|
- /*
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Copyright (C) 2000, Intel Corporation, all rights reserved.
- * Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- * Third party copyrights are property of their respective owners.
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- *
- * * Redistribution's of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * * Redistribution's in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * * The name of the copyright holders may not be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * This software is provided by the copyright holders and contributors "as is" and
- * any express or implied warranties, including, but not limited to, the implied
- * warranties of merchantability and fitness for a particular purpose are disclaimed.
- * In no event shall the Intel Corporation or contributors be liable for any direct,
- * indirect, incidental, special, exemplary, or consequential damages
- * (including, but not limited to, procurement of substitute goods or services;
- * loss of use, data, or profits; or business interruption) however caused
- * and on any theory of liability, whether in contract, strict liability,
- * or tort (including negligence or otherwise) arising in any way out of
- * the use of this software, even if advised of the possibility of such damage.
- */
-
- #define HARRIS_THRESHOLD 3.0f
- // Block size over which to compute harris response
- //
- // Note that changing this will require fiddling with the local array sizes in
- // harris_response
- #define HARRIS_RADIUS 2
- #define DISTANCE_THRESHOLD 80
-
- // Sub-pixel refinement window for feature points
- #define REFINE_WIN_HALF_W 5
- #define REFINE_WIN_HALF_H 5
- #define REFINE_WIN_W 11 // REFINE_WIN_HALF_W * 2 + 1
- #define REFINE_WIN_H 11
-
- // Non-maximum suppression window size
- #define NONMAX_WIN 30
- #define NONMAX_WIN_HALF 15 // NONMAX_WIN / 2
-
- typedef struct PointPair {
- // Previous frame
- float2 p1;
- // Current frame
- float2 p2;
- } PointPair;
-
- typedef struct SmoothedPointPair {
- // Non-smoothed point in current frame
- int2 p1;
- // Smoothed point in current frame
- float2 p2;
- } SmoothedPointPair;
-
- typedef struct MotionVector {
- PointPair p;
- // Used to mark vectors as potential outliers
- int should_consider;
- } MotionVector;
-
- const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
- CLK_ADDRESS_CLAMP_TO_EDGE |
- CLK_FILTER_NEAREST;
-
- const sampler_t sampler_linear = CLK_NORMALIZED_COORDS_FALSE |
- CLK_ADDRESS_CLAMP_TO_EDGE |
- CLK_FILTER_LINEAR;
-
- const sampler_t sampler_linear_mirror = CLK_NORMALIZED_COORDS_TRUE |
- CLK_ADDRESS_MIRRORED_REPEAT |
- CLK_FILTER_LINEAR;
-
- // Writes to a 1D array at loc, treating it as a 2D array with the same
- // dimensions as the global work size.
- static void write_to_1d_arrf(__global float *buf, int2 loc, float val) {
- buf[loc.x + loc.y * get_global_size(0)] = val;
- }
-
- static void write_to_1d_arrul8(__global ulong8 *buf, int2 loc, ulong8 val) {
- buf[loc.x + loc.y * get_global_size(0)] = val;
- }
-
- static void write_to_1d_arrvec(__global MotionVector *buf, int2 loc, MotionVector val) {
- buf[loc.x + loc.y * get_global_size(0)] = val;
- }
-
- static void write_to_1d_arrf2(__global float2 *buf, int2 loc, float2 val) {
- buf[loc.x + loc.y * get_global_size(0)] = val;
- }
-
- static ulong8 read_from_1d_arrul8(__global const ulong8 *buf, int2 loc) {
- return buf[loc.x + loc.y * get_global_size(0)];
- }
-
- static float2 read_from_1d_arrf2(__global const float2 *buf, int2 loc) {
- return buf[loc.x + loc.y * get_global_size(0)];
- }
-
- // Returns the grayscale value at the given point.
- static float pixel_grayscale(__read_only image2d_t src, int2 loc) {
- float4 pixel = read_imagef(src, sampler, loc);
- return (pixel.x + pixel.y + pixel.z) / 3.0f;
- }
-
- static float convolve(
- __local const float *grayscale,
- int local_idx_x,
- int local_idx_y,
- float mask[3][3]
- ) {
- float ret = 0;
-
- // These loops touch each pixel surrounding loc as well as loc itself
- for (int i = 1, i2 = 0; i >= -1; --i, ++i2) {
- for (int j = -1, j2 = 0; j <= 1; ++j, ++j2) {
- ret += mask[i2][j2] * grayscale[(local_idx_x + 3 + j) + (local_idx_y + 3 + i) * 14];
- }
- }
-
- return ret;
- }
-
- // Sums dx * dy for all pixels within radius of loc
- static float sum_deriv_prod(
- __local const float *grayscale,
- float mask_x[3][3],
- float mask_y[3][3]
- ) {
- float ret = 0;
-
- for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) {
- for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) {
- ret += convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_x) *
- convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask_y);
- }
- }
-
- return ret;
- }
-
- // Sums d<>^2 (determined by mask) for all pixels within radius of loc
- static float sum_deriv_pow(__local const float *grayscale, float mask[3][3])
- {
- float ret = 0;
-
- for (int i = HARRIS_RADIUS; i >= -HARRIS_RADIUS; --i) {
- for (int j = -HARRIS_RADIUS; j <= HARRIS_RADIUS; ++j) {
- float deriv = convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask);
- ret += deriv * deriv;
- }
- }
-
- return ret;
- }
-
- // Fills a box with the given radius and pixel around loc
- static void draw_box(__write_only image2d_t dst, int2 loc, float4 pixel, int radius)
- {
- for (int i = -radius; i <= radius; ++i) {
- for (int j = -radius; j <= radius; ++j) {
- write_imagef(
- dst,
- (int2)(
- // Clamp to avoid writing outside image bounds
- clamp(loc.x + i, 0, get_image_dim(dst).x - 1),
- clamp(loc.y + j, 0, get_image_dim(dst).y - 1)
- ),
- pixel
- );
- }
- }
- }
-
- // Converts the src image to grayscale
- __kernel void grayscale(
- __read_only image2d_t src,
- __write_only image2d_t grayscale
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
- write_imagef(grayscale, loc, (float4)(pixel_grayscale(src, loc), 0.0f, 0.0f, 1.0f));
- }
-
- // This kernel computes the harris response for the given grayscale src image
- // within the given radius and writes it to harris_buf
- __kernel void harris_response(
- __read_only image2d_t grayscale,
- __global float *harris_buf
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
-
- if (loc.x > get_image_width(grayscale) - 1 || loc.y > get_image_height(grayscale) - 1) {
- write_to_1d_arrf(harris_buf, loc, 0);
- return;
- }
-
- float scale = 1.0f / ((1 << 2) * HARRIS_RADIUS * 255.0f);
-
- float sobel_mask_x[3][3] = {
- {-1, 0, 1},
- {-2, 0, 2},
- {-1, 0, 1}
- };
-
- float sobel_mask_y[3][3] = {
- { 1, 2, 1},
- { 0, 0, 0},
- {-1, -2, -1}
- };
-
- // 8 x 8 local work + 3 pixels around each side (needed to accomodate for the
- // block size radius of 2)
- __local float grayscale_data[196];
-
- int idx = get_group_id(0) * get_local_size(0);
- int idy = get_group_id(1) * get_local_size(1);
-
- for (int i = idy - 3, it = 0; i < idy + (int)get_local_size(1) + 3; i++, it++) {
- for (int j = idx - 3, jt = 0; j < idx + (int)get_local_size(0) + 3; j++, jt++) {
- grayscale_data[jt + it * 14] = read_imagef(grayscale, sampler, (int2)(j, i)).x;
- }
- }
-
- barrier(CLK_LOCAL_MEM_FENCE);
-
- float sumdxdy = sum_deriv_prod(grayscale_data, sobel_mask_x, sobel_mask_y);
- float sumdx2 = sum_deriv_pow(grayscale_data, sobel_mask_x);
- float sumdy2 = sum_deriv_pow(grayscale_data, sobel_mask_y);
-
- float trace = sumdx2 + sumdy2;
- // r = det(M) - k(trace(M))^2
- // k usually between 0.04 to 0.06
- float r = (sumdx2 * sumdy2 - sumdxdy * sumdxdy) - 0.04f * (trace * trace) * pown(scale, 4);
-
- // Threshold the r value
- harris_buf[loc.x + loc.y * get_image_width(grayscale)] = r * step(HARRIS_THRESHOLD, r);
- }
-
- // Gets a patch centered around a float coordinate from a grayscale image using
- // bilinear interpolation
- static void get_rect_sub_pix(
- __read_only image2d_t grayscale,
- float *buffer,
- int size_x,
- int size_y,
- float2 center
- ) {
- float2 offset = ((float2)(size_x, size_y) - 1.0f) * 0.5f;
-
- for (int i = 0; i < size_y; i++) {
- for (int j = 0; j < size_x; j++) {
- buffer[i * size_x + j] = read_imagef(
- grayscale,
- sampler_linear,
- (float2)(j, i) + center - offset
- ).x * 255.0f;
- }
- }
- }
-
- // Refines detected features at a sub-pixel level
- //
- // This function is ported from OpenCV
- static float2 corner_sub_pix(
- __read_only image2d_t grayscale,
- float2 feature,
- float *mask
- ) {
- float2 init = feature;
- int src_width = get_global_size(0);
- int src_height = get_global_size(1);
-
- const int max_iters = 40;
- const float eps = 0.001f * 0.001f;
- int i, j, k;
-
- int iter = 0;
- float err = 0;
- float subpix[(REFINE_WIN_W + 2) * (REFINE_WIN_H + 2)];
- const float flt_epsilon = 0x1.0p-23f;
-
- do {
- float2 feature_tmp;
- float a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
-
- get_rect_sub_pix(grayscale, subpix, REFINE_WIN_W + 2, REFINE_WIN_H + 2, feature);
- float *subpix_ptr = subpix;
- subpix_ptr += REFINE_WIN_W + 2 + 1;
-
- // process gradient
- for (i = 0, k = 0; i < REFINE_WIN_H; i++, subpix_ptr += REFINE_WIN_W + 2) {
- float py = i - REFINE_WIN_HALF_H;
-
- for (j = 0; j < REFINE_WIN_W; j++, k++) {
- float m = mask[k];
- float tgx = subpix_ptr[j + 1] - subpix_ptr[j - 1];
- float tgy = subpix_ptr[j + REFINE_WIN_W + 2] - subpix_ptr[j - REFINE_WIN_W - 2];
- float gxx = tgx * tgx * m;
- float gxy = tgx * tgy * m;
- float gyy = tgy * tgy * m;
- float px = j - REFINE_WIN_HALF_W;
-
- a += gxx;
- b += gxy;
- c += gyy;
-
- bb1 += gxx * px + gxy * py;
- bb2 += gxy * px + gyy * py;
- }
- }
-
- float det = a * c - b * b;
- if (fabs(det) <= flt_epsilon * flt_epsilon) {
- break;
- }
-
- // 2x2 matrix inversion
- float scale = 1.0f / det;
- feature_tmp.x = (float)(feature.x + (c * scale * bb1) - (b * scale * bb2));
- feature_tmp.y = (float)(feature.y - (b * scale * bb1) + (a * scale * bb2));
- err = dot(feature_tmp - feature, feature_tmp - feature);
-
- feature = feature_tmp;
- if (feature.x < 0 || feature.x >= src_width || feature.y < 0 || feature.y >= src_height) {
- break;
- }
- } while (++iter < max_iters && err > eps);
-
- // Make sure new point isn't too far from the initial point (indicates poor convergence)
- if (fabs(feature.x - init.x) > REFINE_WIN_HALF_W || fabs(feature.y - init.y) > REFINE_WIN_HALF_H) {
- feature = init;
- }
-
- return feature;
- }
-
- // Performs non-maximum suppression on the harris response and writes the resulting
- // feature locations to refined_features.
- //
- // Assumes that refined_features and the global work sizes are set up such that the image
- // is split up into a grid of 32x32 blocks where each block has a single slot in the
- // refined_features buffer. This kernel finds the best corner in each block (if the
- // block has any) and writes it to the corresponding slot in the buffer.
- //
- // If subpixel_refine is true, the features are additionally refined at a sub-pixel
- // level for increased precision.
- __kernel void refine_features(
- __read_only image2d_t grayscale,
- __global const float *harris_buf,
- __global float2 *refined_features,
- int subpixel_refine
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
- // The location in the grayscale buffer rather than the compacted grid
- int2 loc_i = (int2)(loc.x * 32, loc.y * 32);
-
- float new_val;
- float max_val = 0;
- float2 loc_max = (float2)(-1, -1);
-
- int end_x = min(loc_i.x + 32, (int)get_image_dim(grayscale).x - 1);
- int end_y = min(loc_i.y + 32, (int)get_image_dim(grayscale).y - 1);
-
- for (int i = loc_i.x; i < end_x; ++i) {
- for (int j = loc_i.y; j < end_y; ++j) {
- new_val = harris_buf[i + j * get_image_dim(grayscale).x];
-
- if (new_val > max_val) {
- max_val = new_val;
- loc_max = (float2)(i, j);
- }
- }
- }
-
- if (max_val == 0) {
- // There are no features in this part of the frame
- write_to_1d_arrf2(refined_features, loc, loc_max);
- return;
- }
-
- if (subpixel_refine) {
- float mask[REFINE_WIN_H * REFINE_WIN_W];
- for (int i = 0; i < REFINE_WIN_H; i++) {
- float y = (float)(i - REFINE_WIN_HALF_H) / REFINE_WIN_HALF_H;
- float vy = exp(-y * y);
-
- for (int j = 0; j < REFINE_WIN_W; j++) {
- float x = (float)(j - REFINE_WIN_HALF_W) / REFINE_WIN_HALF_W;
- mask[i * REFINE_WIN_W + j] = (float)(vy * exp(-x * x));
- }
- }
-
- loc_max = corner_sub_pix(grayscale, loc_max, mask);
- }
-
- write_to_1d_arrf2(refined_features, loc, loc_max);
- }
-
- // Extracts BRIEF descriptors from the grayscale src image for the given features
- // using the provided sampler.
- __kernel void brief_descriptors(
- __read_only image2d_t grayscale,
- __global const float2 *refined_features,
- // for 512 bit descriptors
- __global ulong8 *desc_buf,
- __global const PointPair *brief_pattern
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
- float2 feature = read_from_1d_arrf2(refined_features, loc);
-
- // There was no feature in this part of the frame
- if (feature.x == -1) {
- write_to_1d_arrul8(desc_buf, loc, (ulong8)(0));
- return;
- }
-
- ulong8 desc = 0;
- ulong *p = &desc;
-
- for (int i = 0; i < 8; ++i) {
- for (int j = 0; j < 64; ++j) {
- PointPair pair = brief_pattern[j * (i + 1)];
- float l1 = read_imagef(grayscale, sampler_linear, feature + pair.p1).x;
- float l2 = read_imagef(grayscale, sampler_linear, feature + pair.p2).x;
-
- if (l1 < l2) {
- p[i] |= 1UL << j;
- }
- }
- }
-
- write_to_1d_arrul8(desc_buf, loc, desc);
- }
-
- // Given buffers with descriptors for the current and previous frame, determines
- // which ones match, writing correspondences to matches_buf.
- //
- // Feature and descriptor buffers are assumed to be compacted (each element sourced
- // from a 32x32 block in the frame being processed).
- __kernel void match_descriptors(
- __global const float2 *prev_refined_features,
- __global const float2 *refined_features,
- __global const ulong8 *desc_buf,
- __global const ulong8 *prev_desc_buf,
- __global MotionVector *matches_buf
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
- ulong8 desc = read_from_1d_arrul8(desc_buf, loc);
- const int search_radius = 3;
-
- MotionVector invalid_vector = (MotionVector) {
- (PointPair) {
- (float2)(-1, -1),
- (float2)(-1, -1)
- },
- 0
- };
-
- if (desc.s0 == 0 && desc.s1 == 0) {
- // There was no feature in this part of the frame
- write_to_1d_arrvec(
- matches_buf,
- loc,
- invalid_vector
- );
- return;
- }
-
- int2 start = max(loc - search_radius, 0);
- int2 end = min(loc + search_radius, (int2)(get_global_size(0) - 1, get_global_size(1) - 1));
-
- for (int i = start.x; i < end.x; ++i) {
- for (int j = start.y; j < end.y; ++j) {
- int2 prev_point = (int2)(i, j);
- int total_dist = 0;
-
- ulong8 prev_desc = read_from_1d_arrul8(prev_desc_buf, prev_point);
-
- if (prev_desc.s0 == 0 && prev_desc.s1 == 0) {
- continue;
- }
-
- ulong *prev_desc_p = &prev_desc;
- ulong *desc_p = &desc;
-
- for (int i = 0; i < 8; i++) {
- total_dist += popcount(desc_p[i] ^ prev_desc_p[i]);
- }
-
- if (total_dist < DISTANCE_THRESHOLD) {
- write_to_1d_arrvec(
- matches_buf,
- loc,
- (MotionVector) {
- (PointPair) {
- read_from_1d_arrf2(prev_refined_features, prev_point),
- read_from_1d_arrf2(refined_features, loc)
- },
- 1
- }
- );
-
- return;
- }
- }
- }
-
- // There is no found match for this point
- write_to_1d_arrvec(
- matches_buf,
- loc,
- invalid_vector
- );
- }
-
- // Returns the position of the given point after the transform is applied
- static float2 transformed_point(float2 p, __global const float *transform) {
- float2 ret;
-
- ret.x = p.x * transform[0] + p.y * transform[1] + transform[2];
- ret.y = p.x * transform[3] + p.y * transform[4] + transform[5];
-
- return ret;
- }
-
-
- // Performs the given transform on the src image
- __kernel void transform(
- __read_only image2d_t src,
- __write_only image2d_t dst,
- __global const float *transform
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
- float2 norm = convert_float2(get_image_dim(src));
-
- write_imagef(
- dst,
- loc,
- read_imagef(
- src,
- sampler_linear_mirror,
- transformed_point((float2)(loc.x, loc.y), transform) / norm
- )
- );
- }
-
- // Returns the new location of the given point using the given crop bounding box
- // and the width and height of the original frame.
- static float2 cropped_point(
- float2 p,
- float2 top_left,
- float2 bottom_right,
- int2 orig_dim
- ) {
- float2 ret;
-
- float crop_width = bottom_right.x - top_left.x;
- float crop_height = bottom_right.y - top_left.y;
-
- float width_norm = p.x / (float)orig_dim.x;
- float height_norm = p.y / (float)orig_dim.y;
-
- ret.x = (width_norm * crop_width) + top_left.x;
- ret.y = (height_norm * crop_height) + ((float)orig_dim.y - bottom_right.y);
-
- return ret;
- }
-
- // Upscales the given cropped region to the size of the original frame
- __kernel void crop_upscale(
- __read_only image2d_t src,
- __write_only image2d_t dst,
- float2 top_left,
- float2 bottom_right
- ) {
- int2 loc = (int2)(get_global_id(0), get_global_id(1));
-
- write_imagef(
- dst,
- loc,
- read_imagef(
- src,
- sampler_linear,
- cropped_point((float2)(loc.x, loc.y), top_left, bottom_right, get_image_dim(dst))
- )
- );
- }
-
- // Draws boxes to represent the given point matches and uses the given transform
- // and crop info to make sure their positions are accurate on the transformed frame.
- //
- // model_matches is an array of three points that were used by the RANSAC process
- // to generate the given transform
- __kernel void draw_debug_info(
- __write_only image2d_t dst,
- __global const MotionVector *matches,
- __global const MotionVector *model_matches,
- int num_model_matches,
- __global const float *transform
- ) {
- int loc = get_global_id(0);
- MotionVector vec = matches[loc];
- // Black box: matched point that RANSAC considered an outlier
- float4 big_rect_color = (float4)(0.1f, 0.1f, 0.1f, 1.0f);
-
- if (vec.should_consider) {
- // Green box: matched point that RANSAC considered an inlier
- big_rect_color = (float4)(0.0f, 1.0f, 0.0f, 1.0f);
- }
-
- for (int i = 0; i < num_model_matches; i++) {
- if (vec.p.p2.x == model_matches[i].p.p2.x && vec.p.p2.y == model_matches[i].p.p2.y) {
- // Orange box: point used to calculate model
- big_rect_color = (float4)(1.0f, 0.5f, 0.0f, 1.0f);
- }
- }
-
- float2 transformed_p1 = transformed_point(vec.p.p1, transform);
- float2 transformed_p2 = transformed_point(vec.p.p2, transform);
-
- draw_box(dst, (int2)(transformed_p2.x, transformed_p2.y), big_rect_color, 5);
- // Small light blue box: the point in the previous frame
- draw_box(dst, (int2)(transformed_p1.x, transformed_p1.y), (float4)(0.0f, 0.3f, 0.7f, 1.0f), 3);
- }
|