You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

965 lines
31KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/avstring.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/opt.h"
  30. #include "libavutil/xga_font_data.h"
  31. #include "libavcodec/avfft.h"
  32. #include "audio.h"
  33. #include "avfilter.h"
  34. #include "filters.h"
  35. #include "formats.h"
  36. #include "internal.h"
  37. #include "af_afir.h"
  38. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  39. {
  40. int n;
  41. for (n = 0; n < len; n++) {
  42. const float cre = c[2 * n ];
  43. const float cim = c[2 * n + 1];
  44. const float tre = t[2 * n ];
  45. const float tim = t[2 * n + 1];
  46. sum[2 * n ] += tre * cre - tim * cim;
  47. sum[2 * n + 1] += tre * cim + tim * cre;
  48. }
  49. sum[2 * n] += t[2 * n] * c[2 * n];
  50. }
  51. static void direct(const float *in, const FFTComplex *ir, int len, float *out)
  52. {
  53. for (int n = 0; n < len; n++)
  54. for (int m = 0; m <= n; m++)
  55. out[n] += ir[m].re * in[n - m];
  56. }
  57. static void fir_fadd(AudioFIRContext *s, float *dst, const float *src, int nb_samples)
  58. {
  59. if ((nb_samples & 15) == 0 && nb_samples >= 16) {
  60. s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
  61. } else {
  62. for (int n = 0; n < nb_samples; n++)
  63. dst[n] += src[n];
  64. }
  65. }
  66. static int fir_quantum(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
  67. {
  68. AudioFIRContext *s = ctx->priv;
  69. const float *in = (const float *)s->in->extended_data[ch] + offset;
  70. float *block, *buf, *ptr = (float *)out->extended_data[ch] + offset;
  71. const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset);
  72. int n, i, j;
  73. for (int segment = 0; segment < s->nb_segments; segment++) {
  74. AudioFIRSegment *seg = &s->seg[segment];
  75. float *src = (float *)seg->input->extended_data[ch];
  76. float *dst = (float *)seg->output->extended_data[ch];
  77. float *sum = (float *)seg->sum->extended_data[ch];
  78. if (s->min_part_size >= 8) {
  79. s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4));
  80. emms_c();
  81. } else {
  82. for (n = 0; n < nb_samples; n++)
  83. src[seg->input_offset + n] = in[n] * s->dry_gain;
  84. }
  85. seg->output_offset[ch] += s->min_part_size;
  86. if (seg->output_offset[ch] == seg->part_size) {
  87. seg->output_offset[ch] = 0;
  88. } else {
  89. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  90. dst += seg->output_offset[ch];
  91. fir_fadd(s, ptr, dst, nb_samples);
  92. continue;
  93. }
  94. if (seg->part_size < 8) {
  95. memset(dst, 0, sizeof(*dst) * seg->part_size * seg->nb_partitions);
  96. j = seg->part_index[ch];
  97. for (i = 0; i < seg->nb_partitions; i++) {
  98. const int coffset = j * seg->coeff_size;
  99. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  100. direct(src, coeff, nb_samples, dst);
  101. if (j == 0)
  102. j = seg->nb_partitions;
  103. j--;
  104. }
  105. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  106. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  107. for (n = 0; n < nb_samples; n++) {
  108. ptr[n] += dst[n];
  109. }
  110. continue;
  111. }
  112. memset(sum, 0, sizeof(*sum) * seg->fft_length);
  113. block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size;
  114. memset(block + seg->part_size, 0, sizeof(*block) * (seg->fft_length - seg->part_size));
  115. memcpy(block, src, sizeof(*src) * seg->part_size);
  116. av_rdft_calc(seg->rdft[ch], block);
  117. block[2 * seg->part_size] = block[1];
  118. block[1] = 0;
  119. j = seg->part_index[ch];
  120. for (i = 0; i < seg->nb_partitions; i++) {
  121. const int coffset = j * seg->coeff_size;
  122. const float *block = (const float *)seg->block->extended_data[ch] + i * seg->block_size;
  123. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  124. s->afirdsp.fcmul_add(sum, block, (const float *)coeff, seg->part_size);
  125. if (j == 0)
  126. j = seg->nb_partitions;
  127. j--;
  128. }
  129. sum[1] = sum[2 * seg->part_size];
  130. av_rdft_calc(seg->irdft[ch], sum);
  131. buf = (float *)seg->buffer->extended_data[ch];
  132. fir_fadd(s, buf, sum, seg->part_size);
  133. memcpy(dst, buf, seg->part_size * sizeof(*dst));
  134. buf = (float *)seg->buffer->extended_data[ch];
  135. memcpy(buf, sum + seg->part_size, seg->part_size * sizeof(*buf));
  136. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  137. memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
  138. fir_fadd(s, ptr, dst, nb_samples);
  139. }
  140. if (s->min_part_size >= 8) {
  141. s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4));
  142. emms_c();
  143. } else {
  144. for (n = 0; n < nb_samples; n++)
  145. ptr[n] *= s->wet_gain;
  146. }
  147. return 0;
  148. }
  149. static int fir_channel(AVFilterContext *ctx, AVFrame *out, int ch)
  150. {
  151. AudioFIRContext *s = ctx->priv;
  152. for (int offset = 0; offset < out->nb_samples; offset += s->min_part_size) {
  153. fir_quantum(ctx, out, ch, offset);
  154. }
  155. return 0;
  156. }
  157. static int fir_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  158. {
  159. AVFrame *out = arg;
  160. const int start = (out->channels * jobnr) / nb_jobs;
  161. const int end = (out->channels * (jobnr+1)) / nb_jobs;
  162. for (int ch = start; ch < end; ch++) {
  163. fir_channel(ctx, out, ch);
  164. }
  165. return 0;
  166. }
  167. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  168. {
  169. AVFilterContext *ctx = outlink->src;
  170. AVFrame *out = NULL;
  171. out = ff_get_audio_buffer(outlink, in->nb_samples);
  172. if (!out) {
  173. av_frame_free(&in);
  174. return AVERROR(ENOMEM);
  175. }
  176. if (s->pts == AV_NOPTS_VALUE)
  177. s->pts = in->pts;
  178. s->in = in;
  179. ctx->internal->execute(ctx, fir_channels, out, NULL, FFMIN(outlink->channels,
  180. ff_filter_get_nb_threads(ctx)));
  181. out->pts = s->pts;
  182. if (s->pts != AV_NOPTS_VALUE)
  183. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  184. av_frame_free(&in);
  185. s->in = NULL;
  186. return ff_filter_frame(outlink, out);
  187. }
  188. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  189. {
  190. const uint8_t *font;
  191. int font_height;
  192. int i;
  193. font = avpriv_cga_font, font_height = 8;
  194. for (i = 0; txt[i]; i++) {
  195. int char_y, mask;
  196. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  197. for (char_y = 0; char_y < font_height; char_y++) {
  198. for (mask = 0x80; mask; mask >>= 1) {
  199. if (font[txt[i] * font_height + char_y] & mask)
  200. AV_WL32(p, color);
  201. p += 4;
  202. }
  203. p += pic->linesize[0] - 8 * 4;
  204. }
  205. }
  206. }
  207. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  208. {
  209. int dx = FFABS(x1-x0);
  210. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  211. int err = (dx>dy ? dx : -dy) / 2, e2;
  212. for (;;) {
  213. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  214. if (x0 == x1 && y0 == y1)
  215. break;
  216. e2 = err;
  217. if (e2 >-dx) {
  218. err -= dy;
  219. x0--;
  220. }
  221. if (e2 < dy) {
  222. err += dx;
  223. y0 += sy;
  224. }
  225. }
  226. }
  227. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  228. {
  229. AudioFIRContext *s = ctx->priv;
  230. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  231. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  232. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  233. char text[32];
  234. int channel, i, x;
  235. memset(out->data[0], 0, s->h * out->linesize[0]);
  236. phase = av_malloc_array(s->w, sizeof(*phase));
  237. mag = av_malloc_array(s->w, sizeof(*mag));
  238. delay = av_malloc_array(s->w, sizeof(*delay));
  239. if (!mag || !phase || !delay)
  240. goto end;
  241. channel = av_clip(s->ir_channel, 0, s->ir[s->selir]->channels - 1);
  242. for (i = 0; i < s->w; i++) {
  243. const float *src = (const float *)s->ir[s->selir]->extended_data[channel];
  244. double w = i * M_PI / (s->w - 1);
  245. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  246. for (x = 0; x < s->nb_taps; x++) {
  247. real += cos(-x * w) * src[x];
  248. imag += sin(-x * w) * src[x];
  249. real_num += cos(-x * w) * src[x] * x;
  250. imag_num += sin(-x * w) * src[x] * x;
  251. }
  252. mag[i] = hypot(real, imag);
  253. phase[i] = atan2(imag, real);
  254. div = real * real + imag * imag;
  255. delay[i] = (real_num * real + imag_num * imag) / div;
  256. min = fminf(min, mag[i]);
  257. max = fmaxf(max, mag[i]);
  258. min_delay = fminf(min_delay, delay[i]);
  259. max_delay = fmaxf(max_delay, delay[i]);
  260. }
  261. for (i = 0; i < s->w; i++) {
  262. int ymag = mag[i] / max * (s->h - 1);
  263. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  264. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  265. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  266. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  267. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  268. if (prev_ymag < 0)
  269. prev_ymag = ymag;
  270. if (prev_yphase < 0)
  271. prev_yphase = yphase;
  272. if (prev_ydelay < 0)
  273. prev_ydelay = ydelay;
  274. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  275. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  276. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  277. prev_ymag = ymag;
  278. prev_yphase = yphase;
  279. prev_ydelay = ydelay;
  280. }
  281. if (s->w > 400 && s->h > 100) {
  282. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  283. snprintf(text, sizeof(text), "%.2f", max);
  284. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  285. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  286. snprintf(text, sizeof(text), "%.2f", min);
  287. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  288. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  289. snprintf(text, sizeof(text), "%.2f", max_delay);
  290. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  291. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  292. snprintf(text, sizeof(text), "%.2f", min_delay);
  293. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  294. }
  295. end:
  296. av_free(delay);
  297. av_free(phase);
  298. av_free(mag);
  299. }
  300. static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg,
  301. int offset, int nb_partitions, int part_size)
  302. {
  303. AudioFIRContext *s = ctx->priv;
  304. seg->rdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft));
  305. seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft));
  306. if (!seg->rdft || !seg->irdft)
  307. return AVERROR(ENOMEM);
  308. seg->fft_length = part_size * 2 + 1;
  309. seg->part_size = part_size;
  310. seg->block_size = FFALIGN(seg->fft_length, 32);
  311. seg->coeff_size = FFALIGN(seg->part_size + 1, 32);
  312. seg->nb_partitions = nb_partitions;
  313. seg->input_size = offset + s->min_part_size;
  314. seg->input_offset = offset;
  315. seg->part_index = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index));
  316. seg->output_offset = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->output_offset));
  317. if (!seg->part_index || !seg->output_offset)
  318. return AVERROR(ENOMEM);
  319. for (int ch = 0; ch < ctx->inputs[0]->channels && part_size >= 8; ch++) {
  320. seg->rdft[ch] = av_rdft_init(av_log2(2 * part_size), DFT_R2C);
  321. seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R);
  322. if (!seg->rdft[ch] || !seg->irdft[ch])
  323. return AVERROR(ENOMEM);
  324. }
  325. seg->sum = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length);
  326. seg->block = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size);
  327. seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  328. seg->coeff = ff_get_audio_buffer(ctx->inputs[1 + s->selir], seg->nb_partitions * seg->coeff_size * 2);
  329. seg->input = ff_get_audio_buffer(ctx->inputs[0], seg->input_size);
  330. seg->output = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  331. if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff || !seg->input || !seg->output)
  332. return AVERROR(ENOMEM);
  333. return 0;
  334. }
  335. static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
  336. {
  337. AudioFIRContext *s = ctx->priv;
  338. if (seg->rdft) {
  339. for (int ch = 0; ch < s->nb_channels; ch++) {
  340. av_rdft_end(seg->rdft[ch]);
  341. }
  342. }
  343. av_freep(&seg->rdft);
  344. if (seg->irdft) {
  345. for (int ch = 0; ch < s->nb_channels; ch++) {
  346. av_rdft_end(seg->irdft[ch]);
  347. }
  348. }
  349. av_freep(&seg->irdft);
  350. av_freep(&seg->output_offset);
  351. av_freep(&seg->part_index);
  352. av_frame_free(&seg->block);
  353. av_frame_free(&seg->sum);
  354. av_frame_free(&seg->buffer);
  355. av_frame_free(&seg->coeff);
  356. av_frame_free(&seg->input);
  357. av_frame_free(&seg->output);
  358. seg->input_size = 0;
  359. }
  360. static int convert_coeffs(AVFilterContext *ctx)
  361. {
  362. AudioFIRContext *s = ctx->priv;
  363. int ret, i, ch, n, cur_nb_taps;
  364. float power = 0;
  365. if (!s->nb_taps) {
  366. int part_size, max_part_size;
  367. int left, offset = 0;
  368. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1 + s->selir]);
  369. if (s->nb_taps <= 0)
  370. return AVERROR(EINVAL);
  371. if (s->minp > s->maxp) {
  372. s->maxp = s->minp;
  373. }
  374. left = s->nb_taps;
  375. part_size = 1 << av_log2(s->minp);
  376. max_part_size = 1 << av_log2(s->maxp);
  377. s->min_part_size = part_size;
  378. for (i = 0; left > 0; i++) {
  379. int step = part_size == max_part_size ? INT_MAX : 1 + (i == 0);
  380. int nb_partitions = FFMIN(step, (left + part_size - 1) / part_size);
  381. s->nb_segments = i + 1;
  382. ret = init_segment(ctx, &s->seg[i], offset, nb_partitions, part_size);
  383. if (ret < 0)
  384. return ret;
  385. offset += nb_partitions * part_size;
  386. left -= nb_partitions * part_size;
  387. part_size *= 2;
  388. part_size = FFMIN(part_size, max_part_size);
  389. }
  390. }
  391. if (!s->ir[s->selir]) {
  392. ret = ff_inlink_consume_samples(ctx->inputs[1 + s->selir], s->nb_taps, s->nb_taps, &s->ir[s->selir]);
  393. if (ret < 0)
  394. return ret;
  395. if (ret == 0)
  396. return AVERROR_BUG;
  397. }
  398. if (s->response)
  399. draw_response(ctx, s->video);
  400. s->gain = 1;
  401. cur_nb_taps = s->ir[s->selir]->nb_samples;
  402. switch (s->gtype) {
  403. case -1:
  404. /* nothing to do */
  405. break;
  406. case 0:
  407. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  408. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  409. for (i = 0; i < cur_nb_taps; i++)
  410. power += FFABS(time[i]);
  411. }
  412. s->gain = ctx->inputs[1 + s->selir]->channels / power;
  413. break;
  414. case 1:
  415. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  416. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  417. for (i = 0; i < cur_nb_taps; i++)
  418. power += time[i];
  419. }
  420. s->gain = ctx->inputs[1 + s->selir]->channels / power;
  421. break;
  422. case 2:
  423. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  424. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  425. for (i = 0; i < cur_nb_taps; i++)
  426. power += time[i] * time[i];
  427. }
  428. s->gain = sqrtf(ch / power);
  429. break;
  430. default:
  431. return AVERROR_BUG;
  432. }
  433. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  434. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  435. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  436. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  437. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 4));
  438. }
  439. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", cur_nb_taps);
  440. av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments);
  441. for (ch = 0; ch < ctx->inputs[1 + s->selir]->channels; ch++) {
  442. float *time = (float *)s->ir[s->selir]->extended_data[!s->one2many * ch];
  443. int toffset = 0;
  444. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  445. time[i] = 0;
  446. av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
  447. for (int segment = 0; segment < s->nb_segments; segment++) {
  448. AudioFIRSegment *seg = &s->seg[segment];
  449. float *block = (float *)seg->block->extended_data[ch];
  450. FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch];
  451. av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
  452. for (i = 0; i < seg->nb_partitions; i++) {
  453. const float scale = 1.f / seg->part_size;
  454. const int coffset = i * seg->coeff_size;
  455. const int remaining = s->nb_taps - toffset;
  456. const int size = remaining >= seg->part_size ? seg->part_size : remaining;
  457. if (size < 8) {
  458. for (n = 0; n < size; n++)
  459. coeff[coffset + n].re = time[toffset + n];
  460. toffset += size;
  461. continue;
  462. }
  463. memset(block, 0, sizeof(*block) * seg->fft_length);
  464. memcpy(block, time + toffset, size * sizeof(*block));
  465. av_rdft_calc(seg->rdft[0], block);
  466. coeff[coffset].re = block[0] * scale;
  467. coeff[coffset].im = 0;
  468. for (n = 1; n < seg->part_size; n++) {
  469. coeff[coffset + n].re = block[2 * n] * scale;
  470. coeff[coffset + n].im = block[2 * n + 1] * scale;
  471. }
  472. coeff[coffset + seg->part_size].re = block[1] * scale;
  473. coeff[coffset + seg->part_size].im = 0;
  474. toffset += size;
  475. }
  476. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
  477. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
  478. av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
  479. av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
  480. av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
  481. av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
  482. av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
  483. }
  484. }
  485. s->have_coeffs = 1;
  486. return 0;
  487. }
  488. static int check_ir(AVFilterLink *link)
  489. {
  490. AVFilterContext *ctx = link->dst;
  491. AudioFIRContext *s = ctx->priv;
  492. int nb_taps, max_nb_taps;
  493. nb_taps = ff_inlink_queued_samples(link);
  494. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  495. if (nb_taps > max_nb_taps) {
  496. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  497. return AVERROR(EINVAL);
  498. }
  499. return 0;
  500. }
  501. static int activate(AVFilterContext *ctx)
  502. {
  503. AudioFIRContext *s = ctx->priv;
  504. AVFilterLink *outlink = ctx->outputs[0];
  505. int ret, status, available, wanted;
  506. AVFrame *in = NULL;
  507. int64_t pts;
  508. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  509. if (s->response)
  510. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  511. if (!s->eof_coeffs[s->selir]) {
  512. ret = check_ir(ctx->inputs[1 + s->selir]);
  513. if (ret < 0)
  514. return ret;
  515. if (ff_outlink_get_status(ctx->inputs[1 + s->selir]) == AVERROR_EOF)
  516. s->eof_coeffs[s->selir] = 1;
  517. if (!s->eof_coeffs[s->selir]) {
  518. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  519. ff_inlink_request_frame(ctx->inputs[1 + s->selir]);
  520. else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
  521. ff_inlink_request_frame(ctx->inputs[1 + s->selir]);
  522. return 0;
  523. }
  524. }
  525. if (!s->have_coeffs && s->eof_coeffs[s->selir]) {
  526. ret = convert_coeffs(ctx);
  527. if (ret < 0)
  528. return ret;
  529. }
  530. available = ff_inlink_queued_samples(ctx->inputs[0]);
  531. wanted = FFMAX(s->min_part_size, (available / s->min_part_size) * s->min_part_size);
  532. ret = ff_inlink_consume_samples(ctx->inputs[0], wanted, wanted, &in);
  533. if (ret > 0)
  534. ret = fir_frame(s, in, outlink);
  535. if (ret < 0)
  536. return ret;
  537. if (s->response && s->have_coeffs) {
  538. int64_t old_pts = s->video->pts;
  539. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  540. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  541. AVFrame *clone;
  542. s->video->pts = new_pts;
  543. clone = av_frame_clone(s->video);
  544. if (!clone)
  545. return AVERROR(ENOMEM);
  546. return ff_filter_frame(ctx->outputs[1], clone);
  547. }
  548. }
  549. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->min_part_size) {
  550. ff_filter_set_ready(ctx, 10);
  551. return 0;
  552. }
  553. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  554. if (status == AVERROR_EOF) {
  555. ff_outlink_set_status(ctx->outputs[0], status, pts);
  556. if (s->response)
  557. ff_outlink_set_status(ctx->outputs[1], status, pts);
  558. return 0;
  559. }
  560. }
  561. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  562. !ff_outlink_get_status(ctx->inputs[0])) {
  563. ff_inlink_request_frame(ctx->inputs[0]);
  564. return 0;
  565. }
  566. if (s->response &&
  567. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  568. !ff_outlink_get_status(ctx->inputs[0])) {
  569. ff_inlink_request_frame(ctx->inputs[0]);
  570. return 0;
  571. }
  572. return FFERROR_NOT_READY;
  573. }
  574. static int query_formats(AVFilterContext *ctx)
  575. {
  576. AudioFIRContext *s = ctx->priv;
  577. AVFilterFormats *formats;
  578. AVFilterChannelLayouts *layouts;
  579. static const enum AVSampleFormat sample_fmts[] = {
  580. AV_SAMPLE_FMT_FLTP,
  581. AV_SAMPLE_FMT_NONE
  582. };
  583. static const enum AVPixelFormat pix_fmts[] = {
  584. AV_PIX_FMT_RGB0,
  585. AV_PIX_FMT_NONE
  586. };
  587. int ret;
  588. if (s->response) {
  589. AVFilterLink *videolink = ctx->outputs[1];
  590. formats = ff_make_format_list(pix_fmts);
  591. if ((ret = ff_formats_ref(formats, &videolink->incfg.formats)) < 0)
  592. return ret;
  593. }
  594. layouts = ff_all_channel_counts();
  595. if (!layouts)
  596. return AVERROR(ENOMEM);
  597. if (s->ir_format) {
  598. ret = ff_set_common_channel_layouts(ctx, layouts);
  599. if (ret < 0)
  600. return ret;
  601. } else {
  602. AVFilterChannelLayouts *mono = NULL;
  603. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->outcfg.channel_layouts)) < 0)
  604. return ret;
  605. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->incfg.channel_layouts)) < 0)
  606. return ret;
  607. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  608. if (ret)
  609. return ret;
  610. for (int i = 1; i < ctx->nb_inputs; i++) {
  611. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[i]->outcfg.channel_layouts)) < 0)
  612. return ret;
  613. }
  614. }
  615. formats = ff_make_format_list(sample_fmts);
  616. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  617. return ret;
  618. formats = ff_all_samplerates();
  619. return ff_set_common_samplerates(ctx, formats);
  620. }
  621. static int config_output(AVFilterLink *outlink)
  622. {
  623. AVFilterContext *ctx = outlink->src;
  624. AudioFIRContext *s = ctx->priv;
  625. s->one2many = ctx->inputs[1 + s->selir]->channels == 1;
  626. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  627. outlink->time_base = ctx->inputs[0]->time_base;
  628. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  629. outlink->channels = ctx->inputs[0]->channels;
  630. s->nb_channels = outlink->channels;
  631. s->nb_coef_channels = ctx->inputs[1 + s->selir]->channels;
  632. s->pts = AV_NOPTS_VALUE;
  633. return 0;
  634. }
  635. static av_cold void uninit(AVFilterContext *ctx)
  636. {
  637. AudioFIRContext *s = ctx->priv;
  638. for (int i = 0; i < s->nb_segments; i++) {
  639. uninit_segment(ctx, &s->seg[i]);
  640. }
  641. av_freep(&s->fdsp);
  642. for (int i = 0; i < s->nb_irs; i++) {
  643. av_frame_free(&s->ir[i]);
  644. }
  645. for (unsigned i = 1; i < ctx->nb_inputs; i++)
  646. av_freep(&ctx->input_pads[i].name);
  647. av_frame_free(&s->video);
  648. }
  649. static int config_video(AVFilterLink *outlink)
  650. {
  651. AVFilterContext *ctx = outlink->src;
  652. AudioFIRContext *s = ctx->priv;
  653. outlink->sample_aspect_ratio = (AVRational){1,1};
  654. outlink->w = s->w;
  655. outlink->h = s->h;
  656. outlink->frame_rate = s->frame_rate;
  657. outlink->time_base = av_inv_q(outlink->frame_rate);
  658. av_frame_free(&s->video);
  659. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  660. if (!s->video)
  661. return AVERROR(ENOMEM);
  662. return 0;
  663. }
  664. void ff_afir_init(AudioFIRDSPContext *dsp)
  665. {
  666. dsp->fcmul_add = fcmul_add_c;
  667. if (ARCH_X86)
  668. ff_afir_init_x86(dsp);
  669. }
  670. static av_cold int init(AVFilterContext *ctx)
  671. {
  672. AudioFIRContext *s = ctx->priv;
  673. AVFilterPad pad, vpad;
  674. int ret;
  675. pad = (AVFilterPad) {
  676. .name = "main",
  677. .type = AVMEDIA_TYPE_AUDIO,
  678. };
  679. ret = ff_insert_inpad(ctx, 0, &pad);
  680. if (ret < 0)
  681. return ret;
  682. for (int n = 0; n < s->nb_irs; n++) {
  683. pad = (AVFilterPad) {
  684. .name = av_asprintf("ir%d", n),
  685. .type = AVMEDIA_TYPE_AUDIO,
  686. };
  687. if (!pad.name)
  688. return AVERROR(ENOMEM);
  689. ret = ff_insert_inpad(ctx, n + 1, &pad);
  690. if (ret < 0) {
  691. av_freep(&pad.name);
  692. return ret;
  693. }
  694. }
  695. pad = (AVFilterPad) {
  696. .name = "default",
  697. .type = AVMEDIA_TYPE_AUDIO,
  698. .config_props = config_output,
  699. };
  700. ret = ff_insert_outpad(ctx, 0, &pad);
  701. if (ret < 0)
  702. return ret;
  703. if (s->response) {
  704. vpad = (AVFilterPad){
  705. .name = "filter_response",
  706. .type = AVMEDIA_TYPE_VIDEO,
  707. .config_props = config_video,
  708. };
  709. ret = ff_insert_outpad(ctx, 1, &vpad);
  710. if (ret < 0)
  711. return ret;
  712. }
  713. s->fdsp = avpriv_float_dsp_alloc(0);
  714. if (!s->fdsp)
  715. return AVERROR(ENOMEM);
  716. ff_afir_init(&s->afirdsp);
  717. return 0;
  718. }
  719. static int process_command(AVFilterContext *ctx,
  720. const char *cmd,
  721. const char *arg,
  722. char *res,
  723. int res_len,
  724. int flags)
  725. {
  726. AudioFIRContext *s = ctx->priv;
  727. int prev_ir = s->selir;
  728. int ret = ff_filter_process_command(ctx, cmd, arg, res, res_len, flags);
  729. if (ret < 0)
  730. return ret;
  731. s->selir = FFMIN(s->nb_irs - 1, s->selir);
  732. if (prev_ir != s->selir) {
  733. s->have_coeffs = 0;
  734. }
  735. return 0;
  736. }
  737. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  738. #define AFR AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
  739. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  740. #define OFFSET(x) offsetof(AudioFIRContext, x)
  741. static const AVOption afir_options[] = {
  742. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  743. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  744. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  745. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  746. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  747. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  748. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  749. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  750. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  751. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  752. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  753. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  754. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  755. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  756. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  757. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  758. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  759. { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=8192}, 1, 32768, AF },
  760. { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=8192}, 8, 32768, AF },
  761. { "nbirs", "set number of input IRs",OFFSET(nb_irs),AV_OPT_TYPE_INT, {.i64=1}, 1, 32, AF },
  762. { "ir", "select IR", OFFSET(selir), AV_OPT_TYPE_INT, {.i64=0}, 0, 31, AFR },
  763. { NULL }
  764. };
  765. AVFILTER_DEFINE_CLASS(afir);
  766. AVFilter ff_af_afir = {
  767. .name = "afir",
  768. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in additional stream(s)."),
  769. .priv_size = sizeof(AudioFIRContext),
  770. .priv_class = &afir_class,
  771. .query_formats = query_formats,
  772. .init = init,
  773. .activate = activate,
  774. .uninit = uninit,
  775. .process_command = process_command,
  776. .flags = AVFILTER_FLAG_DYNAMIC_INPUTS |
  777. AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  778. AVFILTER_FLAG_SLICE_THREADS,
  779. };