c;
  1125. bd.shift_lsbs = ctx->shift_lsbs + c;
  1126. bd.opt_order = ctx->opt_order + c;
  1127. bd.store_prev_samples = ctx->store_prev_samples + c;
  1128. bd.use_ltp = ctx->use_ltp + c;
  1129. bd.ltp_lag = ctx->ltp_lag + c;
  1130. bd.ltp_gain = ctx->ltp_gain[c];
  1131. bd.lpc_cof = ctx->lpc_cof[c];
  1132. bd.quant_cof = ctx->quant_cof[c];
  1133. bd.raw_samples = ctx->raw_samples[c] + offset;
  1134. bd.raw_other = NULL;
  1135. if ((ret = read_block(ctx, &bd)) < 0)
  1136. return ret;
  1137. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1138. return ret;
  1139. }
  1140. for (c = 0; c < avctx->channels; c++)
  1141. if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1142. reverted_channels, offset, c))
  1143. return -1;
  1144. for (c = 0; c < avctx->channels; c++) {
  1145. bd.const_block = ctx->const_block + c;
  1146. bd.shift_lsbs = ctx->shift_lsbs + c;
  1147. bd.opt_order = ctx->opt_order + c;
  1148. bd.store_prev_samples = ctx->store_prev_samples + c;
  1149. bd.use_ltp = ctx->use_ltp + c;
  1150. bd.ltp_lag = ctx->ltp_lag + c;
  1151. bd.ltp_gain = ctx->ltp_gain[c];
  1152. bd.lpc_cof = ctx->lpc_cof[c];
  1153. bd.quant_cof = ctx->quant_cof[c];
  1154. bd.raw_samples = ctx->raw_samples[c] + offset;
  1155. if ((ret = decode_block(ctx, &bd)) < 0)
  1156. return ret;
  1157. }
  1158. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1159. offset += div_blocks[b];
  1160. bd.ra_block = 0;
  1161. }
  1162. // store carryover raw samples
  1163. for (c = 0; c < avctx->channels; c++)
  1164. memmove(ctx->raw_samples[c] - sconf->max_order,
  1165. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1166. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1167. }
  1168. // TODO: read_diff_float_data
  1169. return 0;
  1170. }
  1171. /** Decode an ALS frame.
  1172. */
  1173. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1174. AVPacket *avpkt)
  1175. {
  1176. ALSDecContext *ctx = avctx->priv_data;
  1177. ALSSpecificConfig *sconf = &ctx->sconf;
  1178. const uint8_t *buffer = avpkt->data;
  1179. int buffer_size = avpkt->size;
  1180. int invalid_frame, ret;
  1181. unsigned int c, sample, ra_frame, bytes_read, shift;
  1182. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1183. // In the case that the distance between random access frames is set to zero
  1184. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1185. // For the first frame, if prediction is used, all samples used from the
  1186. // previous frame are assumed to be zero.
  1187. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1188. // the last frame to decode might have a different length
  1189. if (sconf->samples != 0xFFFFFFFF)
  1190. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1191. sconf->frame_length);
  1192. else
  1193. ctx->cur_frame_length = sconf->frame_length;
  1194. // decode the frame data
  1195. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1196. av_log(ctx->avctx, AV_LOG_WARNING,
  1197. "Reading frame data failed. Skipping RA unit.\n");
  1198. ctx->frame_id++;
  1199. /* get output buffer */
  1200. ctx->frame.nb_samples = ctx->cur_frame_length;
  1201. if ((ret = ff_get_buffer(avctx, &ctx->frame)) < 0) {
  1202. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed.\n");
  1203. return ret;
  1204. }
  1205. // transform decoded frame into output format
  1206. #define INTERLEAVE_OUTPUT(bps) \
  1207. { \
  1208. int##bps##_t *dest = (int##bps##_t*)ctx->frame.data[0]; \
  1209. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1210. if (!ctx->cs_switch) { \
  1211. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1212. for (c = 0; c < avctx->channels; c++) \
  1213. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1214. } else { \
  1215. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1216. for (c = 0; c < avctx->channels; c++) \
  1217. *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
  1218. } \
  1219. }
  1220. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1221. INTERLEAVE_OUTPUT(16)
  1222. } else {
  1223. INTERLEAVE_OUTPUT(32)
  1224. }
  1225. // update CRC
  1226. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1227. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1228. if (ctx->avctx->bits_per_raw_sample == 24) {
  1229. int32_t *src = (int32_t *)ctx->frame.data[0];
  1230. for (sample = 0;
  1231. sample < ctx->cur_frame_length * avctx->channels;
  1232. sample++) {
  1233. int32_t v;
  1234. if (swap)
  1235. v = av_bswap32(src[sample]);
  1236. else
  1237. v = src[sample];
  1238. if (!HAVE_BIGENDIAN)
  1239. v >>= 8;
  1240. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1241. }
  1242. } else {
  1243. uint8_t *crc_source;
  1244. if (swap) {
  1245. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1246. int16_t *src = (int16_t*) ctx->frame.data[0];
  1247. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1248. for (sample = 0;
  1249. sample < ctx->cur_frame_length * avctx->channels;
  1250. sample++)
  1251. *dest++ = av_bswap16(src[sample]);
  1252. } else {
  1253. ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
  1254. (uint32_t *)ctx->frame.data[0],
  1255. ctx->cur_frame_length * avctx->channels);
  1256. }
  1257. crc_source = ctx->crc_buffer;
  1258. } else {
  1259. crc_source = ctx->frame.data[0];
  1260. }
  1261. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1262. ctx->cur_frame_length * avctx->channels *
  1263. av_get_bytes_per_sample(avctx->sample_fmt));
  1264. }
  1265. // check CRC sums if this is the last frame
  1266. if (ctx->cur_frame_length != sconf->frame_length &&
  1267. ctx->crc_org != ctx->crc) {
  1268. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1269. }
  1270. }
  1271. *got_frame_ptr = 1;
  1272. *(AVFrame *)data = ctx->frame;
  1273. bytes_read = invalid_frame ? buffer_size :
  1274. (get_bits_count(&ctx->gb) + 7) >> 3;
  1275. return bytes_read;
  1276. }
  1277. /** Uninitialize the ALS decoder.
  1278. */
  1279. static av_cold int decode_end(AVCodecContext *avctx)
  1280. {
  1281. ALSDecContext *ctx = avctx->priv_data;
  1282. av_freep(&ctx->sconf.chan_pos);
  1283. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1284. av_freep(&ctx->const_block);
  1285. av_freep(&ctx->shift_lsbs);
  1286. av_freep(&ctx->opt_order);
  1287. av_freep(&ctx->store_prev_samples);
  1288. av_freep(&ctx->use_ltp);
  1289. av_freep(&ctx->ltp_lag);
  1290. av_freep(&ctx->ltp_gain);
  1291. av_freep(&ctx->ltp_gain_buffer);
  1292. av_freep(&ctx->quant_cof);
  1293. av_freep(&ctx->lpc_cof);
  1294. av_freep(&ctx->quant_cof_buffer);
  1295. av_freep(&ctx->lpc_cof_buffer);
  1296. av_freep(&ctx->lpc_cof_reversed_buffer);
  1297. av_freep(&ctx->prev_raw_samples);
  1298. av_freep(&ctx->raw_samples);
  1299. av_freep(&ctx->raw_buffer);
  1300. av_freep(&ctx->chan_data);
  1301. av_freep(&ctx->chan_data_buffer);
  1302. av_freep(&ctx->reverted_channels);
  1303. av_freep(&ctx->crc_buffer);
  1304. return 0;
  1305. }
  1306. /** Initialize the ALS decoder.
  1307. */
  1308. static av_cold int decode_init(AVCodecContext *avctx)
  1309. {
  1310. unsigned int c;
  1311. unsigned int channel_size;
  1312. int num_buffers;
  1313. ALSDecContext *ctx = avctx->priv_data;
  1314. ALSSpecificConfig *sconf = &ctx->sconf;
  1315. ctx->avctx = avctx;
  1316. if (!avctx->extradata) {
  1317. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1318. return -1;
  1319. }
  1320. if (read_specific_config(ctx)) {
  1321. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1322. decode_end(avctx);
  1323. return -1;
  1324. }
  1325. if (check_specific_config(ctx)) {
  1326. decode_end(avctx);
  1327. return -1;
  1328. }
  1329. if (sconf->bgmc)
  1330. ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1331. if (sconf->floating) {
  1332. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1333. avctx->bits_per_raw_sample = 32;
  1334. } else {
  1335. avctx->sample_fmt = sconf->resolution > 1
  1336. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1337. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1338. }
  1339. // set maximum Rice parameter for progressive decoding based on resolution
  1340. // This is not specified in 14496-3 but actually done by the reference
  1341. // codec RM22 revision 2.
  1342. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1343. // set lag value for long-term prediction
  1344. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1345. (avctx->sample_rate >= 192000);
  1346. // allocate quantized parcor coefficient buffer
  1347. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1348. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1349. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1350. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1351. num_buffers * sconf->max_order);
  1352. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1353. num_buffers * sconf->max_order);
  1354. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1355. sconf->max_order);
  1356. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1357. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1358. !ctx->lpc_cof_reversed_buffer) {
  1359. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1360. return AVERROR(ENOMEM);
  1361. }
  1362. // assign quantized parcor coefficient buffers
  1363. for (c = 0; c < num_buffers; c++) {
  1364. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1365. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1366. }
  1367. // allocate and assign lag and gain data buffer for ltp mode
  1368. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1369. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1370. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1371. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1372. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1373. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1374. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1375. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1376. num_buffers * 5);
  1377. if (!ctx->const_block || !ctx->shift_lsbs ||
  1378. !ctx->opt_order || !ctx->store_prev_samples ||
  1379. !ctx->use_ltp || !ctx->ltp_lag ||
  1380. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1381. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1382. decode_end(avctx);
  1383. return AVERROR(ENOMEM);
  1384. }
  1385. for (c = 0; c < num_buffers; c++)
  1386. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1387. // allocate and assign channel data buffer for mcc mode
  1388. if (sconf->mc_coding) {
  1389. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1390. num_buffers * num_buffers);
  1391. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1392. num_buffers);
  1393. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1394. num_buffers);
  1395. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1396. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1397. decode_end(avctx);
  1398. return AVERROR(ENOMEM);
  1399. }
  1400. for (c = 0; c < num_buffers; c++)
  1401. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1402. } else {
  1403. ctx->chan_data = NULL;
  1404. ctx->chan_data_buffer = NULL;
  1405. ctx->reverted_channels = NULL;
  1406. }
  1407. channel_size = sconf->frame_length + sconf->max_order;
  1408. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1409. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1410. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1411. // allocate previous raw sample buffer
  1412. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1413. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1414. decode_end(avctx);
  1415. return AVERROR(ENOMEM);
  1416. }
  1417. // assign raw samples buffers
  1418. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1419. for (c = 1; c < avctx->channels; c++)
  1420. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1421. // allocate crc buffer
  1422. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1423. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1424. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1425. ctx->cur_frame_length *
  1426. avctx->channels *
  1427. av_get_bytes_per_sample(avctx->sample_fmt));
  1428. if (!ctx->crc_buffer) {
  1429. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1430. decode_end(avctx);
  1431. return AVERROR(ENOMEM);
  1432. }
  1433. }
  1434. ff_dsputil_init(&ctx->dsp, avctx);
  1435. avcodec_get_frame_defaults(&ctx->frame);
  1436. avctx->coded_frame = &ctx->frame;
  1437. return 0;
  1438. }
  1439. /** Flush (reset) the frame ID after seeking.
  1440. */
  1441. static av_cold void flush(AVCodecContext *avctx)
  1442. {
  1443. ALSDecContext *ctx = avctx->priv_data;
  1444. ctx->frame_id = 0;
  1445. }
  1446. AVCodec ff_als_decoder = {
  1447. .name = "als",
  1448. .type = AVMEDIA_TYPE_AUDIO,
  1449. .id = AV_CODEC_ID_MP4ALS,
  1450. .priv_data_size = sizeof(ALSDecContext),
  1451. .init = decode_init,
  1452. .close = decode_end,
  1453. .decode = decode_frame,
  1454. .flush = flush,
  1455. .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
  1456. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1457. };