|
- /*****************************************************************************
- * sofalizer.c : SOFAlizer filter for virtual binaural acoustics
- *****************************************************************************
- * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda,
- * Acoustics Research Institute (ARI), Vienna, Austria
- *
- * Authors: Andreas Fuchs <andi.fuchs.mail@gmail.com>
- * Wolfgang Hrauda <wolfgang.hrauda@gmx.at>
- *
- * SOFAlizer project coordinator at ARI, main developer of SOFA:
- * Piotr Majdak <piotr@majdak.at>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
- *****************************************************************************/
-
- #include <math.h>
- #include <mysofa.h>
-
- #include "libavcodec/avfft.h"
- #include "libavutil/avstring.h"
- #include "libavutil/channel_layout.h"
- #include "libavutil/float_dsp.h"
- #include "libavutil/intmath.h"
- #include "libavutil/opt.h"
- #include "avfilter.h"
- #include "filters.h"
- #include "internal.h"
- #include "audio.h"
-
- #define TIME_DOMAIN 0
- #define FREQUENCY_DOMAIN 1
-
- typedef struct MySofa { /* contains data of one SOFA file */
- struct MYSOFA_HRTF *hrtf;
- struct MYSOFA_LOOKUP *lookup;
- struct MYSOFA_NEIGHBORHOOD *neighborhood;
- int ir_samples; /* length of one impulse response (IR) */
- int n_samples; /* ir_samples to next power of 2 */
- float *lir, *rir; /* IRs (time-domain) */
- float *fir;
- int max_delay;
- } MySofa;
-
- typedef struct VirtualSpeaker {
- uint8_t set;
- float azim;
- float elev;
- } VirtualSpeaker;
-
- typedef struct SOFAlizerContext {
- const AVClass *class;
-
- char *filename; /* name of SOFA file */
- MySofa sofa; /* contains data of the SOFA file */
-
- int sample_rate; /* sample rate from SOFA file */
- float *speaker_azim; /* azimuth of the virtual loudspeakers */
- float *speaker_elev; /* elevation of the virtual loudspeakers */
- char *speakers_pos; /* custom positions of the virtual loudspeakers */
- float lfe_gain; /* initial gain for the LFE channel */
- float gain_lfe; /* gain applied to LFE channel */
- int lfe_channel; /* LFE channel position in channel layout */
-
- int n_conv; /* number of channels to convolute */
-
- /* buffer variables (for convolution) */
- float *ringbuffer[2]; /* buffers input samples, length of one buffer: */
- /* no. input ch. (incl. LFE) x buffer_length */
- int write[2]; /* current write position to ringbuffer */
- int buffer_length; /* is: longest IR plus max. delay in all SOFA files */
- /* then choose next power of 2 */
- int n_fft; /* number of samples in one FFT block */
- int nb_samples;
-
- /* netCDF variables */
- int *delay[2]; /* broadband delay for each channel/IR to be convolved */
-
- float *data_ir[2]; /* IRs for all channels to be convolved */
- /* (this excludes the LFE) */
- float *temp_src[2];
- FFTComplex *temp_fft[2]; /* Array to hold FFT values */
- FFTComplex *temp_afft[2]; /* Array to accumulate FFT values prior to IFFT */
-
- /* control variables */
- float gain; /* filter gain (in dB) */
- float rotation; /* rotation of virtual loudspeakers (in degrees) */
- float elevation; /* elevation of virtual loudspeakers (in deg.) */
- float radius; /* distance virtual loudspeakers to listener (in metres) */
- int type; /* processing type */
- int framesize; /* size of buffer */
- int normalize; /* should all IRs be normalized upon import ? */
- int interpolate; /* should wanted IRs be interpolated from neighbors ? */
- int minphase; /* should all IRs be minphased upon import ? */
- float anglestep; /* neighbor search angle step, in agles */
- float radstep; /* neighbor search radius step, in meters */
-
- VirtualSpeaker vspkrpos[64];
-
- FFTContext *fft[2], *ifft[2];
- FFTComplex *data_hrtf[2];
-
- AVFloatDSPContext *fdsp;
- } SOFAlizerContext;
-
- static int close_sofa(struct MySofa *sofa)
- {
- if (sofa->neighborhood)
- mysofa_neighborhood_free(sofa->neighborhood);
- sofa->neighborhood = NULL;
- if (sofa->lookup)
- mysofa_lookup_free(sofa->lookup);
- sofa->lookup = NULL;
- if (sofa->hrtf)
- mysofa_free(sofa->hrtf);
- sofa->hrtf = NULL;
- av_freep(&sofa->fir);
-
- return 0;
- }
-
- static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
- {
- struct SOFAlizerContext *s = ctx->priv;
- struct MYSOFA_HRTF *mysofa;
- char *license;
- int ret;
-
- mysofa = mysofa_load(filename, &ret);
- s->sofa.hrtf = mysofa;
- if (ret || !mysofa) {
- av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
- return AVERROR(EINVAL);
- }
-
- ret = mysofa_check(mysofa);
- if (ret != MYSOFA_OK) {
- av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n");
- return ret;
- }
-
- if (s->normalize)
- mysofa_loudness(s->sofa.hrtf);
-
- if (s->minphase)
- mysofa_minphase(s->sofa.hrtf, 0.01f);
-
- mysofa_tocartesian(s->sofa.hrtf);
-
- s->sofa.lookup = mysofa_lookup_init(s->sofa.hrtf);
- if (s->sofa.lookup == NULL)
- return AVERROR(EINVAL);
-
- if (s->interpolate)
- s->sofa.neighborhood = mysofa_neighborhood_init_withstepdefine(s->sofa.hrtf,
- s->sofa.lookup,
- s->anglestep,
- s->radstep);
-
- s->sofa.fir = av_calloc(s->sofa.hrtf->N * s->sofa.hrtf->R, sizeof(*s->sofa.fir));
- if (!s->sofa.fir)
- return AVERROR(ENOMEM);
-
- if (mysofa->DataSamplingRate.elements != 1)
- return AVERROR(EINVAL);
- av_log(ctx, AV_LOG_DEBUG, "Original IR length: %d.\n", mysofa->N);
- *samplingrate = mysofa->DataSamplingRate.values[0];
- license = mysofa_getAttribute(mysofa->attributes, (char *)"License");
- if (license)
- av_log(ctx, AV_LOG_INFO, "SOFA license: %s\n", license);
-
- return 0;
- }
-
- static int parse_channel_name(AVFilterContext *ctx, char **arg, int *rchannel)
- {
- int len, i, channel_id = 0;
- int64_t layout, layout0;
- char buf[8] = {0};
-
- /* try to parse a channel name, e.g. "FL" */
- if (av_sscanf(*arg, "%7[A-Z]%n", buf, &len)) {
- layout0 = layout = av_get_channel_layout(buf);
- /* channel_id <- first set bit in layout */
- for (i = 32; i > 0; i >>= 1) {
- if (layout >= 1LL << i) {
- channel_id += i;
- layout >>= i;
- }
- }
- /* reject layouts that are not a single channel */
- if (channel_id >= 64 || layout0 != 1LL << channel_id) {
- av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf);
- return AVERROR(EINVAL);
- }
- *rchannel = channel_id;
- *arg += len;
- return 0;
- } else if (av_sscanf(*arg, "%d%n", &channel_id, &len) == 1) {
- if (channel_id < 0 || channel_id >= 64) {
- av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%d\' as channel number.\n", channel_id);
- return AVERROR(EINVAL);
- }
- *rchannel = channel_id;
- *arg += len;
- return 0;
- }
- return AVERROR(EINVAL);
- }
-
- static void parse_speaker_pos(AVFilterContext *ctx, int64_t in_channel_layout)
- {
- SOFAlizerContext *s = ctx->priv;
- char *arg, *tokenizer, *p, *args = av_strdup(s->speakers_pos);
-
- if (!args)
- return;
- p = args;
-
- while ((arg = av_strtok(p, "|", &tokenizer))) {
- float azim, elev;
- int out_ch_id;
-
- p = NULL;
- if (parse_channel_name(ctx, &arg, &out_ch_id)) {
- continue;
- }
- if (av_sscanf(arg, "%f %f", &azim, &elev) == 2) {
- s->vspkrpos[out_ch_id].set = 1;
- s->vspkrpos[out_ch_id].azim = azim;
- s->vspkrpos[out_ch_id].elev = elev;
- } else if (av_sscanf(arg, "%f", &azim) == 1) {
- s->vspkrpos[out_ch_id].set = 1;
- s->vspkrpos[out_ch_id].azim = azim;
- s->vspkrpos[out_ch_id].elev = 0;
- }
- }
-
- av_free(args);
- }
-
- static int get_speaker_pos(AVFilterContext *ctx,
- float *speaker_azim, float *speaker_elev)
- {
- struct SOFAlizerContext *s = ctx->priv;
- uint64_t channels_layout = ctx->inputs[0]->channel_layout;
- float azim[64] = { 0 };
- float elev[64] = { 0 };
- int m, ch, n_conv = ctx->inputs[0]->channels; /* get no. input channels */
-
- if (n_conv < 0 || n_conv > 64)
- return AVERROR(EINVAL);
-
- s->lfe_channel = -1;
-
- if (s->speakers_pos)
- parse_speaker_pos(ctx, channels_layout);
-
- /* set speaker positions according to input channel configuration: */
- for (m = 0, ch = 0; ch < n_conv && m < 64; m++) {
- uint64_t mask = channels_layout & (1ULL << m);
-
- switch (mask) {
- case AV_CH_FRONT_LEFT: azim[ch] = 30; break;
- case AV_CH_FRONT_RIGHT: azim[ch] = 330; break;
- case AV_CH_FRONT_CENTER: azim[ch] = 0; break;
- case AV_CH_LOW_FREQUENCY:
- case AV_CH_LOW_FREQUENCY_2: s->lfe_channel = ch; break;
- case AV_CH_BACK_LEFT: azim[ch] = 150; break;
- case AV_CH_BACK_RIGHT: azim[ch] = 210; break;
- case AV_CH_BACK_CENTER: azim[ch] = 180; break;
- case AV_CH_SIDE_LEFT: azim[ch] = 90; break;
- case AV_CH_SIDE_RIGHT: azim[ch] = 270; break;
- case AV_CH_FRONT_LEFT_OF_CENTER: azim[ch] = 15; break;
- case AV_CH_FRONT_RIGHT_OF_CENTER: azim[ch] = 345; break;
- case AV_CH_TOP_CENTER: azim[ch] = 0;
- elev[ch] = 90; break;
- case AV_CH_TOP_FRONT_LEFT: azim[ch] = 30;
- elev[ch] = 45; break;
- case AV_CH_TOP_FRONT_CENTER: azim[ch] = 0;
- elev[ch] = 45; break;
- case AV_CH_TOP_FRONT_RIGHT: azim[ch] = 330;
- elev[ch] = 45; break;
- case AV_CH_TOP_BACK_LEFT: azim[ch] = 150;
- elev[ch] = 45; break;
- case AV_CH_TOP_BACK_RIGHT: azim[ch] = 210;
- elev[ch] = 45; break;
- case AV_CH_TOP_BACK_CENTER: azim[ch] = 180;
- elev[ch] = 45; break;
- case AV_CH_WIDE_LEFT: azim[ch] = 90; break;
- case AV_CH_WIDE_RIGHT: azim[ch] = 270; break;
- case AV_CH_SURROUND_DIRECT_LEFT: azim[ch] = 90; break;
- case AV_CH_SURROUND_DIRECT_RIGHT: azim[ch] = 270; break;
- case AV_CH_STEREO_LEFT: azim[ch] = 90; break;
- case AV_CH_STEREO_RIGHT: azim[ch] = 270; break;
- case 0: break;
- default:
- return AVERROR(EINVAL);
- }
-
- if (s->vspkrpos[m].set) {
- azim[ch] = s->vspkrpos[m].azim;
- elev[ch] = s->vspkrpos[m].elev;
- }
-
- if (mask)
- ch++;
- }
-
- memcpy(speaker_azim, azim, n_conv * sizeof(float));
- memcpy(speaker_elev, elev, n_conv * sizeof(float));
-
- return 0;
-
- }
-
- typedef struct ThreadData {
- AVFrame *in, *out;
- int *write;
- int **delay;
- float **ir;
- int *n_clippings;
- float **ringbuffer;
- float **temp_src;
- FFTComplex **temp_fft;
- FFTComplex **temp_afft;
- } ThreadData;
-
- static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
- {
- SOFAlizerContext *s = ctx->priv;
- ThreadData *td = arg;
- AVFrame *in = td->in, *out = td->out;
- int offset = jobnr;
- int *write = &td->write[jobnr];
- const int *const delay = td->delay[jobnr];
- const float *const ir = td->ir[jobnr];
- int *n_clippings = &td->n_clippings[jobnr];
- float *ringbuffer = td->ringbuffer[jobnr];
- float *temp_src = td->temp_src[jobnr];
- const int ir_samples = s->sofa.ir_samples; /* length of one IR */
- const int n_samples = s->sofa.n_samples;
- const int planar = in->format == AV_SAMPLE_FMT_FLTP;
- const int mult = 1 + !planar;
- const float *src = (const float *)in->extended_data[0]; /* get pointer to audio input buffer */
- float *dst = (float *)out->extended_data[jobnr * planar]; /* get pointer to audio output buffer */
- const int in_channels = s->n_conv; /* number of input channels */
- /* ring buffer length is: longest IR plus max. delay -> next power of 2 */
- const int buffer_length = s->buffer_length;
- /* -1 for AND instead of MODULO (applied to powers of 2): */
- const uint32_t modulo = (uint32_t)buffer_length - 1;
- float *buffer[64]; /* holds ringbuffer for each input channel */
- int wr = *write;
- int read;
- int i, l;
-
- if (!planar)
- dst += offset;
-
- for (l = 0; l < in_channels; l++) {
- /* get starting address of ringbuffer for each input channel */
- buffer[l] = ringbuffer + l * buffer_length;
- }
-
- for (i = 0; i < in->nb_samples; i++) {
- const float *temp_ir = ir; /* using same set of IRs for each sample */
-
- dst[0] = 0;
- if (planar) {
- for (l = 0; l < in_channels; l++) {
- const float *srcp = (const float *)in->extended_data[l];
-
- /* write current input sample to ringbuffer (for each channel) */
- buffer[l][wr] = srcp[i];
- }
- } else {
- for (l = 0; l < in_channels; l++) {
- /* write current input sample to ringbuffer (for each channel) */
- buffer[l][wr] = src[l];
- }
- }
-
- /* loop goes through all channels to be convolved */
- for (l = 0; l < in_channels; l++) {
- const float *const bptr = buffer[l];
-
- if (l == s->lfe_channel) {
- /* LFE is an input channel but requires no convolution */
- /* apply gain to LFE signal and add to output buffer */
- dst[0] += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
- temp_ir += n_samples;
- continue;
- }
-
- /* current read position in ringbuffer: input sample write position
- * - delay for l-th ch. + diff. betw. IR length and buffer length
- * (mod buffer length) */
- read = (wr - delay[l] - (ir_samples - 1) + buffer_length) & modulo;
-
- if (read + ir_samples < buffer_length) {
- memmove(temp_src, bptr + read, ir_samples * sizeof(*temp_src));
- } else {
- int len = FFMIN(n_samples - (read % ir_samples), buffer_length - read);
-
- memmove(temp_src, bptr + read, len * sizeof(*temp_src));
- memmove(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src));
- }
-
- /* multiply signal and IR, and add up the results */
- dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_samples, 32));
- temp_ir += n_samples;
- }
-
- /* clippings counter */
- if (fabsf(dst[0]) > 1)
- n_clippings[0]++;
-
- /* move output buffer pointer by +2 to get to next sample of processed channel: */
- dst += mult;
- src += in_channels;
- wr = (wr + 1) & modulo; /* update ringbuffer write position */
- }
-
- *write = wr; /* remember write position in ringbuffer for next call */
-
- return 0;
- }
-
- static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
- {
- SOFAlizerContext *s = ctx->priv;
- ThreadData *td = arg;
- AVFrame *in = td->in, *out = td->out;
- int offset = jobnr;
- int *write = &td->write[jobnr];
- FFTComplex *hrtf = s->data_hrtf[jobnr]; /* get pointers to current HRTF data */
- int *n_clippings = &td->n_clippings[jobnr];
- float *ringbuffer = td->ringbuffer[jobnr];
- const int ir_samples = s->sofa.ir_samples; /* length of one IR */
- const int planar = in->format == AV_SAMPLE_FMT_FLTP;
- const int mult = 1 + !planar;
- float *dst = (float *)out->extended_data[jobnr * planar]; /* get pointer to audio output buffer */
- const int in_channels = s->n_conv; /* number of input channels */
- /* ring buffer length is: longest IR plus max. delay -> next power of 2 */
- const int buffer_length = s->buffer_length;
- /* -1 for AND instead of MODULO (applied to powers of 2): */
- const uint32_t modulo = (uint32_t)buffer_length - 1;
- FFTComplex *fft_in = s->temp_fft[jobnr]; /* temporary array for FFT input/output data */
- FFTComplex *fft_acc = s->temp_afft[jobnr];
- FFTContext *ifft = s->ifft[jobnr];
- FFTContext *fft = s->fft[jobnr];
- const int n_conv = s->n_conv;
- const int n_fft = s->n_fft;
- const float fft_scale = 1.0f / s->n_fft;
- FFTComplex *hrtf_offset;
- int wr = *write;
- int n_read;
- int i, j;
-
- if (!planar)
- dst += offset;
-
- /* find minimum between number of samples and output buffer length:
- * (important, if one IR is longer than the output buffer) */
- n_read = FFMIN(ir_samples, in->nb_samples);
- for (j = 0; j < n_read; j++) {
- /* initialize output buf with saved signal from overflow buf */
- dst[mult * j] = ringbuffer[wr];
- ringbuffer[wr] = 0.0f; /* re-set read samples to zero */
- /* update ringbuffer read/write position */
- wr = (wr + 1) & modulo;
- }
-
- /* initialize rest of output buffer with 0 */
- for (j = n_read; j < in->nb_samples; j++) {
- dst[mult * j] = 0;
- }
-
- /* fill FFT accumulation with 0 */
- memset(fft_acc, 0, sizeof(FFTComplex) * n_fft);
-
- for (i = 0; i < n_conv; i++) {
- const float *src = (const float *)in->extended_data[i * planar]; /* get pointer to audio input buffer */
-
- if (i == s->lfe_channel) { /* LFE */
- if (in->format == AV_SAMPLE_FMT_FLT) {
- for (j = 0; j < in->nb_samples; j++) {
- /* apply gain to LFE signal and add to output buffer */
- dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
- }
- } else {
- for (j = 0; j < in->nb_samples; j++) {
- /* apply gain to LFE signal and add to output buffer */
- dst[j] += src[j] * s->gain_lfe;
- }
- }
- continue;
- }
-
- /* outer loop: go through all input channels to be convolved */
- offset = i * n_fft; /* no. samples already processed */
- hrtf_offset = hrtf + offset;
-
- /* fill FFT input with 0 (we want to zero-pad) */
- memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
-
- if (in->format == AV_SAMPLE_FMT_FLT) {
- for (j = 0; j < in->nb_samples; j++) {
- /* prepare input for FFT */
- /* write all samples of current input channel to FFT input array */
- fft_in[j].re = src[j * in_channels + i];
- }
- } else {
- for (j = 0; j < in->nb_samples; j++) {
- /* prepare input for FFT */
- /* write all samples of current input channel to FFT input array */
- fft_in[j].re = src[j];
- }
- }
-
- /* transform input signal of current channel to frequency domain */
- av_fft_permute(fft, fft_in);
- av_fft_calc(fft, fft_in);
- for (j = 0; j < n_fft; j++) {
- const FFTComplex *hcomplex = hrtf_offset + j;
- const float re = fft_in[j].re;
- const float im = fft_in[j].im;
-
- /* complex multiplication of input signal and HRTFs */
- /* output channel (real): */
- fft_acc[j].re += re * hcomplex->re - im * hcomplex->im;
- /* output channel (imag): */
- fft_acc[j].im += re * hcomplex->im + im * hcomplex->re;
- }
- }
-
- /* transform output signal of current channel back to time domain */
- av_fft_permute(ifft, fft_acc);
- av_fft_calc(ifft, fft_acc);
-
- for (j = 0; j < in->nb_samples; j++) {
- /* write output signal of current channel to output buffer */
- dst[mult * j] += fft_acc[j].re * fft_scale;
- }
-
- for (j = 0; j < ir_samples - 1; j++) { /* overflow length is IR length - 1 */
- /* write the rest of output signal to overflow buffer */
- int write_pos = (wr + j) & modulo;
-
- *(ringbuffer + write_pos) += fft_acc[in->nb_samples + j].re * fft_scale;
- }
-
- /* go through all samples of current output buffer: count clippings */
- for (i = 0; i < out->nb_samples; i++) {
- /* clippings counter */
- if (fabsf(dst[i * mult]) > 1) { /* if current output sample > 1 */
- n_clippings[0]++;
- }
- }
-
- /* remember read/write position in ringbuffer for next call */
- *write = wr;
-
- return 0;
- }
-
- static int filter_frame(AVFilterLink *inlink, AVFrame *in)
- {
- AVFilterContext *ctx = inlink->dst;
- SOFAlizerContext *s = ctx->priv;
- AVFilterLink *outlink = ctx->outputs[0];
- int n_clippings[2] = { 0 };
- ThreadData td;
- AVFrame *out;
-
- out = ff_get_audio_buffer(outlink, in->nb_samples);
- if (!out) {
- av_frame_free(&in);
- return AVERROR(ENOMEM);
- }
- av_frame_copy_props(out, in);
-
- td.in = in; td.out = out; td.write = s->write;
- td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
- td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
- td.temp_fft = s->temp_fft;
- td.temp_afft = s->temp_afft;
-
- if (s->type == TIME_DOMAIN) {
- ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2);
- } else if (s->type == FREQUENCY_DOMAIN) {
- ctx->internal->execute(ctx, sofalizer_fast_convolute, &td, NULL, 2);
- }
- emms_c();
-
- /* display error message if clipping occurred */
- if (n_clippings[0] + n_clippings[1] > 0) {
- av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
- n_clippings[0] + n_clippings[1], out->nb_samples * 2);
- }
-
- av_frame_free(&in);
- return ff_filter_frame(outlink, out);
- }
-
- static int activate(AVFilterContext *ctx)
- {
- AVFilterLink *inlink = ctx->inputs[0];
- AVFilterLink *outlink = ctx->outputs[0];
- SOFAlizerContext *s = ctx->priv;
- AVFrame *in;
- int ret;
-
- FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
-
- if (s->nb_samples)
- ret = ff_inlink_consume_samples(inlink, s->nb_samples, s->nb_samples, &in);
- else
- ret = ff_inlink_consume_frame(inlink, &in);
- if (ret < 0)
- return ret;
- if (ret > 0)
- return filter_frame(inlink, in);
-
- FF_FILTER_FORWARD_STATUS(inlink, outlink);
- FF_FILTER_FORWARD_WANTED(outlink, inlink);
-
- return FFERROR_NOT_READY;
- }
-
- static int query_formats(AVFilterContext *ctx)
- {
- struct SOFAlizerContext *s = ctx->priv;
- AVFilterFormats *formats = NULL;
- AVFilterChannelLayouts *layouts = NULL;
- int ret, sample_rates[] = { 48000, -1 };
- static const enum AVSampleFormat sample_fmts[] = {
- AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
- AV_SAMPLE_FMT_NONE
- };
-
- formats = ff_make_format_list(sample_fmts);
- if (!formats)
- return AVERROR(ENOMEM);
- ret = ff_set_common_formats(ctx, formats);
- if (ret)
- return ret;
-
- layouts = ff_all_channel_layouts();
- if (!layouts)
- return AVERROR(ENOMEM);
-
- ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->outcfg.channel_layouts);
- if (ret)
- return ret;
-
- layouts = NULL;
- ret = ff_add_channel_layout(&layouts, AV_CH_LAYOUT_STEREO);
- if (ret)
- return ret;
-
- ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->incfg.channel_layouts);
- if (ret)
- return ret;
-
- sample_rates[0] = s->sample_rate;
- formats = ff_make_format_list(sample_rates);
- if (!formats)
- return AVERROR(ENOMEM);
- return ff_set_common_samplerates(ctx, formats);
- }
-
- static int getfilter_float(AVFilterContext *ctx, float x, float y, float z,
- float *left, float *right,
- float *delay_left, float *delay_right)
- {
- struct SOFAlizerContext *s = ctx->priv;
- float c[3], delays[2];
- float *fl, *fr;
- int nearest;
- int *neighbors;
- float *res;
-
- c[0] = x, c[1] = y, c[2] = z;
- nearest = mysofa_lookup(s->sofa.lookup, c);
- if (nearest < 0)
- return AVERROR(EINVAL);
-
- if (s->interpolate) {
- neighbors = mysofa_neighborhood(s->sofa.neighborhood, nearest);
- res = mysofa_interpolate(s->sofa.hrtf, c,
- nearest, neighbors,
- s->sofa.fir, delays);
- } else {
- if (s->sofa.hrtf->DataDelay.elements > s->sofa.hrtf->R) {
- delays[0] = s->sofa.hrtf->DataDelay.values[nearest * s->sofa.hrtf->R];
- delays[1] = s->sofa.hrtf->DataDelay.values[nearest * s->sofa.hrtf->R + 1];
- } else {
- delays[0] = s->sofa.hrtf->DataDelay.values[0];
- delays[1] = s->sofa.hrtf->DataDelay.values[1];
- }
- res = s->sofa.hrtf->DataIR.values + nearest * s->sofa.hrtf->N * s->sofa.hrtf->R;
- }
-
- *delay_left = delays[0];
- *delay_right = delays[1];
-
- fl = res;
- fr = res + s->sofa.hrtf->N;
-
- memcpy(left, fl, sizeof(float) * s->sofa.hrtf->N);
- memcpy(right, fr, sizeof(float) * s->sofa.hrtf->N);
-
- return 0;
- }
-
- static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int sample_rate)
- {
- struct SOFAlizerContext *s = ctx->priv;
- int n_samples;
- int ir_samples;
- int n_conv = s->n_conv; /* no. channels to convolve */
- int n_fft;
- float delay_l; /* broadband delay for each IR */
- float delay_r;
- int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */
- float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */
- FFTComplex *data_hrtf_l = NULL;
- FFTComplex *data_hrtf_r = NULL;
- FFTComplex *fft_in_l = NULL;
- FFTComplex *fft_in_r = NULL;
- float *data_ir_l = NULL;
- float *data_ir_r = NULL;
- int offset = 0; /* used for faster pointer arithmetics in for-loop */
- int i, j, azim_orig = azim, elev_orig = elev;
- int ret = 0;
- int n_current;
- int n_max = 0;
-
- av_log(ctx, AV_LOG_DEBUG, "IR length: %d.\n", s->sofa.hrtf->N);
- s->sofa.ir_samples = s->sofa.hrtf->N;
- s->sofa.n_samples = 1 << (32 - ff_clz(s->sofa.ir_samples));
-
- n_samples = s->sofa.n_samples;
- ir_samples = s->sofa.ir_samples;
-
- if (s->type == TIME_DOMAIN) {
- s->data_ir[0] = av_calloc(n_samples, sizeof(float) * s->n_conv);
- s->data_ir[1] = av_calloc(n_samples, sizeof(float) * s->n_conv);
-
- if (!s->data_ir[0] || !s->data_ir[1]) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
- }
-
- s->delay[0] = av_calloc(s->n_conv, sizeof(int));
- s->delay[1] = av_calloc(s->n_conv, sizeof(int));
-
- if (!s->delay[0] || !s->delay[1]) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- /* get temporary IR for L and R channel */
- data_ir_l = av_calloc(n_conv * n_samples, sizeof(*data_ir_l));
- data_ir_r = av_calloc(n_conv * n_samples, sizeof(*data_ir_r));
- if (!data_ir_r || !data_ir_l) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- if (s->type == TIME_DOMAIN) {
- s->temp_src[0] = av_calloc(n_samples, sizeof(float));
- s->temp_src[1] = av_calloc(n_samples, sizeof(float));
- if (!s->temp_src[0] || !s->temp_src[1]) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
- }
-
- s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim));
- s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev));
- if (!s->speaker_azim || !s->speaker_elev) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- /* get speaker positions */
- if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) {
- av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n");
- goto fail;
- }
-
- for (i = 0; i < s->n_conv; i++) {
- float coordinates[3];
-
- /* load and store IRs and corresponding delays */
- azim = (int)(s->speaker_azim[i] + azim_orig) % 360;
- elev = (int)(s->speaker_elev[i] + elev_orig) % 90;
-
- coordinates[0] = azim;
- coordinates[1] = elev;
- coordinates[2] = radius;
-
- mysofa_s2c(coordinates);
-
- /* get id of IR closest to desired position */
- ret = getfilter_float(ctx, coordinates[0], coordinates[1], coordinates[2],
- data_ir_l + n_samples * i,
- data_ir_r + n_samples * i,
- &delay_l, &delay_r);
- if (ret < 0)
- goto fail;
-
- s->delay[0][i] = delay_l * sample_rate;
- s->delay[1][i] = delay_r * sample_rate;
-
- s->sofa.max_delay = FFMAX3(s->sofa.max_delay, s->delay[0][i], s->delay[1][i]);
- }
-
- /* get size of ringbuffer (longest IR plus max. delay) */
- /* then choose next power of 2 for performance optimization */
- n_current = n_samples + s->sofa.max_delay;
- /* length of longest IR plus max. delay */
- n_max = FFMAX(n_max, n_current);
-
- /* buffer length is longest IR plus max. delay -> next power of 2
- (32 - count leading zeros gives required exponent) */
- s->buffer_length = 1 << (32 - ff_clz(n_max));
- s->n_fft = n_fft = 1 << (32 - ff_clz(n_max + s->framesize));
-
- if (s->type == FREQUENCY_DOMAIN) {
- av_fft_end(s->fft[0]);
- av_fft_end(s->fft[1]);
- s->fft[0] = av_fft_init(av_log2(s->n_fft), 0);
- s->fft[1] = av_fft_init(av_log2(s->n_fft), 0);
- av_fft_end(s->ifft[0]);
- av_fft_end(s->ifft[1]);
- s->ifft[0] = av_fft_init(av_log2(s->n_fft), 1);
- s->ifft[1] = av_fft_init(av_log2(s->n_fft), 1);
-
- if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
- av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
- ret = AVERROR(ENOMEM);
- goto fail;
- }
- }
-
- if (s->type == TIME_DOMAIN) {
- s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
- s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
- } else if (s->type == FREQUENCY_DOMAIN) {
- /* get temporary HRTF memory for L and R channel */
- data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv);
- data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv);
- if (!data_hrtf_r || !data_hrtf_l) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
- s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
- s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
- s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
- s->temp_afft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
- s->temp_afft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
- if (!s->temp_fft[0] || !s->temp_fft[1] ||
- !s->temp_afft[0] || !s->temp_afft[1]) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
- }
-
- if (!s->ringbuffer[0] || !s->ringbuffer[1]) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- if (s->type == FREQUENCY_DOMAIN) {
- fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
- fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
- if (!fft_in_l || !fft_in_r) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
- }
-
- for (i = 0; i < s->n_conv; i++) {
- float *lir, *rir;
-
- offset = i * n_samples; /* no. samples already written */
-
- lir = data_ir_l + offset;
- rir = data_ir_r + offset;
-
- if (s->type == TIME_DOMAIN) {
- for (j = 0; j < ir_samples; j++) {
- /* load reversed IRs of the specified source position
- * sample-by-sample for left and right ear; and apply gain */
- s->data_ir[0][offset + j] = lir[ir_samples - 1 - j] * gain_lin;
- s->data_ir[1][offset + j] = rir[ir_samples - 1 - j] * gain_lin;
- }
- } else if (s->type == FREQUENCY_DOMAIN) {
- memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
- memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
-
- offset = i * n_fft; /* no. samples already written */
- for (j = 0; j < ir_samples; j++) {
- /* load non-reversed IRs of the specified source position
- * sample-by-sample and apply gain,
- * L channel is loaded to real part, R channel to imag part,
- * IRs are shifted by L and R delay */
- fft_in_l[s->delay[0][i] + j].re = lir[j] * gain_lin;
- fft_in_r[s->delay[1][i] + j].re = rir[j] * gain_lin;
- }
-
- /* actually transform to frequency domain (IRs -> HRTFs) */
- av_fft_permute(s->fft[0], fft_in_l);
- av_fft_calc(s->fft[0], fft_in_l);
- memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
- av_fft_permute(s->fft[0], fft_in_r);
- av_fft_calc(s->fft[0], fft_in_r);
- memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
- }
- }
-
- if (s->type == FREQUENCY_DOMAIN) {
- s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
- s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
- if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */
- sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */
- memcpy(s->data_hrtf[1], data_hrtf_r,
- sizeof(FFTComplex) * n_conv * n_fft);
- }
-
- fail:
- av_freep(&data_hrtf_l); /* free temporary HRTF memory */
- av_freep(&data_hrtf_r);
-
- av_freep(&data_ir_l); /* free temprary IR memory */
- av_freep(&data_ir_r);
-
- av_freep(&fft_in_l); /* free temporary FFT memory */
- av_freep(&fft_in_r);
-
- return ret;
- }
-
- static av_cold int init(AVFilterContext *ctx)
- {
- SOFAlizerContext *s = ctx->priv;
- int ret;
-
- if (!s->filename) {
- av_log(ctx, AV_LOG_ERROR, "Valid SOFA filename must be set.\n");
- return AVERROR(EINVAL);
- }
-
- /* preload SOFA file, */
- ret = preload_sofa(ctx, s->filename, &s->sample_rate);
- if (ret) {
- /* file loading error */
- av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename);
- } else { /* no file loading error, resampling not required */
- av_log(ctx, AV_LOG_DEBUG, "File '%s' loaded.\n", s->filename);
- }
-
- if (ret) {
- av_log(ctx, AV_LOG_ERROR, "No valid SOFA file could be loaded. Please specify valid SOFA file.\n");
- return ret;
- }
-
- s->fdsp = avpriv_float_dsp_alloc(0);
- if (!s->fdsp)
- return AVERROR(ENOMEM);
-
- return 0;
- }
-
- static int config_input(AVFilterLink *inlink)
- {
- AVFilterContext *ctx = inlink->dst;
- SOFAlizerContext *s = ctx->priv;
- int ret;
-
- if (s->type == FREQUENCY_DOMAIN)
- s->nb_samples = s->framesize;
-
- /* gain -3 dB per channel */
- s->gain_lfe = expf((s->gain - 3 * inlink->channels + s->lfe_gain) / 20 * M_LN10);
-
- s->n_conv = inlink->channels;
-
- /* load IRs to data_ir[0] and data_ir[1] for required directions */
- if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius, inlink->sample_rate)) < 0)
- return ret;
-
- av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n",
- inlink->sample_rate, s->n_conv, inlink->channels, s->buffer_length);
-
- return 0;
- }
-
- static av_cold void uninit(AVFilterContext *ctx)
- {
- SOFAlizerContext *s = ctx->priv;
-
- close_sofa(&s->sofa);
- av_fft_end(s->ifft[0]);
- av_fft_end(s->ifft[1]);
- av_fft_end(s->fft[0]);
- av_fft_end(s->fft[1]);
- s->ifft[0] = NULL;
- s->ifft[1] = NULL;
- s->fft[0] = NULL;
- s->fft[1] = NULL;
- av_freep(&s->delay[0]);
- av_freep(&s->delay[1]);
- av_freep(&s->data_ir[0]);
- av_freep(&s->data_ir[1]);
- av_freep(&s->ringbuffer[0]);
- av_freep(&s->ringbuffer[1]);
- av_freep(&s->speaker_azim);
- av_freep(&s->speaker_elev);
- av_freep(&s->temp_src[0]);
- av_freep(&s->temp_src[1]);
- av_freep(&s->temp_afft[0]);
- av_freep(&s->temp_afft[1]);
- av_freep(&s->temp_fft[0]);
- av_freep(&s->temp_fft[1]);
- av_freep(&s->data_hrtf[0]);
- av_freep(&s->data_hrtf[1]);
- av_freep(&s->fdsp);
- }
-
- #define OFFSET(x) offsetof(SOFAlizerContext, x)
- #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
-
- static const AVOption sofalizer_options[] = {
- { "sofa", "sofa filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
- { "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
- { "rotation", "set rotation" , OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -360, 360, .flags = FLAGS },
- { "elevation", "set elevation", OFFSET(elevation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -90, 90, .flags = FLAGS },
- { "radius", "set radius", OFFSET(radius), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 5, .flags = FLAGS },
- { "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" },
- { "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" },
- { "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" },
- { "speakers", "set speaker custom positions", OFFSET(speakers_pos), AV_OPT_TYPE_STRING, {.str=0}, 0, 0, .flags = FLAGS },
- { "lfegain", "set lfe gain", OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20,40, .flags = FLAGS },
- { "framesize", "set frame size", OFFSET(framesize), AV_OPT_TYPE_INT, {.i64=1024},1024,96000, .flags = FLAGS },
- { "normalize", "normalize IRs", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags = FLAGS },
- { "interpolate","interpolate IRs from neighbors", OFFSET(interpolate),AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS },
- { "minphase", "minphase IRs", OFFSET(minphase), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS },
- { "anglestep", "set neighbor search angle step", OFFSET(anglestep), AV_OPT_TYPE_FLOAT, {.dbl=.5}, 0.01, 10, .flags = FLAGS },
- { "radstep", "set neighbor search radius step", OFFSET(radstep), AV_OPT_TYPE_FLOAT, {.dbl=.01}, 0.01, 1, .flags = FLAGS },
- { NULL }
- };
-
- AVFILTER_DEFINE_CLASS(sofalizer);
-
- static const AVFilterPad inputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_AUDIO,
- .config_props = config_input,
- },
- { NULL }
- };
-
- static const AVFilterPad outputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_AUDIO,
- },
- { NULL }
- };
-
- AVFilter ff_af_sofalizer = {
- .name = "sofalizer",
- .description = NULL_IF_CONFIG_SMALL("SOFAlizer (Spatially Oriented Format for Acoustics)."),
- .priv_size = sizeof(SOFAlizerContext),
- .priv_class = &sofalizer_class,
- .init = init,
- .activate = activate,
- .uninit = uninit,
- .query_formats = query_formats,
- .inputs = inputs,
- .outputs = outputs,
- .flags = AVFILTER_FLAG_SLICE_THREADS,
- };
|