You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1077 lines
38KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "indeo3data.h"
  37. /* RLE opcodes. */
  38. enum {
  39. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  40. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  41. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  42. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  43. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  44. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  45. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  46. };
  47. /* Some constants for parsing frame bitstream flags. */
  48. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  49. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  50. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  51. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  52. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  53. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  54. typedef struct Plane {
  55. uint8_t *buffers[2];
  56. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  57. uint32_t width;
  58. uint32_t height;
  59. uint32_t pitch;
  60. } Plane;
  61. #define CELL_STACK_MAX 20
  62. typedef struct Cell {
  63. int16_t xpos; ///< cell coordinates in 4x4 blocks
  64. int16_t ypos;
  65. int16_t width; ///< cell width in 4x4 blocks
  66. int16_t height; ///< cell height in 4x4 blocks
  67. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  68. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  69. } Cell;
  70. typedef struct Indeo3DecodeContext {
  71. AVCodecContext *avctx;
  72. AVFrame frame;
  73. DSPContext dsp;
  74. GetBitContext gb;
  75. int need_resync;
  76. int skip_bits;
  77. const uint8_t *next_cell_data;
  78. const uint8_t *last_byte;
  79. const int8_t *mc_vectors;
  80. int16_t width, height;
  81. uint32_t frame_num; ///< current frame number (zero-based)
  82. uint32_t data_size; ///< size of the frame data in bytes
  83. uint16_t frame_flags; ///< frame properties
  84. uint8_t cb_offset; ///< needed for selecting VQ tables
  85. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  86. const uint8_t *y_data_ptr;
  87. const uint8_t *v_data_ptr;
  88. const uint8_t *u_data_ptr;
  89. int32_t y_data_size;
  90. int32_t v_data_size;
  91. int32_t u_data_size;
  92. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  93. Plane planes[3];
  94. } Indeo3DecodeContext;
  95. static uint8_t requant_tab[8][128];
  96. /*
  97. * Build the static requantization table.
  98. * This table is used to remap pixel values according to a specific
  99. * quant index and thus avoid overflows while adding deltas.
  100. */
  101. static av_cold void build_requant_tab(void)
  102. {
  103. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  104. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  105. int i, j, step;
  106. for (i = 0; i < 8; i++) {
  107. step = i + 2;
  108. for (j = 0; j < 128; j++)
  109. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  110. }
  111. /* some last elements calculated above will have values >= 128 */
  112. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  113. /* according with the quantization step of the respective section */
  114. requant_tab[0][127] = 126;
  115. requant_tab[1][119] = 118;
  116. requant_tab[1][120] = 118;
  117. requant_tab[2][126] = 124;
  118. requant_tab[2][127] = 124;
  119. requant_tab[6][124] = 120;
  120. requant_tab[6][125] = 120;
  121. requant_tab[6][126] = 120;
  122. requant_tab[6][127] = 120;
  123. /* Patch for compatibility with the Intel's binary decoders */
  124. requant_tab[1][7] = 10;
  125. requant_tab[4][8] = 10;
  126. }
  127. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  128. AVCodecContext *avctx)
  129. {
  130. int p, luma_width, luma_height, chroma_width, chroma_height;
  131. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  132. luma_width = ctx->width;
  133. luma_height = ctx->height;
  134. if (luma_width < 16 || luma_width > 640 ||
  135. luma_height < 16 || luma_height > 480 ||
  136. luma_width & 3 || luma_height & 3) {
  137. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  138. luma_width, luma_height);
  139. return AVERROR_INVALIDDATA;
  140. }
  141. chroma_width = FFALIGN(luma_width >> 2, 4);
  142. chroma_height = FFALIGN(luma_height >> 2, 4);
  143. luma_pitch = FFALIGN(luma_width, 16);
  144. chroma_pitch = FFALIGN(chroma_width, 16);
  145. /* Calculate size of the luminance plane. */
  146. /* Add one line more for INTRA prediction. */
  147. luma_size = luma_pitch * (luma_height + 1);
  148. /* Calculate size of a chrominance planes. */
  149. /* Add one line more for INTRA prediction. */
  150. chroma_size = chroma_pitch * (chroma_height + 1);
  151. /* allocate frame buffers */
  152. for (p = 0; p < 3; p++) {
  153. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  154. ctx->planes[p].width = !p ? luma_width : chroma_width;
  155. ctx->planes[p].height = !p ? luma_height : chroma_height;
  156. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  157. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  158. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  159. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  160. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  161. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  162. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  163. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  164. }
  165. return 0;
  166. }
  167. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  168. {
  169. int p;
  170. for (p = 0; p < 3; p++) {
  171. av_freep(&ctx->planes[p].buffers[0]);
  172. av_freep(&ctx->planes[p].buffers[1]);
  173. }
  174. }
  175. /**
  176. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  177. * the cell(x, y) in the current frame.
  178. *
  179. * @param ctx pointer to the decoder context
  180. * @param plane pointer to the plane descriptor
  181. * @param cell pointer to the cell descriptor
  182. */
  183. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  184. {
  185. int h, w, mv_x, mv_y, offset, offset_dst;
  186. uint8_t *src, *dst;
  187. /* setup output and reference pointers */
  188. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  189. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  190. if(cell->mv_ptr){
  191. mv_y = cell->mv_ptr[0];
  192. mv_x = cell->mv_ptr[1];
  193. }else
  194. mv_x= mv_y= 0;
  195. offset = offset_dst + mv_y * plane->pitch + mv_x;
  196. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  197. h = cell->height << 2;
  198. for (w = cell->width; w > 0;) {
  199. /* copy using 16xH blocks */
  200. if (!((cell->xpos << 2) & 15) && w >= 4) {
  201. for (; w >= 4; src += 16, dst += 16, w -= 4)
  202. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  203. }
  204. /* copy using 8xH blocks */
  205. if (!((cell->xpos << 2) & 7) && w >= 2) {
  206. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  207. w -= 2;
  208. src += 8;
  209. dst += 8;
  210. }
  211. if (w >= 1) {
  212. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  213. w--;
  214. src += 4;
  215. dst += 4;
  216. }
  217. }
  218. }
  219. /* Average 4/8 pixels at once without rounding using SWAR */
  220. #define AVG_32(dst, src, ref) \
  221. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  222. #define AVG_64(dst, src, ref) \
  223. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  224. /*
  225. * Replicate each even pixel as follows:
  226. * ABCDEFGH -> AACCEEGG
  227. */
  228. static inline uint64_t replicate64(uint64_t a) {
  229. #if HAVE_BIGENDIAN
  230. a &= 0xFF00FF00FF00FF00ULL;
  231. a |= a >> 8;
  232. #else
  233. a &= 0x00FF00FF00FF00FFULL;
  234. a |= a << 8;
  235. #endif
  236. return a;
  237. }
  238. static inline uint32_t replicate32(uint32_t a) {
  239. #if HAVE_BIGENDIAN
  240. a &= 0xFF00FF00UL;
  241. a |= a >> 8;
  242. #else
  243. a &= 0x00FF00FFUL;
  244. a |= a << 8;
  245. #endif
  246. return a;
  247. }
  248. /* Fill n lines with 64bit pixel value pix */
  249. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  250. int32_t row_offset)
  251. {
  252. for (; n > 0; dst += row_offset, n--)
  253. AV_WN64A(dst, pix);
  254. }
  255. /* Error codes for cell decoding. */
  256. enum {
  257. IV3_NOERR = 0,
  258. IV3_BAD_RLE = 1,
  259. IV3_BAD_DATA = 2,
  260. IV3_BAD_COUNTER = 3,
  261. IV3_UNSUPPORTED = 4,
  262. IV3_OUT_OF_DATA = 5
  263. };
  264. #define BUFFER_PRECHECK \
  265. if (*data_ptr >= last_ptr) \
  266. return IV3_OUT_OF_DATA; \
  267. #define RLE_BLOCK_COPY \
  268. if (cell->mv_ptr || !skip_flag) \
  269. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  270. #define RLE_BLOCK_COPY_8 \
  271. pix64 = AV_RN64A(ref);\
  272. if (is_first_row) {/* special prediction case: top line of a cell */\
  273. pix64 = replicate64(pix64);\
  274. fill_64(dst + row_offset, pix64, 7, row_offset);\
  275. AVG_64(dst, ref, dst + row_offset);\
  276. } else \
  277. fill_64(dst, pix64, 8, row_offset)
  278. #define RLE_LINES_COPY \
  279. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  280. #define RLE_LINES_COPY_M10 \
  281. pix64 = AV_RN64A(ref);\
  282. if (is_top_of_cell) {\
  283. pix64 = replicate64(pix64);\
  284. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  285. AVG_64(dst, ref, dst + row_offset);\
  286. } else \
  287. fill_64(dst, pix64, num_lines << 1, row_offset)
  288. #define APPLY_DELTA_4 \
  289. AV_WN16A(dst + line_offset , AV_RN16A(ref ) + delta_tab->deltas[dyad1]);\
  290. AV_WN16A(dst + line_offset + 2, AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]);\
  291. if (mode >= 3) {\
  292. if (is_top_of_cell && !cell->ypos) {\
  293. AV_COPY32(dst, dst + row_offset);\
  294. } else {\
  295. AVG_32(dst, ref, dst + row_offset);\
  296. }\
  297. }
  298. #define APPLY_DELTA_8 \
  299. /* apply two 32-bit VQ deltas to next even line */\
  300. if (is_top_of_cell) { \
  301. AV_WN32A(dst + row_offset , \
  302. replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]);\
  303. AV_WN32A(dst + row_offset + 4, \
  304. replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]);\
  305. } else { \
  306. AV_WN32A(dst + row_offset , \
  307. AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]);\
  308. AV_WN32A(dst + row_offset + 4, \
  309. AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]);\
  310. } \
  311. /* odd lines are not coded but rather interpolated/replicated */\
  312. /* first line of the cell on the top of image? - replicate */\
  313. /* otherwise - interpolate */\
  314. if (is_top_of_cell && !cell->ypos) {\
  315. AV_COPY64(dst, dst + row_offset);\
  316. } else \
  317. AVG_64(dst, ref, dst + row_offset);
  318. #define APPLY_DELTA_1011_INTER \
  319. if (mode == 10) { \
  320. AV_WN32A(dst , \
  321. AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]);\
  322. AV_WN32A(dst + 4 , \
  323. AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]);\
  324. AV_WN32A(dst + row_offset , \
  325. AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]);\
  326. AV_WN32A(dst + row_offset + 4, \
  327. AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]);\
  328. } else { \
  329. AV_WN16A(dst , \
  330. AV_RN16A(dst ) + delta_tab->deltas[dyad1]);\
  331. AV_WN16A(dst + 2 , \
  332. AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]);\
  333. AV_WN16A(dst + row_offset , \
  334. AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]);\
  335. AV_WN16A(dst + row_offset + 2, \
  336. AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]);\
  337. }
  338. static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
  339. int pitch, int h_zoom, int v_zoom, int mode,
  340. const vqEntry *delta[2], int swap_quads[2],
  341. const uint8_t **data_ptr, const uint8_t *last_ptr)
  342. {
  343. int x, y, line, num_lines;
  344. int rle_blocks = 0;
  345. uint8_t code, *dst, *ref;
  346. const vqEntry *delta_tab;
  347. unsigned int dyad1, dyad2;
  348. uint64_t pix64;
  349. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  350. int row_offset, blk_row_offset, line_offset;
  351. row_offset = pitch;
  352. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  353. line_offset = v_zoom ? row_offset : 0;
  354. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  355. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  356. ref = ref_block;
  357. dst = block;
  358. if (rle_blocks > 0) {
  359. if (mode <= 4) {
  360. RLE_BLOCK_COPY;
  361. } else if (mode == 10 && !cell->mv_ptr) {
  362. RLE_BLOCK_COPY_8;
  363. }
  364. rle_blocks--;
  365. } else {
  366. for (line = 0; line < 4;) {
  367. num_lines = 1;
  368. is_top_of_cell = is_first_row && !line;
  369. /* select primary VQ table for odd, secondary for even lines */
  370. if (mode <= 4)
  371. delta_tab = delta[line & 1];
  372. else
  373. delta_tab = delta[1];
  374. BUFFER_PRECHECK;
  375. code = bytestream_get_byte(data_ptr);
  376. if (code < 248) {
  377. if (code < delta_tab->num_dyads) {
  378. BUFFER_PRECHECK;
  379. dyad1 = bytestream_get_byte(data_ptr);
  380. dyad2 = code;
  381. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  382. return IV3_BAD_DATA;
  383. } else {
  384. /* process QUADS */
  385. code -= delta_tab->num_dyads;
  386. dyad1 = code / delta_tab->quad_exp;
  387. dyad2 = code % delta_tab->quad_exp;
  388. if (swap_quads[line & 1])
  389. FFSWAP(unsigned int, dyad1, dyad2);
  390. }
  391. if (mode <= 4) {
  392. APPLY_DELTA_4;
  393. } else if (mode == 10 && !cell->mv_ptr) {
  394. APPLY_DELTA_8;
  395. } else {
  396. APPLY_DELTA_1011_INTER;
  397. }
  398. } else {
  399. /* process RLE codes */
  400. switch (code) {
  401. case RLE_ESC_FC:
  402. skip_flag = 0;
  403. rle_blocks = 1;
  404. code = 253;
  405. /* FALLTHROUGH */
  406. case RLE_ESC_FF:
  407. case RLE_ESC_FE:
  408. case RLE_ESC_FD:
  409. num_lines = 257 - code - line;
  410. if (num_lines <= 0)
  411. return IV3_BAD_RLE;
  412. if (mode <= 4) {
  413. RLE_LINES_COPY;
  414. } else if (mode == 10 && !cell->mv_ptr) {
  415. RLE_LINES_COPY_M10;
  416. }
  417. break;
  418. case RLE_ESC_FB:
  419. BUFFER_PRECHECK;
  420. code = bytestream_get_byte(data_ptr);
  421. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  422. if (code >= 64 || rle_blocks < 0)
  423. return IV3_BAD_COUNTER;
  424. skip_flag = code & 0x20;
  425. num_lines = 4 - line; /* enforce next block processing */
  426. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  427. if (mode <= 4) {
  428. RLE_LINES_COPY;
  429. } else if (mode == 10 && !cell->mv_ptr) {
  430. RLE_LINES_COPY_M10;
  431. }
  432. }
  433. break;
  434. case RLE_ESC_F9:
  435. skip_flag = 1;
  436. rle_blocks = 1;
  437. /* FALLTHROUGH */
  438. case RLE_ESC_FA:
  439. if (line)
  440. return IV3_BAD_RLE;
  441. num_lines = 4; /* enforce next block processing */
  442. if (cell->mv_ptr) {
  443. if (mode <= 4) {
  444. RLE_LINES_COPY;
  445. } else if (mode == 10 && !cell->mv_ptr) {
  446. RLE_LINES_COPY_M10;
  447. }
  448. }
  449. break;
  450. default:
  451. return IV3_UNSUPPORTED;
  452. }
  453. }
  454. line += num_lines;
  455. ref += row_offset * (num_lines << v_zoom);
  456. dst += row_offset * (num_lines << v_zoom);
  457. }
  458. }
  459. /* move to next horizontal block */
  460. block += 4 << h_zoom;
  461. ref_block += 4 << h_zoom;
  462. }
  463. /* move to next line of blocks */
  464. ref_block += blk_row_offset;
  465. block += blk_row_offset;
  466. }
  467. return IV3_NOERR;
  468. }
  469. /**
  470. * Decode a vector-quantized cell.
  471. * It consists of several routines, each of which handles one or more "modes"
  472. * with which a cell can be encoded.
  473. *
  474. * @param ctx pointer to the decoder context
  475. * @param avctx ptr to the AVCodecContext
  476. * @param plane pointer to the plane descriptor
  477. * @param cell pointer to the cell descriptor
  478. * @param data_ptr pointer to the compressed data
  479. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  480. * @return number of consumed bytes or negative number in case of error
  481. */
  482. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  483. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  484. const uint8_t *last_ptr)
  485. {
  486. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  487. int zoom_fac;
  488. int offset, error = 0, swap_quads[2];
  489. uint8_t code, *block, *ref_block = 0;
  490. const vqEntry *delta[2];
  491. const uint8_t *data_start = data_ptr;
  492. /* get coding mode and VQ table index from the VQ descriptor byte */
  493. code = *data_ptr++;
  494. mode = code >> 4;
  495. vq_index = code & 0xF;
  496. /* setup output and reference pointers */
  497. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  498. block = plane->pixels[ctx->buf_sel] + offset;
  499. if (!cell->mv_ptr) {
  500. /* use previous line as reference for INTRA cells */
  501. ref_block = block - plane->pitch;
  502. } else if (mode >= 10) {
  503. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  504. /* so we don't need to do data copying for each RLE code later */
  505. copy_cell(ctx, plane, cell);
  506. } else {
  507. /* set the pointer to the reference pixels for modes 0-4 INTER */
  508. mv_y = cell->mv_ptr[0];
  509. mv_x = cell->mv_ptr[1];
  510. offset += mv_y * plane->pitch + mv_x;
  511. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  512. }
  513. /* select VQ tables as follows: */
  514. /* modes 0 and 3 use only the primary table for all lines in a block */
  515. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  516. if (mode == 1 || mode == 4) {
  517. code = ctx->alt_quant[vq_index];
  518. prim_indx = (code >> 4) + ctx->cb_offset;
  519. second_indx = (code & 0xF) + ctx->cb_offset;
  520. } else {
  521. vq_index += ctx->cb_offset;
  522. prim_indx = second_indx = vq_index;
  523. }
  524. if (prim_indx >= 24 || second_indx >= 24) {
  525. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  526. prim_indx, second_indx);
  527. return AVERROR_INVALIDDATA;
  528. }
  529. delta[0] = &vq_tab[second_indx];
  530. delta[1] = &vq_tab[prim_indx];
  531. swap_quads[0] = second_indx >= 16;
  532. swap_quads[1] = prim_indx >= 16;
  533. /* requantize the prediction if VQ index of this cell differs from VQ index */
  534. /* of the predicted cell in order to avoid overflows. */
  535. if (vq_index >= 8 && ref_block) {
  536. for (x = 0; x < cell->width << 2; x++)
  537. ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
  538. }
  539. error = IV3_NOERR;
  540. switch (mode) {
  541. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  542. case 1:
  543. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  544. case 4:
  545. if (mode >= 3 && cell->mv_ptr) {
  546. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  547. return AVERROR_INVALIDDATA;
  548. }
  549. zoom_fac = mode >= 3;
  550. error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
  551. mode, delta, swap_quads, &data_ptr, last_ptr);
  552. break;
  553. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  554. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  555. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  556. error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
  557. mode, delta, swap_quads, &data_ptr, last_ptr);
  558. } else { /* mode 10 and 11 INTER processing */
  559. if (mode == 11 && !cell->mv_ptr) {
  560. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  561. return AVERROR_INVALIDDATA;
  562. }
  563. zoom_fac = mode == 10;
  564. error = decode_cell_data(cell, block, ref_block, plane->pitch,
  565. zoom_fac, 1, mode, delta, swap_quads,
  566. &data_ptr, last_ptr);
  567. }
  568. break;
  569. default:
  570. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  571. return AVERROR_INVALIDDATA;
  572. }//switch mode
  573. switch (error) {
  574. case IV3_BAD_RLE:
  575. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  576. mode, data_ptr[-1]);
  577. return AVERROR_INVALIDDATA;
  578. case IV3_BAD_DATA:
  579. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  580. return AVERROR_INVALIDDATA;
  581. case IV3_BAD_COUNTER:
  582. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  583. return AVERROR_INVALIDDATA;
  584. case IV3_UNSUPPORTED:
  585. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  586. return AVERROR_INVALIDDATA;
  587. case IV3_OUT_OF_DATA:
  588. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  589. return AVERROR_INVALIDDATA;
  590. }
  591. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  592. }
  593. /* Binary tree codes. */
  594. enum {
  595. H_SPLIT = 0,
  596. V_SPLIT = 1,
  597. INTRA_NULL = 2,
  598. INTER_DATA = 3
  599. };
  600. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  601. #define UPDATE_BITPOS(n) \
  602. ctx->skip_bits += (n); \
  603. ctx->need_resync = 1
  604. #define RESYNC_BITSTREAM \
  605. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  606. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  607. ctx->skip_bits = 0; \
  608. ctx->need_resync = 0; \
  609. }
  610. #define CHECK_CELL \
  611. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  612. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  613. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  614. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  615. return AVERROR_INVALIDDATA; \
  616. }
  617. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  618. Plane *plane, int code, Cell *ref_cell,
  619. const int depth, const int strip_width)
  620. {
  621. Cell curr_cell;
  622. int bytes_used;
  623. if (depth <= 0) {
  624. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  625. return AVERROR_INVALIDDATA; // unwind recursion
  626. }
  627. curr_cell = *ref_cell; // clone parent cell
  628. if (code == H_SPLIT) {
  629. SPLIT_CELL(ref_cell->height, curr_cell.height);
  630. ref_cell->ypos += curr_cell.height;
  631. ref_cell->height -= curr_cell.height;
  632. } else if (code == V_SPLIT) {
  633. if (curr_cell.width > strip_width) {
  634. /* split strip */
  635. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  636. } else
  637. SPLIT_CELL(ref_cell->width, curr_cell.width);
  638. ref_cell->xpos += curr_cell.width;
  639. ref_cell->width -= curr_cell.width;
  640. }
  641. while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
  642. RESYNC_BITSTREAM;
  643. switch (code = get_bits(&ctx->gb, 2)) {
  644. case H_SPLIT:
  645. case V_SPLIT:
  646. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  647. return AVERROR_INVALIDDATA;
  648. break;
  649. case INTRA_NULL:
  650. if (!curr_cell.tree) { /* MC tree INTRA code */
  651. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  652. curr_cell.tree = 1; /* enter the VQ tree */
  653. } else { /* VQ tree NULL code */
  654. RESYNC_BITSTREAM;
  655. code = get_bits(&ctx->gb, 2);
  656. if (code >= 2) {
  657. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  658. return AVERROR_INVALIDDATA;
  659. }
  660. if (code == 1)
  661. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  662. CHECK_CELL
  663. if (!curr_cell.mv_ptr)
  664. return AVERROR_INVALIDDATA;
  665. copy_cell(ctx, plane, &curr_cell);
  666. return 0;
  667. }
  668. break;
  669. case INTER_DATA:
  670. if (!curr_cell.tree) { /* MC tree INTER code */
  671. /* get motion vector index and setup the pointer to the mv set */
  672. if (!ctx->need_resync)
  673. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  674. curr_cell.mv_ptr = &ctx->mc_vectors[*(ctx->next_cell_data++) << 1];
  675. curr_cell.tree = 1; /* enter the VQ tree */
  676. UPDATE_BITPOS(8);
  677. } else { /* VQ tree DATA code */
  678. if (!ctx->need_resync)
  679. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  680. CHECK_CELL
  681. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  682. ctx->next_cell_data, ctx->last_byte);
  683. if (bytes_used < 0)
  684. return AVERROR_INVALIDDATA;
  685. UPDATE_BITPOS(bytes_used << 3);
  686. ctx->next_cell_data += bytes_used;
  687. return 0;
  688. }
  689. break;
  690. }
  691. }//while
  692. return AVERROR_INVALIDDATA;
  693. }
  694. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  695. Plane *plane, const uint8_t *data, int32_t data_size,
  696. int32_t strip_width)
  697. {
  698. Cell curr_cell;
  699. uint32_t num_vectors;
  700. /* each plane data starts with mc_vector_count field, */
  701. /* an optional array of motion vectors followed by the vq data */
  702. num_vectors = bytestream_get_le32(&data);
  703. if(num_vectors >= data_size/2)
  704. return AVERROR_INVALIDDATA;
  705. ctx->mc_vectors = num_vectors ? data : 0;
  706. data += num_vectors * 2;
  707. data_size-= num_vectors * 2;
  708. /* init the bitreader */
  709. init_get_bits(&ctx->gb, data, data_size << 3);
  710. ctx->skip_bits = 0;
  711. ctx->need_resync = 0;
  712. ctx->last_byte = data + data_size - 1;
  713. /* initialize the 1st cell and set its dimensions to whole plane */
  714. curr_cell.xpos = curr_cell.ypos = 0;
  715. curr_cell.width = plane->width >> 2;
  716. curr_cell.height = plane->height >> 2;
  717. curr_cell.tree = 0; // we are in the MC tree now
  718. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  719. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  720. }
  721. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  722. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  723. const uint8_t *buf, int buf_size)
  724. {
  725. const uint8_t *buf_ptr = buf, *bs_hdr;
  726. uint32_t frame_num, word2, check_sum, data_size;
  727. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  728. uint16_t height, width;
  729. int i, j;
  730. /* parse and check the OS header */
  731. frame_num = bytestream_get_le32(&buf_ptr);
  732. word2 = bytestream_get_le32(&buf_ptr);
  733. check_sum = bytestream_get_le32(&buf_ptr);
  734. data_size = bytestream_get_le32(&buf_ptr);
  735. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  736. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  737. return AVERROR_INVALIDDATA;
  738. }
  739. /* parse the bitstream header */
  740. bs_hdr = buf_ptr;
  741. if (bytestream_get_le16(&buf_ptr) != 32) {
  742. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  743. return AVERROR_INVALIDDATA;
  744. }
  745. ctx->frame_num = frame_num;
  746. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  747. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  748. ctx->cb_offset = *buf_ptr++;
  749. if (ctx->data_size == 16)
  750. return 4;
  751. if (ctx->data_size > buf_size)
  752. ctx->data_size = buf_size;
  753. buf_ptr += 3; // skip reserved byte and checksum
  754. /* check frame dimensions */
  755. height = bytestream_get_le16(&buf_ptr);
  756. width = bytestream_get_le16(&buf_ptr);
  757. if (av_image_check_size(width, height, 0, avctx))
  758. return AVERROR_INVALIDDATA;
  759. if (width != ctx->width || height != ctx->height) {
  760. av_dlog(avctx, "Frame dimensions changed!\n");
  761. ctx->width = width;
  762. ctx->height = height;
  763. free_frame_buffers(ctx);
  764. allocate_frame_buffers(ctx, avctx);
  765. avcodec_set_dimensions(avctx, width, height);
  766. }
  767. y_offset = bytestream_get_le32(&buf_ptr);
  768. v_offset = bytestream_get_le32(&buf_ptr);
  769. u_offset = bytestream_get_le32(&buf_ptr);
  770. /* unfortunately there is no common order of planes in the buffer */
  771. /* so we use that sorting algo for determining planes data sizes */
  772. starts[0] = y_offset;
  773. starts[1] = v_offset;
  774. starts[2] = u_offset;
  775. for (j = 0; j < 3; j++) {
  776. ends[j] = ctx->data_size;
  777. for (i = 2; i >= 0; i--)
  778. if (starts[i] < ends[j] && starts[i] > starts[j])
  779. ends[j] = starts[i];
  780. }
  781. ctx->y_data_size = ends[0] - starts[0];
  782. ctx->v_data_size = ends[1] - starts[1];
  783. ctx->u_data_size = ends[2] - starts[2];
  784. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  785. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  786. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  787. return AVERROR_INVALIDDATA;
  788. }
  789. ctx->y_data_ptr = bs_hdr + y_offset;
  790. ctx->v_data_ptr = bs_hdr + v_offset;
  791. ctx->u_data_ptr = bs_hdr + u_offset;
  792. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  793. if (ctx->data_size == 16) {
  794. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  795. return 16;
  796. }
  797. if (ctx->frame_flags & BS_8BIT_PEL) {
  798. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  799. return AVERROR_PATCHWELCOME;
  800. }
  801. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  802. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  803. return AVERROR_PATCHWELCOME;
  804. }
  805. return 0;
  806. }
  807. /**
  808. * Convert and output the current plane.
  809. * All pixel values will be upsampled by shifting right by one bit.
  810. *
  811. * @param[in] plane pointer to the descriptor of the plane being processed
  812. * @param[in] buf_sel indicates which frame buffer the input data stored in
  813. * @param[out] dst pointer to the buffer receiving converted pixels
  814. * @param[in] dst_pitch pitch for moving to the next y line
  815. */
  816. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
  817. {
  818. int x,y;
  819. const uint8_t *src = plane->pixels[buf_sel];
  820. uint32_t pitch = plane->pitch;
  821. for (y = 0; y < plane->height; y++) {
  822. /* convert four pixels at once using SWAR */
  823. for (x = 0; x < plane->width >> 2; x++) {
  824. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  825. src += 4;
  826. dst += 4;
  827. }
  828. for (x <<= 2; x < plane->width; x++)
  829. *dst++ = *src++ << 1;
  830. src += pitch - plane->width;
  831. dst += dst_pitch - plane->width;
  832. }
  833. }
  834. static av_cold int decode_init(AVCodecContext *avctx)
  835. {
  836. Indeo3DecodeContext *ctx = avctx->priv_data;
  837. ctx->avctx = avctx;
  838. ctx->width = avctx->width;
  839. ctx->height = avctx->height;
  840. avctx->pix_fmt = PIX_FMT_YUV410P;
  841. avcodec_get_frame_defaults(&ctx->frame);
  842. build_requant_tab();
  843. dsputil_init(&ctx->dsp, avctx);
  844. allocate_frame_buffers(ctx, avctx);
  845. return 0;
  846. }
  847. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  848. AVPacket *avpkt)
  849. {
  850. Indeo3DecodeContext *ctx = avctx->priv_data;
  851. const uint8_t *buf = avpkt->data;
  852. int buf_size = avpkt->size;
  853. int res;
  854. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  855. if (res < 0)
  856. return res;
  857. /* skip sync(null) frames */
  858. if (res) {
  859. // we have processed 16 bytes but no data was decoded
  860. *data_size = 0;
  861. return buf_size;
  862. }
  863. /* skip droppable INTER frames if requested */
  864. if (ctx->frame_flags & BS_NONREF &&
  865. (avctx->skip_frame >= AVDISCARD_NONREF))
  866. return 0;
  867. /* skip INTER frames if requested */
  868. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  869. return 0;
  870. /* use BS_BUFFER flag for buffer switching */
  871. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  872. /* decode luma plane */
  873. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  874. return res;
  875. /* decode chroma planes */
  876. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  877. return res;
  878. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  879. return res;
  880. if (ctx->frame.data[0])
  881. avctx->release_buffer(avctx, &ctx->frame);
  882. ctx->frame.reference = 0;
  883. if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
  884. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  885. return res;
  886. }
  887. output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
  888. output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
  889. output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
  890. *data_size = sizeof(AVFrame);
  891. *(AVFrame*)data = ctx->frame;
  892. return buf_size;
  893. }
  894. static av_cold int decode_close(AVCodecContext *avctx)
  895. {
  896. Indeo3DecodeContext *ctx = avctx->priv_data;
  897. free_frame_buffers(avctx->priv_data);
  898. if (ctx->frame.data[0])
  899. avctx->release_buffer(avctx, &ctx->frame);
  900. return 0;
  901. }
  902. AVCodec ff_indeo3_decoder = {
  903. .name = "indeo3",
  904. .type = AVMEDIA_TYPE_VIDEO,
  905. .id = CODEC_ID_INDEO3,
  906. .priv_data_size = sizeof(Indeo3DecodeContext),
  907. .init = decode_init,
  908. .close = decode_close,
  909. .decode = decode_frame,
  910. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  911. };