You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1722 lines
64KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/libm.h"
  35. #include "libavutil/avassert.h"
  36. #include <stdint.h>
  37. #include <float.h>
  38. #include <math.h>
  39. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  40. #define NOISE_FLOOR_OFFSET 6.0f
  41. /**
  42. * SBR VLC tables
  43. */
  44. enum {
  45. T_HUFFMAN_ENV_1_5DB,
  46. F_HUFFMAN_ENV_1_5DB,
  47. T_HUFFMAN_ENV_BAL_1_5DB,
  48. F_HUFFMAN_ENV_BAL_1_5DB,
  49. T_HUFFMAN_ENV_3_0DB,
  50. F_HUFFMAN_ENV_3_0DB,
  51. T_HUFFMAN_ENV_BAL_3_0DB,
  52. F_HUFFMAN_ENV_BAL_3_0DB,
  53. T_HUFFMAN_NOISE_3_0DB,
  54. T_HUFFMAN_NOISE_BAL_3_0DB,
  55. };
  56. /**
  57. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  58. */
  59. enum {
  60. FIXFIX,
  61. FIXVAR,
  62. VARFIX,
  63. VARVAR,
  64. };
  65. enum {
  66. EXTENSION_ID_PS = 2,
  67. };
  68. static VLC vlc_sbr[10];
  69. static const int8_t vlc_sbr_lav[10] =
  70. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  71. #define SBR_INIT_VLC_STATIC(num, size) \
  72. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  73. sbr_tmp[num].sbr_bits , 1, 1, \
  74. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  75. size)
  76. #define SBR_VLC_ROW(name) \
  77. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  78. av_cold void ff_aac_sbr_init(void)
  79. {
  80. int n;
  81. static const struct {
  82. const void *sbr_codes, *sbr_bits;
  83. const unsigned int table_size, elem_size;
  84. } sbr_tmp[] = {
  85. SBR_VLC_ROW(t_huffman_env_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  89. SBR_VLC_ROW(t_huffman_env_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_3_0dB),
  91. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  94. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  95. };
  96. // SBR VLC table initialization
  97. SBR_INIT_VLC_STATIC(0, 1098);
  98. SBR_INIT_VLC_STATIC(1, 1092);
  99. SBR_INIT_VLC_STATIC(2, 768);
  100. SBR_INIT_VLC_STATIC(3, 1026);
  101. SBR_INIT_VLC_STATIC(4, 1058);
  102. SBR_INIT_VLC_STATIC(5, 1052);
  103. SBR_INIT_VLC_STATIC(6, 544);
  104. SBR_INIT_VLC_STATIC(7, 544);
  105. SBR_INIT_VLC_STATIC(8, 592);
  106. SBR_INIT_VLC_STATIC(9, 512);
  107. for (n = 1; n < 320; n++)
  108. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  109. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  110. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  111. for (n = 0; n < 320; n++)
  112. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  113. ff_ps_init();
  114. }
  115. /** Places SBR in pure upsampling mode. */
  116. static void sbr_turnoff(SpectralBandReplication *sbr) {
  117. sbr->start = 0;
  118. // Init defults used in pure upsampling mode
  119. sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  120. sbr->m[1] = 0;
  121. // Reset values for first SBR header
  122. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  123. memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
  124. }
  125. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  126. {
  127. if(sbr->mdct.mdct_bits)
  128. return;
  129. sbr->kx[0] = sbr->kx[1];
  130. sbr_turnoff(sbr);
  131. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  132. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  133. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  134. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  135. * and scale back down at synthesis. */
  136. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
  137. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
  138. ff_ps_ctx_init(&sbr->ps);
  139. ff_sbrdsp_init(&sbr->dsp);
  140. }
  141. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  142. {
  143. ff_mdct_end(&sbr->mdct);
  144. ff_mdct_end(&sbr->mdct_ana);
  145. }
  146. static int qsort_comparison_function_int16(const void *a, const void *b)
  147. {
  148. return *(const int16_t *)a - *(const int16_t *)b;
  149. }
  150. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  151. {
  152. int i;
  153. for (i = 0; i <= last_el; i++)
  154. if (table[i] == needle)
  155. return 1;
  156. return 0;
  157. }
  158. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  159. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  160. {
  161. int k;
  162. if (sbr->bs_limiter_bands > 0) {
  163. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  164. 1.18509277094158210129f, //2^(0.49/2)
  165. 1.11987160404675912501f }; //2^(0.49/3)
  166. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  167. int16_t patch_borders[7];
  168. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  169. patch_borders[0] = sbr->kx[1];
  170. for (k = 1; k <= sbr->num_patches; k++)
  171. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  172. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  173. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  174. if (sbr->num_patches > 1)
  175. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  176. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  177. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  178. sizeof(sbr->f_tablelim[0]),
  179. qsort_comparison_function_int16);
  180. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  181. while (out < sbr->f_tablelim + sbr->n_lim) {
  182. if (*in >= *out * lim_bands_per_octave_warped) {
  183. *++out = *in++;
  184. } else if (*in == *out ||
  185. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  186. in++;
  187. sbr->n_lim--;
  188. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  189. *out = *in++;
  190. sbr->n_lim--;
  191. } else {
  192. *++out = *in++;
  193. }
  194. }
  195. } else {
  196. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  197. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  198. sbr->n_lim = 1;
  199. }
  200. }
  201. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  202. {
  203. unsigned int cnt = get_bits_count(gb);
  204. uint8_t bs_header_extra_1;
  205. uint8_t bs_header_extra_2;
  206. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  207. SpectrumParameters old_spectrum_params;
  208. sbr->start = 1;
  209. // Save last spectrum parameters variables to compare to new ones
  210. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  211. sbr->bs_amp_res_header = get_bits1(gb);
  212. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  213. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  214. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  215. skip_bits(gb, 2); // bs_reserved
  216. bs_header_extra_1 = get_bits1(gb);
  217. bs_header_extra_2 = get_bits1(gb);
  218. if (bs_header_extra_1) {
  219. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  220. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  221. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  222. } else {
  223. sbr->spectrum_params.bs_freq_scale = 2;
  224. sbr->spectrum_params.bs_alter_scale = 1;
  225. sbr->spectrum_params.bs_noise_bands = 2;
  226. }
  227. // Check if spectrum parameters changed
  228. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  229. sbr->reset = 1;
  230. if (bs_header_extra_2) {
  231. sbr->bs_limiter_bands = get_bits(gb, 2);
  232. sbr->bs_limiter_gains = get_bits(gb, 2);
  233. sbr->bs_interpol_freq = get_bits1(gb);
  234. sbr->bs_smoothing_mode = get_bits1(gb);
  235. } else {
  236. sbr->bs_limiter_bands = 2;
  237. sbr->bs_limiter_gains = 2;
  238. sbr->bs_interpol_freq = 1;
  239. sbr->bs_smoothing_mode = 1;
  240. }
  241. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  242. sbr_make_f_tablelim(sbr);
  243. return get_bits_count(gb) - cnt;
  244. }
  245. static int array_min_int16(const int16_t *array, int nel)
  246. {
  247. int i, min = array[0];
  248. for (i = 1; i < nel; i++)
  249. min = FFMIN(array[i], min);
  250. return min;
  251. }
  252. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  253. {
  254. int k, previous, present;
  255. float base, prod;
  256. base = powf((float)stop / start, 1.0f / num_bands);
  257. prod = start;
  258. previous = start;
  259. for (k = 0; k < num_bands-1; k++) {
  260. prod *= base;
  261. present = lrintf(prod);
  262. bands[k] = present - previous;
  263. previous = present;
  264. }
  265. bands[num_bands-1] = stop - previous;
  266. }
  267. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  268. {
  269. // Requirements (14496-3 sp04 p205)
  270. if (n_master <= 0) {
  271. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  272. return -1;
  273. }
  274. if (bs_xover_band >= n_master) {
  275. av_log(avctx, AV_LOG_ERROR,
  276. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  277. bs_xover_band);
  278. return -1;
  279. }
  280. return 0;
  281. }
  282. /// Master Frequency Band Table (14496-3 sp04 p194)
  283. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  284. SpectrumParameters *spectrum)
  285. {
  286. unsigned int temp, max_qmf_subbands;
  287. unsigned int start_min, stop_min;
  288. int k;
  289. const int8_t *sbr_offset_ptr;
  290. int16_t stop_dk[13];
  291. if (sbr->sample_rate < 32000) {
  292. temp = 3000;
  293. } else if (sbr->sample_rate < 64000) {
  294. temp = 4000;
  295. } else
  296. temp = 5000;
  297. switch (sbr->sample_rate) {
  298. case 16000:
  299. sbr_offset_ptr = sbr_offset[0];
  300. break;
  301. case 22050:
  302. sbr_offset_ptr = sbr_offset[1];
  303. break;
  304. case 24000:
  305. sbr_offset_ptr = sbr_offset[2];
  306. break;
  307. case 32000:
  308. sbr_offset_ptr = sbr_offset[3];
  309. break;
  310. case 44100: case 48000: case 64000:
  311. sbr_offset_ptr = sbr_offset[4];
  312. break;
  313. case 88200: case 96000: case 128000: case 176400: case 192000:
  314. sbr_offset_ptr = sbr_offset[5];
  315. break;
  316. default:
  317. av_log(ac->avctx, AV_LOG_ERROR,
  318. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  319. return -1;
  320. }
  321. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  322. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  323. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  324. if (spectrum->bs_stop_freq < 14) {
  325. sbr->k[2] = stop_min;
  326. make_bands(stop_dk, stop_min, 64, 13);
  327. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  328. for (k = 0; k < spectrum->bs_stop_freq; k++)
  329. sbr->k[2] += stop_dk[k];
  330. } else if (spectrum->bs_stop_freq == 14) {
  331. sbr->k[2] = 2*sbr->k[0];
  332. } else if (spectrum->bs_stop_freq == 15) {
  333. sbr->k[2] = 3*sbr->k[0];
  334. } else {
  335. av_log(ac->avctx, AV_LOG_ERROR,
  336. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  337. return -1;
  338. }
  339. sbr->k[2] = FFMIN(64, sbr->k[2]);
  340. // Requirements (14496-3 sp04 p205)
  341. if (sbr->sample_rate <= 32000) {
  342. max_qmf_subbands = 48;
  343. } else if (sbr->sample_rate == 44100) {
  344. max_qmf_subbands = 35;
  345. } else if (sbr->sample_rate >= 48000)
  346. max_qmf_subbands = 32;
  347. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  348. av_log(ac->avctx, AV_LOG_ERROR,
  349. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  350. return -1;
  351. }
  352. if (!spectrum->bs_freq_scale) {
  353. int dk, k2diff;
  354. dk = spectrum->bs_alter_scale + 1;
  355. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  356. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  357. return -1;
  358. for (k = 1; k <= sbr->n_master; k++)
  359. sbr->f_master[k] = dk;
  360. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  361. if (k2diff < 0) {
  362. sbr->f_master[1]--;
  363. sbr->f_master[2]-= (k2diff < -1);
  364. } else if (k2diff) {
  365. sbr->f_master[sbr->n_master]++;
  366. }
  367. sbr->f_master[0] = sbr->k[0];
  368. for (k = 1; k <= sbr->n_master; k++)
  369. sbr->f_master[k] += sbr->f_master[k - 1];
  370. } else {
  371. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  372. int two_regions, num_bands_0;
  373. int vdk0_max, vdk1_min;
  374. int16_t vk0[49];
  375. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  376. two_regions = 1;
  377. sbr->k[1] = 2 * sbr->k[0];
  378. } else {
  379. two_regions = 0;
  380. sbr->k[1] = sbr->k[2];
  381. }
  382. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  383. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  384. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  385. return -1;
  386. }
  387. vk0[0] = 0;
  388. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  389. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  390. vdk0_max = vk0[num_bands_0];
  391. vk0[0] = sbr->k[0];
  392. for (k = 1; k <= num_bands_0; k++) {
  393. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  394. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  395. return -1;
  396. }
  397. vk0[k] += vk0[k-1];
  398. }
  399. if (two_regions) {
  400. int16_t vk1[49];
  401. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  402. : 1.0f; // bs_alter_scale = {0,1}
  403. int num_bands_1 = lrintf(half_bands * invwarp *
  404. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  405. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  406. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  407. if (vdk1_min < vdk0_max) {
  408. int change;
  409. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  410. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  411. vk1[1] += change;
  412. vk1[num_bands_1] -= change;
  413. }
  414. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  415. vk1[0] = sbr->k[1];
  416. for (k = 1; k <= num_bands_1; k++) {
  417. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  418. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  419. return -1;
  420. }
  421. vk1[k] += vk1[k-1];
  422. }
  423. sbr->n_master = num_bands_0 + num_bands_1;
  424. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  425. return -1;
  426. memcpy(&sbr->f_master[0], vk0,
  427. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  428. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  429. num_bands_1 * sizeof(sbr->f_master[0]));
  430. } else {
  431. sbr->n_master = num_bands_0;
  432. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  433. return -1;
  434. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  435. }
  436. }
  437. return 0;
  438. }
  439. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  440. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  441. {
  442. int i, k, sb = 0;
  443. int msb = sbr->k[0];
  444. int usb = sbr->kx[1];
  445. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  446. sbr->num_patches = 0;
  447. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  448. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  449. } else
  450. k = sbr->n_master;
  451. do {
  452. int odd = 0;
  453. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  454. sb = sbr->f_master[i];
  455. odd = (sb + sbr->k[0]) & 1;
  456. }
  457. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  458. // After this check the final number of patches can still be six which is
  459. // illegal however the Coding Technologies decoder check stream has a final
  460. // count of 6 patches
  461. if (sbr->num_patches > 5) {
  462. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  463. return -1;
  464. }
  465. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  466. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  467. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  468. usb = sb;
  469. msb = sb;
  470. sbr->num_patches++;
  471. } else
  472. msb = sbr->kx[1];
  473. if (sbr->f_master[k] - sb < 3)
  474. k = sbr->n_master;
  475. } while (sb != sbr->kx[1] + sbr->m[1]);
  476. if (sbr->num_patches > 1 && sbr->patch_num_subbands[sbr->num_patches-1] < 3)
  477. sbr->num_patches--;
  478. return 0;
  479. }
  480. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  481. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  482. {
  483. int k, temp;
  484. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  485. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  486. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  487. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  488. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  489. sbr->kx[1] = sbr->f_tablehigh[0];
  490. // Requirements (14496-3 sp04 p205)
  491. if (sbr->kx[1] + sbr->m[1] > 64) {
  492. av_log(ac->avctx, AV_LOG_ERROR,
  493. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  494. return -1;
  495. }
  496. if (sbr->kx[1] > 32) {
  497. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  498. return -1;
  499. }
  500. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  501. temp = sbr->n[1] & 1;
  502. for (k = 1; k <= sbr->n[0]; k++)
  503. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  504. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  505. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  506. if (sbr->n_q > 5) {
  507. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  508. return -1;
  509. }
  510. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  511. temp = 0;
  512. for (k = 1; k <= sbr->n_q; k++) {
  513. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  514. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  515. }
  516. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  517. return -1;
  518. sbr_make_f_tablelim(sbr);
  519. sbr->data[0].f_indexnoise = 0;
  520. sbr->data[1].f_indexnoise = 0;
  521. return 0;
  522. }
  523. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  524. int elements)
  525. {
  526. int i;
  527. for (i = 0; i < elements; i++) {
  528. vec[i] = get_bits1(gb);
  529. }
  530. }
  531. /** ceil(log2(index+1)) */
  532. static const int8_t ceil_log2[] = {
  533. 0, 1, 2, 2, 3, 3,
  534. };
  535. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  536. GetBitContext *gb, SBRData *ch_data)
  537. {
  538. int i;
  539. unsigned bs_pointer = 0;
  540. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  541. int abs_bord_trail = 16;
  542. int num_rel_lead, num_rel_trail;
  543. unsigned bs_num_env_old = ch_data->bs_num_env;
  544. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  545. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  546. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  547. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  548. case FIXFIX:
  549. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  550. num_rel_lead = ch_data->bs_num_env - 1;
  551. if (ch_data->bs_num_env == 1)
  552. ch_data->bs_amp_res = 0;
  553. if (ch_data->bs_num_env > 4) {
  554. av_log(ac->avctx, AV_LOG_ERROR,
  555. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  556. ch_data->bs_num_env);
  557. return -1;
  558. }
  559. ch_data->t_env[0] = 0;
  560. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  561. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  562. ch_data->bs_num_env;
  563. for (i = 0; i < num_rel_lead; i++)
  564. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  565. ch_data->bs_freq_res[1] = get_bits1(gb);
  566. for (i = 1; i < ch_data->bs_num_env; i++)
  567. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  568. break;
  569. case FIXVAR:
  570. abs_bord_trail += get_bits(gb, 2);
  571. num_rel_trail = get_bits(gb, 2);
  572. ch_data->bs_num_env = num_rel_trail + 1;
  573. ch_data->t_env[0] = 0;
  574. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  575. for (i = 0; i < num_rel_trail; i++)
  576. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  577. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  578. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  579. for (i = 0; i < ch_data->bs_num_env; i++)
  580. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  581. break;
  582. case VARFIX:
  583. ch_data->t_env[0] = get_bits(gb, 2);
  584. num_rel_lead = get_bits(gb, 2);
  585. ch_data->bs_num_env = num_rel_lead + 1;
  586. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  587. for (i = 0; i < num_rel_lead; i++)
  588. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  589. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  590. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  591. break;
  592. case VARVAR:
  593. ch_data->t_env[0] = get_bits(gb, 2);
  594. abs_bord_trail += get_bits(gb, 2);
  595. num_rel_lead = get_bits(gb, 2);
  596. num_rel_trail = get_bits(gb, 2);
  597. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  598. if (ch_data->bs_num_env > 5) {
  599. av_log(ac->avctx, AV_LOG_ERROR,
  600. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  601. ch_data->bs_num_env);
  602. return -1;
  603. }
  604. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  605. for (i = 0; i < num_rel_lead; i++)
  606. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  607. for (i = 0; i < num_rel_trail; i++)
  608. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  609. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  610. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  611. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  612. break;
  613. }
  614. if (bs_pointer > ch_data->bs_num_env + 1) {
  615. av_log(ac->avctx, AV_LOG_ERROR,
  616. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  617. bs_pointer);
  618. return -1;
  619. }
  620. for (i = 1; i <= ch_data->bs_num_env; i++) {
  621. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  622. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  623. return -1;
  624. }
  625. }
  626. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  627. ch_data->t_q[0] = ch_data->t_env[0];
  628. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  629. if (ch_data->bs_num_noise > 1) {
  630. unsigned int idx;
  631. if (ch_data->bs_frame_class == FIXFIX) {
  632. idx = ch_data->bs_num_env >> 1;
  633. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  634. idx = ch_data->bs_num_env - FFMAX((int)bs_pointer - 1, 1);
  635. } else { // VARFIX
  636. if (!bs_pointer)
  637. idx = 1;
  638. else if (bs_pointer == 1)
  639. idx = ch_data->bs_num_env - 1;
  640. else // bs_pointer > 1
  641. idx = bs_pointer - 1;
  642. }
  643. ch_data->t_q[1] = ch_data->t_env[idx];
  644. }
  645. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  646. ch_data->e_a[1] = -1;
  647. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  648. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  649. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  650. ch_data->e_a[1] = bs_pointer - 1;
  651. return 0;
  652. }
  653. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  654. //These variables are saved from the previous frame rather than copied
  655. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  656. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  657. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  658. //These variables are read from the bitstream and therefore copied
  659. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  660. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  661. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  662. dst->bs_num_env = src->bs_num_env;
  663. dst->bs_amp_res = src->bs_amp_res;
  664. dst->bs_num_noise = src->bs_num_noise;
  665. dst->bs_frame_class = src->bs_frame_class;
  666. dst->e_a[1] = src->e_a[1];
  667. }
  668. /// Read how the envelope and noise floor data is delta coded
  669. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  670. SBRData *ch_data)
  671. {
  672. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  673. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  674. }
  675. /// Read inverse filtering data
  676. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  677. SBRData *ch_data)
  678. {
  679. int i;
  680. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  681. for (i = 0; i < sbr->n_q; i++)
  682. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  683. }
  684. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  685. SBRData *ch_data, int ch)
  686. {
  687. int bits;
  688. int i, j, k;
  689. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  690. int t_lav, f_lav;
  691. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  692. const int odd = sbr->n[1] & 1;
  693. if (sbr->bs_coupling && ch) {
  694. if (ch_data->bs_amp_res) {
  695. bits = 5;
  696. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  697. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  698. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  699. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  700. } else {
  701. bits = 6;
  702. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  703. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  704. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  705. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  706. }
  707. } else {
  708. if (ch_data->bs_amp_res) {
  709. bits = 6;
  710. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  711. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  712. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  713. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  714. } else {
  715. bits = 7;
  716. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  717. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  718. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  719. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  720. }
  721. }
  722. for (i = 0; i < ch_data->bs_num_env; i++) {
  723. if (ch_data->bs_df_env[i]) {
  724. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  725. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  726. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  727. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  728. } else if (ch_data->bs_freq_res[i + 1]) {
  729. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  730. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  731. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  732. }
  733. } else {
  734. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  735. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  736. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  737. }
  738. }
  739. } else {
  740. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  741. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  742. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  743. }
  744. }
  745. //assign 0th elements of env_facs from last elements
  746. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  747. sizeof(ch_data->env_facs[0]));
  748. }
  749. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  750. SBRData *ch_data, int ch)
  751. {
  752. int i, j;
  753. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  754. int t_lav, f_lav;
  755. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  756. if (sbr->bs_coupling && ch) {
  757. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  758. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  759. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  760. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  761. } else {
  762. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  763. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  764. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  765. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  766. }
  767. for (i = 0; i < ch_data->bs_num_noise; i++) {
  768. if (ch_data->bs_df_noise[i]) {
  769. for (j = 0; j < sbr->n_q; j++)
  770. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  771. } else {
  772. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  773. for (j = 1; j < sbr->n_q; j++)
  774. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  775. }
  776. }
  777. //assign 0th elements of noise_facs from last elements
  778. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  779. sizeof(ch_data->noise_facs[0]));
  780. }
  781. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  782. GetBitContext *gb,
  783. int bs_extension_id, int *num_bits_left)
  784. {
  785. switch (bs_extension_id) {
  786. case EXTENSION_ID_PS:
  787. if (!ac->oc[1].m4ac.ps) {
  788. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  789. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  790. *num_bits_left = 0;
  791. } else {
  792. #if 1
  793. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  794. #else
  795. av_log_missing_feature(ac->avctx, "Parametric Stereo", 0);
  796. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  797. *num_bits_left = 0;
  798. #endif
  799. }
  800. break;
  801. default:
  802. // some files contain 0-padding
  803. if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
  804. av_log_missing_feature(ac->avctx, "Reserved SBR extensions", 1);
  805. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  806. *num_bits_left = 0;
  807. break;
  808. }
  809. }
  810. static int read_sbr_single_channel_element(AACContext *ac,
  811. SpectralBandReplication *sbr,
  812. GetBitContext *gb)
  813. {
  814. if (get_bits1(gb)) // bs_data_extra
  815. skip_bits(gb, 4); // bs_reserved
  816. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  817. return -1;
  818. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  819. read_sbr_invf(sbr, gb, &sbr->data[0]);
  820. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  821. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  822. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  823. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  824. return 0;
  825. }
  826. static int read_sbr_channel_pair_element(AACContext *ac,
  827. SpectralBandReplication *sbr,
  828. GetBitContext *gb)
  829. {
  830. if (get_bits1(gb)) // bs_data_extra
  831. skip_bits(gb, 8); // bs_reserved
  832. if ((sbr->bs_coupling = get_bits1(gb))) {
  833. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  834. return -1;
  835. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  836. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  837. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  838. read_sbr_invf(sbr, gb, &sbr->data[0]);
  839. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  840. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  841. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  842. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  843. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  844. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  845. } else {
  846. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  847. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  848. return -1;
  849. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  850. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  851. read_sbr_invf(sbr, gb, &sbr->data[0]);
  852. read_sbr_invf(sbr, gb, &sbr->data[1]);
  853. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  854. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  855. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  856. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  857. }
  858. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  859. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  860. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  861. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  862. return 0;
  863. }
  864. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  865. GetBitContext *gb, int id_aac)
  866. {
  867. unsigned int cnt = get_bits_count(gb);
  868. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  869. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  870. sbr_turnoff(sbr);
  871. return get_bits_count(gb) - cnt;
  872. }
  873. } else if (id_aac == TYPE_CPE) {
  874. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  875. sbr_turnoff(sbr);
  876. return get_bits_count(gb) - cnt;
  877. }
  878. } else {
  879. av_log(ac->avctx, AV_LOG_ERROR,
  880. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  881. sbr_turnoff(sbr);
  882. return get_bits_count(gb) - cnt;
  883. }
  884. if (get_bits1(gb)) { // bs_extended_data
  885. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  886. if (num_bits_left == 15)
  887. num_bits_left += get_bits(gb, 8); // bs_esc_count
  888. num_bits_left <<= 3;
  889. while (num_bits_left > 7) {
  890. num_bits_left -= 2;
  891. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  892. }
  893. if (num_bits_left < 0) {
  894. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  895. }
  896. if (num_bits_left > 0)
  897. skip_bits(gb, num_bits_left);
  898. }
  899. return get_bits_count(gb) - cnt;
  900. }
  901. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  902. {
  903. int err;
  904. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  905. if (err >= 0)
  906. err = sbr_make_f_derived(ac, sbr);
  907. if (err < 0) {
  908. av_log(ac->avctx, AV_LOG_ERROR,
  909. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  910. sbr_turnoff(sbr);
  911. }
  912. }
  913. /**
  914. * Decode Spectral Band Replication extension data; reference: table 4.55.
  915. *
  916. * @param crc flag indicating the presence of CRC checksum
  917. * @param cnt length of TYPE_FIL syntactic element in bytes
  918. *
  919. * @return Returns number of bytes consumed from the TYPE_FIL element.
  920. */
  921. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  922. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  923. {
  924. unsigned int num_sbr_bits = 0, num_align_bits;
  925. unsigned bytes_read;
  926. GetBitContext gbc = *gb_host, *gb = &gbc;
  927. skip_bits_long(gb_host, cnt*8 - 4);
  928. sbr->reset = 0;
  929. if (!sbr->sample_rate)
  930. sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  931. if (!ac->oc[1].m4ac.ext_sample_rate)
  932. ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
  933. if (crc) {
  934. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  935. num_sbr_bits += 10;
  936. }
  937. //Save some state from the previous frame.
  938. sbr->kx[0] = sbr->kx[1];
  939. sbr->m[0] = sbr->m[1];
  940. sbr->kx_and_m_pushed = 1;
  941. num_sbr_bits++;
  942. if (get_bits1(gb)) // bs_header_flag
  943. num_sbr_bits += read_sbr_header(sbr, gb);
  944. if (sbr->reset)
  945. sbr_reset(ac, sbr);
  946. if (sbr->start)
  947. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  948. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  949. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  950. if (bytes_read > cnt) {
  951. av_log(ac->avctx, AV_LOG_ERROR,
  952. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  953. }
  954. return cnt;
  955. }
  956. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  957. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  958. {
  959. int k, e;
  960. int ch;
  961. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  962. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  963. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  964. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  965. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  966. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  967. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  968. float fac = temp1 / (1.0f + temp2);
  969. sbr->data[0].env_facs[e][k] = fac;
  970. sbr->data[1].env_facs[e][k] = fac * temp2;
  971. }
  972. }
  973. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  974. for (k = 0; k < sbr->n_q; k++) {
  975. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  976. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  977. float fac = temp1 / (1.0f + temp2);
  978. sbr->data[0].noise_facs[e][k] = fac;
  979. sbr->data[1].noise_facs[e][k] = fac * temp2;
  980. }
  981. }
  982. } else { // SCE or one non-coupled CPE
  983. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  984. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  985. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  986. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  987. sbr->data[ch].env_facs[e][k] =
  988. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  989. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  990. for (k = 0; k < sbr->n_q; k++)
  991. sbr->data[ch].noise_facs[e][k] =
  992. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  993. }
  994. }
  995. }
  996. /**
  997. * Analysis QMF Bank (14496-3 sp04 p206)
  998. *
  999. * @param x pointer to the beginning of the first sample window
  1000. * @param W array of complex-valued samples split into subbands
  1001. */
  1002. static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
  1003. SBRDSPContext *sbrdsp, const float *in, float *x,
  1004. float z[320], float W[2][32][32][2], int buf_idx)
  1005. {
  1006. int i;
  1007. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  1008. memcpy(x+288, in, 1024*sizeof(x[0]));
  1009. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1010. // are not supported
  1011. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1012. sbrdsp->sum64x5(z);
  1013. sbrdsp->qmf_pre_shuffle(z);
  1014. mdct->imdct_half(mdct, z, z+64);
  1015. sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
  1016. x += 32;
  1017. }
  1018. }
  1019. /**
  1020. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1021. * (14496-3 sp04 p206)
  1022. */
  1023. static void sbr_qmf_synthesis(FFTContext *mdct,
  1024. SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
  1025. float *out, float X[2][38][64],
  1026. float mdct_buf[2][64],
  1027. float *v0, int *v_off, const unsigned int div)
  1028. {
  1029. int i, n;
  1030. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1031. const int step = 128 >> div;
  1032. float *v;
  1033. for (i = 0; i < 32; i++) {
  1034. if (*v_off < step) {
  1035. int saved_samples = (1280 - 128) >> div;
  1036. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1037. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1038. } else {
  1039. *v_off -= step;
  1040. }
  1041. v = v0 + *v_off;
  1042. if (div) {
  1043. for (n = 0; n < 32; n++) {
  1044. X[0][i][ n] = -X[0][i][n];
  1045. X[0][i][32+n] = X[1][i][31-n];
  1046. }
  1047. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1048. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1049. } else {
  1050. sbrdsp->neg_odd_64(X[1][i]);
  1051. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1052. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1053. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1054. }
  1055. dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1064. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1065. out += 64 >> div;
  1066. }
  1067. }
  1068. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1069. * (14496-3 sp04 p214)
  1070. * Warning: This routine does not seem numerically stable.
  1071. */
  1072. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1073. float (*alpha0)[2], float (*alpha1)[2],
  1074. const float X_low[32][40][2], int k0)
  1075. {
  1076. int k;
  1077. for (k = 0; k < k0; k++) {
  1078. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1079. float dk;
  1080. dsp->autocorrelate(X_low[k], phi);
  1081. dk = phi[2][1][0] * phi[1][0][0] -
  1082. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1083. if (!dk) {
  1084. alpha1[k][0] = 0;
  1085. alpha1[k][1] = 0;
  1086. } else {
  1087. float temp_real, temp_im;
  1088. temp_real = phi[0][0][0] * phi[1][1][0] -
  1089. phi[0][0][1] * phi[1][1][1] -
  1090. phi[0][1][0] * phi[1][0][0];
  1091. temp_im = phi[0][0][0] * phi[1][1][1] +
  1092. phi[0][0][1] * phi[1][1][0] -
  1093. phi[0][1][1] * phi[1][0][0];
  1094. alpha1[k][0] = temp_real / dk;
  1095. alpha1[k][1] = temp_im / dk;
  1096. }
  1097. if (!phi[1][0][0]) {
  1098. alpha0[k][0] = 0;
  1099. alpha0[k][1] = 0;
  1100. } else {
  1101. float temp_real, temp_im;
  1102. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1103. alpha1[k][1] * phi[1][1][1];
  1104. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1105. alpha1[k][0] * phi[1][1][1];
  1106. alpha0[k][0] = -temp_real / phi[1][0][0];
  1107. alpha0[k][1] = -temp_im / phi[1][0][0];
  1108. }
  1109. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1110. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1111. alpha1[k][0] = 0;
  1112. alpha1[k][1] = 0;
  1113. alpha0[k][0] = 0;
  1114. alpha0[k][1] = 0;
  1115. }
  1116. }
  1117. }
  1118. /// Chirp Factors (14496-3 sp04 p214)
  1119. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1120. {
  1121. int i;
  1122. float new_bw;
  1123. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1124. for (i = 0; i < sbr->n_q; i++) {
  1125. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1126. new_bw = 0.6f;
  1127. } else
  1128. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1129. if (new_bw < ch_data->bw_array[i]) {
  1130. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1131. } else
  1132. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1133. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1134. }
  1135. }
  1136. /// Generate the subband filtered lowband
  1137. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1138. float X_low[32][40][2], const float W[2][32][32][2],
  1139. int buf_idx)
  1140. {
  1141. int i, k;
  1142. const int t_HFGen = 8;
  1143. const int i_f = 32;
  1144. memset(X_low, 0, 32*sizeof(*X_low));
  1145. for (k = 0; k < sbr->kx[1]; k++) {
  1146. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1147. X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
  1148. X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
  1149. }
  1150. }
  1151. buf_idx = 1-buf_idx;
  1152. for (k = 0; k < sbr->kx[0]; k++) {
  1153. for (i = 0; i < t_HFGen; i++) {
  1154. X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
  1155. X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
  1156. }
  1157. }
  1158. return 0;
  1159. }
  1160. /// High Frequency Generator (14496-3 sp04 p215)
  1161. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1162. float X_high[64][40][2], const float X_low[32][40][2],
  1163. const float (*alpha0)[2], const float (*alpha1)[2],
  1164. const float bw_array[5], const uint8_t *t_env,
  1165. int bs_num_env)
  1166. {
  1167. int j, x;
  1168. int g = 0;
  1169. int k = sbr->kx[1];
  1170. for (j = 0; j < sbr->num_patches; j++) {
  1171. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1172. const int p = sbr->patch_start_subband[j] + x;
  1173. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1174. g++;
  1175. g--;
  1176. if (g < 0) {
  1177. av_log(ac->avctx, AV_LOG_ERROR,
  1178. "ERROR : no subband found for frequency %d\n", k);
  1179. return -1;
  1180. }
  1181. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1182. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1183. alpha0[p], alpha1[p], bw_array[g],
  1184. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1185. }
  1186. }
  1187. if (k < sbr->m[1] + sbr->kx[1])
  1188. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1189. return 0;
  1190. }
  1191. /// Generate the subband filtered lowband
  1192. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1193. const float Y0[38][64][2], const float Y1[38][64][2],
  1194. const float X_low[32][40][2], int ch)
  1195. {
  1196. int k, i;
  1197. const int i_f = 32;
  1198. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1199. memset(X, 0, 2*sizeof(*X));
  1200. for (k = 0; k < sbr->kx[0]; k++) {
  1201. for (i = 0; i < i_Temp; i++) {
  1202. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1203. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1204. }
  1205. }
  1206. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1207. for (i = 0; i < i_Temp; i++) {
  1208. X[0][i][k] = Y0[i + i_f][k][0];
  1209. X[1][i][k] = Y0[i + i_f][k][1];
  1210. }
  1211. }
  1212. for (k = 0; k < sbr->kx[1]; k++) {
  1213. for (i = i_Temp; i < 38; i++) {
  1214. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1215. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1216. }
  1217. }
  1218. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1219. for (i = i_Temp; i < i_f; i++) {
  1220. X[0][i][k] = Y1[i][k][0];
  1221. X[1][i][k] = Y1[i][k][1];
  1222. }
  1223. }
  1224. return 0;
  1225. }
  1226. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1227. * (14496-3 sp04 p217)
  1228. */
  1229. static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1230. SBRData *ch_data, int e_a[2])
  1231. {
  1232. int e, i, m;
  1233. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1234. for (e = 0; e < ch_data->bs_num_env; e++) {
  1235. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1236. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1237. int k;
  1238. if (sbr->kx[1] != table[0]) {
  1239. av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
  1240. "Derived frequency tables were not regenerated.\n");
  1241. sbr_turnoff(sbr);
  1242. return AVERROR_BUG;
  1243. }
  1244. for (i = 0; i < ilim; i++)
  1245. for (m = table[i]; m < table[i + 1]; m++)
  1246. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1247. // ch_data->bs_num_noise > 1 => 2 noise floors
  1248. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1249. for (i = 0; i < sbr->n_q; i++)
  1250. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1251. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1252. for (i = 0; i < sbr->n[1]; i++) {
  1253. if (ch_data->bs_add_harmonic_flag) {
  1254. const unsigned int m_midpoint =
  1255. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1256. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1257. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1258. }
  1259. }
  1260. for (i = 0; i < ilim; i++) {
  1261. int additional_sinusoid_present = 0;
  1262. for (m = table[i]; m < table[i + 1]; m++) {
  1263. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1264. additional_sinusoid_present = 1;
  1265. break;
  1266. }
  1267. }
  1268. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1269. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1270. }
  1271. }
  1272. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1273. return 0;
  1274. }
  1275. /// Estimation of current envelope (14496-3 sp04 p218)
  1276. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1277. SpectralBandReplication *sbr, SBRData *ch_data)
  1278. {
  1279. int e, m;
  1280. int kx1 = sbr->kx[1];
  1281. if (sbr->bs_interpol_freq) {
  1282. for (e = 0; e < ch_data->bs_num_env; e++) {
  1283. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1284. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1285. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1286. for (m = 0; m < sbr->m[1]; m++) {
  1287. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1288. e_curr[e][m] = sum * recip_env_size;
  1289. }
  1290. }
  1291. } else {
  1292. int k, p;
  1293. for (e = 0; e < ch_data->bs_num_env; e++) {
  1294. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1295. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1296. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1297. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1298. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1299. float sum = 0.0f;
  1300. const int den = env_size * (table[p + 1] - table[p]);
  1301. for (k = table[p]; k < table[p + 1]; k++) {
  1302. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1303. }
  1304. sum /= den;
  1305. for (k = table[p]; k < table[p + 1]; k++) {
  1306. e_curr[e][k - kx1] = sum;
  1307. }
  1308. }
  1309. }
  1310. }
  1311. }
  1312. /**
  1313. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1314. * and Calculation of gain (14496-3 sp04 p219)
  1315. */
  1316. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1317. SBRData *ch_data, const int e_a[2])
  1318. {
  1319. int e, k, m;
  1320. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1321. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1322. for (e = 0; e < ch_data->bs_num_env; e++) {
  1323. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1324. for (k = 0; k < sbr->n_lim; k++) {
  1325. float gain_boost, gain_max;
  1326. float sum[2] = { 0.0f, 0.0f };
  1327. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1328. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1329. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1330. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1331. if (!sbr->s_mapped[e][m]) {
  1332. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1333. ((1.0f + sbr->e_curr[e][m]) *
  1334. (1.0f + sbr->q_mapped[e][m] * delta)));
  1335. } else {
  1336. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1337. ((1.0f + sbr->e_curr[e][m]) *
  1338. (1.0f + sbr->q_mapped[e][m])));
  1339. }
  1340. }
  1341. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1342. sum[0] += sbr->e_origmapped[e][m];
  1343. sum[1] += sbr->e_curr[e][m];
  1344. }
  1345. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1346. gain_max = FFMIN(100000.f, gain_max);
  1347. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1348. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1349. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1350. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1351. }
  1352. sum[0] = sum[1] = 0.0f;
  1353. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1354. sum[0] += sbr->e_origmapped[e][m];
  1355. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1356. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1357. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1358. }
  1359. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1360. gain_boost = FFMIN(1.584893192f, gain_boost);
  1361. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1362. sbr->gain[e][m] *= gain_boost;
  1363. sbr->q_m[e][m] *= gain_boost;
  1364. sbr->s_m[e][m] *= gain_boost;
  1365. }
  1366. }
  1367. }
  1368. }
  1369. /// Assembling HF Signals (14496-3 sp04 p220)
  1370. static void sbr_hf_assemble(float Y1[38][64][2],
  1371. const float X_high[64][40][2],
  1372. SpectralBandReplication *sbr, SBRData *ch_data,
  1373. const int e_a[2])
  1374. {
  1375. int e, i, j, m;
  1376. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1377. const int kx = sbr->kx[1];
  1378. const int m_max = sbr->m[1];
  1379. static const float h_smooth[5] = {
  1380. 0.33333333333333,
  1381. 0.30150283239582,
  1382. 0.21816949906249,
  1383. 0.11516383427084,
  1384. 0.03183050093751,
  1385. };
  1386. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1387. int indexnoise = ch_data->f_indexnoise;
  1388. int indexsine = ch_data->f_indexsine;
  1389. if (sbr->reset) {
  1390. for (i = 0; i < h_SL; i++) {
  1391. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1392. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1393. }
  1394. } else if (h_SL) {
  1395. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1396. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1397. }
  1398. for (e = 0; e < ch_data->bs_num_env; e++) {
  1399. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1400. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1401. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1402. }
  1403. }
  1404. for (e = 0; e < ch_data->bs_num_env; e++) {
  1405. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1406. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1407. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1408. float *g_filt, *q_filt;
  1409. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1410. g_filt = g_filt_tab;
  1411. q_filt = q_filt_tab;
  1412. for (m = 0; m < m_max; m++) {
  1413. const int idx1 = i + h_SL;
  1414. g_filt[m] = 0.0f;
  1415. q_filt[m] = 0.0f;
  1416. for (j = 0; j <= h_SL; j++) {
  1417. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1418. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1419. }
  1420. }
  1421. } else {
  1422. g_filt = g_temp[i + h_SL];
  1423. q_filt = q_temp[i];
  1424. }
  1425. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1426. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1427. if (e != e_a[0] && e != e_a[1]) {
  1428. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1429. q_filt, indexnoise,
  1430. kx, m_max);
  1431. } else {
  1432. int idx = indexsine&1;
  1433. int A = (1-((indexsine+(kx & 1))&2));
  1434. int B = (A^(-idx)) + idx;
  1435. float *out = &Y1[i][kx][idx];
  1436. float *in = sbr->s_m[e];
  1437. for (m = 0; m+1 < m_max; m+=2) {
  1438. out[2*m ] += in[m ] * A;
  1439. out[2*m+2] += in[m+1] * B;
  1440. }
  1441. if(m_max&1)
  1442. out[2*m ] += in[m ] * A;
  1443. }
  1444. indexnoise = (indexnoise + m_max) & 0x1ff;
  1445. indexsine = (indexsine + 1) & 3;
  1446. }
  1447. }
  1448. ch_data->f_indexnoise = indexnoise;
  1449. ch_data->f_indexsine = indexsine;
  1450. }
  1451. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1452. float* L, float* R)
  1453. {
  1454. int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
  1455. int ch;
  1456. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1457. int err;
  1458. if (!sbr->kx_and_m_pushed) {
  1459. sbr->kx[0] = sbr->kx[1];
  1460. sbr->m[0] = sbr->m[1];
  1461. } else {
  1462. sbr->kx_and_m_pushed = 0;
  1463. }
  1464. if (sbr->start) {
  1465. sbr_dequant(sbr, id_aac);
  1466. }
  1467. for (ch = 0; ch < nch; ch++) {
  1468. /* decode channel */
  1469. sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1470. (float*)sbr->qmf_filter_scratch,
  1471. sbr->data[ch].W, sbr->data[ch].Ypos);
  1472. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W, sbr->data[ch].Ypos);
  1473. sbr->data[ch].Ypos ^= 1;
  1474. if (sbr->start) {
  1475. sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1476. sbr_chirp(sbr, &sbr->data[ch]);
  1477. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1478. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1479. sbr->data[ch].bs_num_env);
  1480. // hf_adj
  1481. err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1482. if (!err) {
  1483. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1484. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1485. sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1486. sbr->X_high, sbr, &sbr->data[ch],
  1487. sbr->data[ch].e_a);
  1488. }
  1489. }
  1490. /* synthesis */
  1491. sbr_x_gen(sbr, sbr->X[ch],
  1492. sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1493. sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1494. sbr->X_low, ch);
  1495. }
  1496. if (ac->oc[1].m4ac.ps == 1) {
  1497. if (sbr->ps.start) {
  1498. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1499. } else {
  1500. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1501. }
  1502. nch = 2;
  1503. }
  1504. sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
  1505. L, sbr->X[0], sbr->qmf_filter_scratch,
  1506. sbr->data[0].synthesis_filterbank_samples,
  1507. &sbr->data[0].synthesis_filterbank_samples_offset,
  1508. downsampled);
  1509. if (nch == 2)
  1510. sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
  1511. R, sbr->X[1], sbr->qmf_filter_scratch,
  1512. sbr->data[1].synthesis_filterbank_samples,
  1513. &sbr->data[1].synthesis_filterbank_samples_offset,
  1514. downsampled);
  1515. }