You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

536 lines
18KB

  1. /*
  2. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  3. * Copyright (c) 2013 Clément Bœsch <u pkh me>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. /**
  22. * @file
  23. * Simple post processing filter
  24. *
  25. * This implementation is based on an algorithm described in
  26. * "Aria Nosratinia Embedded Post-Processing for
  27. * Enhancement of Compressed Images (1999)"
  28. *
  29. * Originally written by Michael Niedermayer for the MPlayer project, and
  30. * ported by Clément Bœsch for FFmpeg.
  31. */
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/imgutils.h"
  34. #include "libavutil/mem_internal.h"
  35. #include "libavutil/opt.h"
  36. #include "libavutil/pixdesc.h"
  37. #include "internal.h"
  38. #include "qp_table.h"
  39. #include "vf_spp.h"
  40. enum mode {
  41. MODE_HARD,
  42. MODE_SOFT,
  43. NB_MODES
  44. };
  45. #if FF_API_CHILD_CLASS_NEXT
  46. static const AVClass *child_class_next(const AVClass *prev)
  47. {
  48. return prev ? NULL : avcodec_dct_get_class();
  49. }
  50. #endif
  51. static const AVClass *child_class_iterate(void **iter)
  52. {
  53. const AVClass *c = *iter ? NULL : avcodec_dct_get_class();
  54. *iter = (void*)(uintptr_t)c;
  55. return c;
  56. }
  57. static void *child_next(void *obj, void *prev)
  58. {
  59. SPPContext *s = obj;
  60. return prev ? NULL : s->dct;
  61. }
  62. #define OFFSET(x) offsetof(SPPContext, x)
  63. #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
  64. #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
  65. static const AVOption spp_options[] = {
  66. { "quality", "set quality", OFFSET(log2_count), AV_OPT_TYPE_INT, {.i64 = 3}, 0, MAX_LEVEL, TFLAGS },
  67. { "qp", "force a constant quantizer parameter", OFFSET(qp), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 63, FLAGS },
  68. { "mode", "set thresholding mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64 = MODE_HARD}, 0, NB_MODES - 1, FLAGS, "mode" },
  69. { "hard", "hard thresholding", 0, AV_OPT_TYPE_CONST, {.i64 = MODE_HARD}, INT_MIN, INT_MAX, FLAGS, "mode" },
  70. { "soft", "soft thresholding", 0, AV_OPT_TYPE_CONST, {.i64 = MODE_SOFT}, INT_MIN, INT_MAX, FLAGS, "mode" },
  71. { "use_bframe_qp", "use B-frames' QP", OFFSET(use_bframe_qp), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
  72. { NULL }
  73. };
  74. static const AVClass spp_class = {
  75. .class_name = "spp",
  76. .item_name = av_default_item_name,
  77. .option = spp_options,
  78. .version = LIBAVUTIL_VERSION_INT,
  79. .category = AV_CLASS_CATEGORY_FILTER,
  80. #if FF_API_CHILD_CLASS_NEXT
  81. .child_class_next = child_class_next,
  82. #endif
  83. .child_class_iterate = child_class_iterate,
  84. .child_next = child_next,
  85. };
  86. // XXX: share between filters?
  87. DECLARE_ALIGNED(8, static const uint8_t, ldither)[8][8] = {
  88. { 0, 48, 12, 60, 3, 51, 15, 63 },
  89. { 32, 16, 44, 28, 35, 19, 47, 31 },
  90. { 8, 56, 4, 52, 11, 59, 7, 55 },
  91. { 40, 24, 36, 20, 43, 27, 39, 23 },
  92. { 2, 50, 14, 62, 1, 49, 13, 61 },
  93. { 34, 18, 46, 30, 33, 17, 45, 29 },
  94. { 10, 58, 6, 54, 9, 57, 5, 53 },
  95. { 42, 26, 38, 22, 41, 25, 37, 21 },
  96. };
  97. static const uint8_t offset[127][2] = {
  98. {0,0},
  99. {0,0}, {4,4}, // quality = 1
  100. {0,0}, {2,2}, {6,4}, {4,6}, // quality = 2
  101. {0,0}, {5,1}, {2,2}, {7,3}, {4,4}, {1,5}, {6,6}, {3,7}, // quality = 3
  102. {0,0}, {4,0}, {1,1}, {5,1}, {3,2}, {7,2}, {2,3}, {6,3}, // quality = 4
  103. {0,4}, {4,4}, {1,5}, {5,5}, {3,6}, {7,6}, {2,7}, {6,7},
  104. {0,0}, {0,2}, {0,4}, {0,6}, {1,1}, {1,3}, {1,5}, {1,7}, // quality = 5
  105. {2,0}, {2,2}, {2,4}, {2,6}, {3,1}, {3,3}, {3,5}, {3,7},
  106. {4,0}, {4,2}, {4,4}, {4,6}, {5,1}, {5,3}, {5,5}, {5,7},
  107. {6,0}, {6,2}, {6,4}, {6,6}, {7,1}, {7,3}, {7,5}, {7,7},
  108. {0,0}, {4,4}, {0,4}, {4,0}, {2,2}, {6,6}, {2,6}, {6,2}, // quality = 6
  109. {0,2}, {4,6}, {0,6}, {4,2}, {2,0}, {6,4}, {2,4}, {6,0},
  110. {1,1}, {5,5}, {1,5}, {5,1}, {3,3}, {7,7}, {3,7}, {7,3},
  111. {1,3}, {5,7}, {1,7}, {5,3}, {3,1}, {7,5}, {3,5}, {7,1},
  112. {0,1}, {4,5}, {0,5}, {4,1}, {2,3}, {6,7}, {2,7}, {6,3},
  113. {0,3}, {4,7}, {0,7}, {4,3}, {2,1}, {6,5}, {2,5}, {6,1},
  114. {1,0}, {5,4}, {1,4}, {5,0}, {3,2}, {7,6}, {3,6}, {7,2},
  115. {1,2}, {5,6}, {1,6}, {5,2}, {3,0}, {7,4}, {3,4}, {7,0},
  116. };
  117. static void hardthresh_c(int16_t dst[64], const int16_t src[64],
  118. int qp, const uint8_t *permutation)
  119. {
  120. int i;
  121. int bias = 0; // FIXME
  122. unsigned threshold1 = qp * ((1<<4) - bias) - 1;
  123. unsigned threshold2 = threshold1 << 1;
  124. memset(dst, 0, 64 * sizeof(dst[0]));
  125. dst[0] = (src[0] + 4) >> 3;
  126. for (i = 1; i < 64; i++) {
  127. int level = src[i];
  128. if (((unsigned)(level + threshold1)) > threshold2) {
  129. const int j = permutation[i];
  130. dst[j] = (level + 4) >> 3;
  131. }
  132. }
  133. }
  134. static void softthresh_c(int16_t dst[64], const int16_t src[64],
  135. int qp, const uint8_t *permutation)
  136. {
  137. int i;
  138. int bias = 0; //FIXME
  139. unsigned threshold1 = qp * ((1<<4) - bias) - 1;
  140. unsigned threshold2 = threshold1 << 1;
  141. memset(dst, 0, 64 * sizeof(dst[0]));
  142. dst[0] = (src[0] + 4) >> 3;
  143. for (i = 1; i < 64; i++) {
  144. int level = src[i];
  145. if (((unsigned)(level + threshold1)) > threshold2) {
  146. const int j = permutation[i];
  147. if (level > 0) dst[j] = (level - threshold1 + 4) >> 3;
  148. else dst[j] = (level + threshold1 + 4) >> 3;
  149. }
  150. }
  151. }
  152. static void store_slice_c(uint8_t *dst, const int16_t *src,
  153. int dst_linesize, int src_linesize,
  154. int width, int height, int log2_scale,
  155. const uint8_t dither[8][8])
  156. {
  157. int y, x;
  158. #define STORE(pos) do { \
  159. temp = ((src[x + y*src_linesize + pos] << log2_scale) + d[pos]) >> 6; \
  160. if (temp & 0x100) \
  161. temp = ~(temp >> 31); \
  162. dst[x + y*dst_linesize + pos] = temp; \
  163. } while (0)
  164. for (y = 0; y < height; y++) {
  165. const uint8_t *d = dither[y];
  166. for (x = 0; x < width; x += 8) {
  167. int temp;
  168. STORE(0);
  169. STORE(1);
  170. STORE(2);
  171. STORE(3);
  172. STORE(4);
  173. STORE(5);
  174. STORE(6);
  175. STORE(7);
  176. }
  177. }
  178. }
  179. static void store_slice16_c(uint16_t *dst, const int16_t *src,
  180. int dst_linesize, int src_linesize,
  181. int width, int height, int log2_scale,
  182. const uint8_t dither[8][8], int depth)
  183. {
  184. int y, x;
  185. unsigned int mask = -1<<depth;
  186. #define STORE16(pos) do { \
  187. temp = ((src[x + y*src_linesize + pos] << log2_scale) + (d[pos]>>1)) >> 5; \
  188. if (temp & mask ) \
  189. temp = ~(temp >> 31); \
  190. dst[x + y*dst_linesize + pos] = temp; \
  191. } while (0)
  192. for (y = 0; y < height; y++) {
  193. const uint8_t *d = dither[y];
  194. for (x = 0; x < width; x += 8) {
  195. int temp;
  196. STORE16(0);
  197. STORE16(1);
  198. STORE16(2);
  199. STORE16(3);
  200. STORE16(4);
  201. STORE16(5);
  202. STORE16(6);
  203. STORE16(7);
  204. }
  205. }
  206. }
  207. static inline void add_block(uint16_t *dst, int linesize, const int16_t block[64])
  208. {
  209. int y;
  210. for (y = 0; y < 8; y++) {
  211. dst[0 + y*linesize] += block[0 + y*8];
  212. dst[1 + y*linesize] += block[1 + y*8];
  213. dst[2 + y*linesize] += block[2 + y*8];
  214. dst[3 + y*linesize] += block[3 + y*8];
  215. dst[4 + y*linesize] += block[4 + y*8];
  216. dst[5 + y*linesize] += block[5 + y*8];
  217. dst[6 + y*linesize] += block[6 + y*8];
  218. dst[7 + y*linesize] += block[7 + y*8];
  219. }
  220. }
  221. static void filter(SPPContext *p, uint8_t *dst, uint8_t *src,
  222. int dst_linesize, int src_linesize, int width, int height,
  223. const uint8_t *qp_table, int qp_stride, int is_luma, int depth)
  224. {
  225. int x, y, i;
  226. const int count = 1 << p->log2_count;
  227. const int linesize = is_luma ? p->temp_linesize : FFALIGN(width+16, 16);
  228. DECLARE_ALIGNED(16, uint64_t, block_align)[32];
  229. int16_t *block = (int16_t *)block_align;
  230. int16_t *block2 = (int16_t *)(block_align + 16);
  231. uint16_t *psrc16 = (uint16_t*)p->src;
  232. const int sample_bytes = (depth+7) / 8;
  233. for (y = 0; y < height; y++) {
  234. int index = 8 + 8*linesize + y*linesize;
  235. memcpy(p->src + index*sample_bytes, src + y*src_linesize, width*sample_bytes);
  236. if (sample_bytes == 1) {
  237. for (x = 0; x < 8; x++) {
  238. p->src[index - x - 1] = p->src[index + x ];
  239. p->src[index + width + x ] = p->src[index + width - x - 1];
  240. }
  241. } else {
  242. for (x = 0; x < 8; x++) {
  243. psrc16[index - x - 1] = psrc16[index + x ];
  244. psrc16[index + width + x ] = psrc16[index + width - x - 1];
  245. }
  246. }
  247. }
  248. for (y = 0; y < 8; y++) {
  249. memcpy(p->src + ( 7-y)*linesize * sample_bytes, p->src + ( y+8)*linesize * sample_bytes, linesize * sample_bytes);
  250. memcpy(p->src + (height+8+y)*linesize * sample_bytes, p->src + (height-y+7)*linesize * sample_bytes, linesize * sample_bytes);
  251. }
  252. for (y = 0; y < height + 8; y += 8) {
  253. memset(p->temp + (8 + y) * linesize, 0, 8 * linesize * sizeof(*p->temp));
  254. for (x = 0; x < width + 8; x += 8) {
  255. int qp;
  256. if (p->qp) {
  257. qp = p->qp;
  258. } else{
  259. const int qps = 3 + is_luma;
  260. qp = qp_table[(FFMIN(x, width - 1) >> qps) + (FFMIN(y, height - 1) >> qps) * qp_stride];
  261. qp = FFMAX(1, ff_norm_qscale(qp, p->qscale_type));
  262. }
  263. for (i = 0; i < count; i++) {
  264. const int x1 = x + offset[i + count - 1][0];
  265. const int y1 = y + offset[i + count - 1][1];
  266. const int index = x1 + y1*linesize;
  267. p->dct->get_pixels_unaligned(block, p->src + sample_bytes*index, sample_bytes*linesize);
  268. p->dct->fdct(block);
  269. p->requantize(block2, block, qp, p->dct->idct_permutation);
  270. p->dct->idct(block2);
  271. add_block(p->temp + index, linesize, block2);
  272. }
  273. }
  274. if (y) {
  275. if (sample_bytes == 1) {
  276. p->store_slice(dst + (y - 8) * dst_linesize, p->temp + 8 + y*linesize,
  277. dst_linesize, linesize, width,
  278. FFMIN(8, height + 8 - y), MAX_LEVEL - p->log2_count,
  279. ldither);
  280. } else {
  281. store_slice16_c((uint16_t*)(dst + (y - 8) * dst_linesize), p->temp + 8 + y*linesize,
  282. dst_linesize/2, linesize, width,
  283. FFMIN(8, height + 8 - y), MAX_LEVEL - p->log2_count,
  284. ldither, depth);
  285. }
  286. }
  287. }
  288. }
  289. static int query_formats(AVFilterContext *ctx)
  290. {
  291. static const enum AVPixelFormat pix_fmts[] = {
  292. AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P,
  293. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P,
  294. AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
  295. AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P,
  296. AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ440P,
  297. AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10,
  298. AV_PIX_FMT_YUV420P10,
  299. AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9,
  300. AV_PIX_FMT_YUV420P9,
  301. AV_PIX_FMT_GRAY8,
  302. AV_PIX_FMT_GBRP,
  303. AV_PIX_FMT_GBRP9,
  304. AV_PIX_FMT_GBRP10,
  305. AV_PIX_FMT_NONE
  306. };
  307. AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
  308. if (!fmts_list)
  309. return AVERROR(ENOMEM);
  310. return ff_set_common_formats(ctx, fmts_list);
  311. }
  312. static int config_input(AVFilterLink *inlink)
  313. {
  314. SPPContext *s = inlink->dst->priv;
  315. const int h = FFALIGN(inlink->h + 16, 16);
  316. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
  317. const int bps = desc->comp[0].depth;
  318. av_opt_set_int(s->dct, "bits_per_sample", bps, 0);
  319. avcodec_dct_init(s->dct);
  320. if (ARCH_X86)
  321. ff_spp_init_x86(s);
  322. s->hsub = desc->log2_chroma_w;
  323. s->vsub = desc->log2_chroma_h;
  324. s->temp_linesize = FFALIGN(inlink->w + 16, 16);
  325. s->temp = av_malloc_array(s->temp_linesize, h * sizeof(*s->temp));
  326. s->src = av_malloc_array(s->temp_linesize, h * sizeof(*s->src) * 2);
  327. if (!s->temp || !s->src)
  328. return AVERROR(ENOMEM);
  329. return 0;
  330. }
  331. static int filter_frame(AVFilterLink *inlink, AVFrame *in)
  332. {
  333. AVFilterContext *ctx = inlink->dst;
  334. SPPContext *s = ctx->priv;
  335. AVFilterLink *outlink = ctx->outputs[0];
  336. AVFrame *out = in;
  337. int qp_stride = 0;
  338. int8_t *qp_table = NULL;
  339. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
  340. const int depth = desc->comp[0].depth;
  341. int ret = 0;
  342. /* if we are not in a constant user quantizer mode and we don't want to use
  343. * the quantizers from the B-frames (B-frames often have a higher QP), we
  344. * need to save the qp table from the last non B-frame; this is what the
  345. * following code block does */
  346. if (!s->qp && (s->use_bframe_qp || in->pict_type != AV_PICTURE_TYPE_B)) {
  347. ret = ff_qp_table_extract(in, &qp_table, &qp_stride, NULL, &s->qscale_type);
  348. if (ret < 0) {
  349. av_frame_free(&in);
  350. return ret;
  351. }
  352. if (!s->use_bframe_qp && in->pict_type != AV_PICTURE_TYPE_B) {
  353. av_freep(&s->non_b_qp_table);
  354. s->non_b_qp_table = qp_table;
  355. s->non_b_qp_stride = qp_stride;
  356. }
  357. }
  358. if (s->log2_count && !ctx->is_disabled) {
  359. if (!s->use_bframe_qp && s->non_b_qp_table) {
  360. qp_table = s->non_b_qp_table;
  361. qp_stride = s->non_b_qp_stride;
  362. }
  363. if (qp_table || s->qp) {
  364. const int cw = AV_CEIL_RSHIFT(inlink->w, s->hsub);
  365. const int ch = AV_CEIL_RSHIFT(inlink->h, s->vsub);
  366. /* get a new frame if in-place is not possible or if the dimensions
  367. * are not multiple of 8 */
  368. if (!av_frame_is_writable(in) || (inlink->w & 7) || (inlink->h & 7)) {
  369. const int aligned_w = FFALIGN(inlink->w, 8);
  370. const int aligned_h = FFALIGN(inlink->h, 8);
  371. out = ff_get_video_buffer(outlink, aligned_w, aligned_h);
  372. if (!out) {
  373. av_frame_free(&in);
  374. ret = AVERROR(ENOMEM);
  375. goto finish;
  376. }
  377. av_frame_copy_props(out, in);
  378. out->width = in->width;
  379. out->height = in->height;
  380. }
  381. filter(s, out->data[0], in->data[0], out->linesize[0], in->linesize[0], inlink->w, inlink->h, qp_table, qp_stride, 1, depth);
  382. if (out->data[2]) {
  383. filter(s, out->data[1], in->data[1], out->linesize[1], in->linesize[1], cw, ch, qp_table, qp_stride, 0, depth);
  384. filter(s, out->data[2], in->data[2], out->linesize[2], in->linesize[2], cw, ch, qp_table, qp_stride, 0, depth);
  385. }
  386. emms_c();
  387. }
  388. }
  389. if (in != out) {
  390. if (in->data[3])
  391. av_image_copy_plane(out->data[3], out->linesize[3],
  392. in ->data[3], in ->linesize[3],
  393. inlink->w, inlink->h);
  394. av_frame_free(&in);
  395. }
  396. ret = ff_filter_frame(outlink, out);
  397. finish:
  398. if (qp_table != s->non_b_qp_table)
  399. av_freep(&qp_table);
  400. return ret;
  401. }
  402. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  403. char *res, int res_len, int flags)
  404. {
  405. SPPContext *s = ctx->priv;
  406. if (!strcmp(cmd, "level") || !strcmp(cmd, "quality")) {
  407. if (!strcmp(args, "max"))
  408. s->log2_count = MAX_LEVEL;
  409. else
  410. s->log2_count = av_clip(strtol(args, NULL, 10), 0, MAX_LEVEL);
  411. return 0;
  412. }
  413. return AVERROR(ENOSYS);
  414. }
  415. static av_cold int init_dict(AVFilterContext *ctx, AVDictionary **opts)
  416. {
  417. SPPContext *s = ctx->priv;
  418. int ret;
  419. s->dct = avcodec_dct_alloc();
  420. if (!s->dct)
  421. return AVERROR(ENOMEM);
  422. if (opts) {
  423. AVDictionaryEntry *e = NULL;
  424. while ((e = av_dict_get(*opts, "", e, AV_DICT_IGNORE_SUFFIX))) {
  425. if ((ret = av_opt_set(s->dct, e->key, e->value, 0)) < 0)
  426. return ret;
  427. }
  428. av_dict_free(opts);
  429. }
  430. s->store_slice = store_slice_c;
  431. switch (s->mode) {
  432. case MODE_HARD: s->requantize = hardthresh_c; break;
  433. case MODE_SOFT: s->requantize = softthresh_c; break;
  434. }
  435. return 0;
  436. }
  437. static av_cold void uninit(AVFilterContext *ctx)
  438. {
  439. SPPContext *s = ctx->priv;
  440. av_freep(&s->temp);
  441. av_freep(&s->src);
  442. av_freep(&s->dct);
  443. av_freep(&s->non_b_qp_table);
  444. }
  445. static const AVFilterPad spp_inputs[] = {
  446. {
  447. .name = "default",
  448. .type = AVMEDIA_TYPE_VIDEO,
  449. .config_props = config_input,
  450. .filter_frame = filter_frame,
  451. },
  452. { NULL }
  453. };
  454. static const AVFilterPad spp_outputs[] = {
  455. {
  456. .name = "default",
  457. .type = AVMEDIA_TYPE_VIDEO,
  458. },
  459. { NULL }
  460. };
  461. AVFilter ff_vf_spp = {
  462. .name = "spp",
  463. .description = NULL_IF_CONFIG_SMALL("Apply a simple post processing filter."),
  464. .priv_size = sizeof(SPPContext),
  465. .init_dict = init_dict,
  466. .uninit = uninit,
  467. .query_formats = query_formats,
  468. .inputs = spp_inputs,
  469. .outputs = spp_outputs,
  470. .process_command = process_command,
  471. .priv_class = &spp_class,
  472. .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
  473. };