You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2115 lines
82KB

  1. \input texinfo @c -*- texinfo -*-
  2. @documentencoding UTF-8
  3. @settitle ffmpeg Documentation
  4. @titlepage
  5. @center @titlefont{ffmpeg Documentation}
  6. @end titlepage
  7. @top
  8. @contents
  9. @chapter Synopsis
  10. ffmpeg [@var{global_options}] @{[@var{input_file_options}] -i @file{input_url}@} ... @{[@var{output_file_options}] @file{output_url}@} ...
  11. @chapter Description
  12. @c man begin DESCRIPTION
  13. @command{ffmpeg} is a very fast video and audio converter that can also grab from
  14. a live audio/video source. It can also convert between arbitrary sample
  15. rates and resize video on the fly with a high quality polyphase filter.
  16. @command{ffmpeg} reads from an arbitrary number of input "files" (which can be regular
  17. files, pipes, network streams, grabbing devices, etc.), specified by the
  18. @code{-i} option, and writes to an arbitrary number of output "files", which are
  19. specified by a plain output url. Anything found on the command line which
  20. cannot be interpreted as an option is considered to be an output url.
  21. Each input or output url can, in principle, contain any number of streams of
  22. different types (video/audio/subtitle/attachment/data). The allowed number and/or
  23. types of streams may be limited by the container format. Selecting which
  24. streams from which inputs will go into which output is either done automatically
  25. or with the @code{-map} option (see the Stream selection chapter).
  26. To refer to input files in options, you must use their indices (0-based). E.g.
  27. the first input file is @code{0}, the second is @code{1}, etc. Similarly, streams
  28. within a file are referred to by their indices. E.g. @code{2:3} refers to the
  29. fourth stream in the third input file. Also see the Stream specifiers chapter.
  30. As a general rule, options are applied to the next specified
  31. file. Therefore, order is important, and you can have the same
  32. option on the command line multiple times. Each occurrence is
  33. then applied to the next input or output file.
  34. Exceptions from this rule are the global options (e.g. verbosity level),
  35. which should be specified first.
  36. Do not mix input and output files -- first specify all input files, then all
  37. output files. Also do not mix options which belong to different files. All
  38. options apply ONLY to the next input or output file and are reset between files.
  39. @itemize
  40. @item
  41. To set the video bitrate of the output file to 64 kbit/s:
  42. @example
  43. ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi
  44. @end example
  45. @item
  46. To force the frame rate of the output file to 24 fps:
  47. @example
  48. ffmpeg -i input.avi -r 24 output.avi
  49. @end example
  50. @item
  51. To force the frame rate of the input file (valid for raw formats only)
  52. to 1 fps and the frame rate of the output file to 24 fps:
  53. @example
  54. ffmpeg -r 1 -i input.m2v -r 24 output.avi
  55. @end example
  56. @end itemize
  57. The format option may be needed for raw input files.
  58. @c man end DESCRIPTION
  59. @chapter Detailed description
  60. @c man begin DETAILED DESCRIPTION
  61. The transcoding process in @command{ffmpeg} for each output can be described by
  62. the following diagram:
  63. @verbatim
  64. _______ ______________
  65. | | | |
  66. | input | demuxer | encoded data | decoder
  67. | file | ---------> | packets | -----+
  68. |_______| |______________| |
  69. v
  70. _________
  71. | |
  72. | decoded |
  73. | frames |
  74. |_________|
  75. ________ ______________ |
  76. | | | | |
  77. | output | <-------- | encoded data | <----+
  78. | file | muxer | packets | encoder
  79. |________| |______________|
  80. @end verbatim
  81. @command{ffmpeg} calls the libavformat library (containing demuxers) to read
  82. input files and get packets containing encoded data from them. When there are
  83. multiple input files, @command{ffmpeg} tries to keep them synchronized by
  84. tracking lowest timestamp on any active input stream.
  85. Encoded packets are then passed to the decoder (unless streamcopy is selected
  86. for the stream, see further for a description). The decoder produces
  87. uncompressed frames (raw video/PCM audio/...) which can be processed further by
  88. filtering (see next section). After filtering, the frames are passed to the
  89. encoder, which encodes them and outputs encoded packets. Finally those are
  90. passed to the muxer, which writes the encoded packets to the output file.
  91. @section Filtering
  92. Before encoding, @command{ffmpeg} can process raw audio and video frames using
  93. filters from the libavfilter library. Several chained filters form a filter
  94. graph. @command{ffmpeg} distinguishes between two types of filtergraphs:
  95. simple and complex.
  96. @subsection Simple filtergraphs
  97. Simple filtergraphs are those that have exactly one input and output, both of
  98. the same type. In the above diagram they can be represented by simply inserting
  99. an additional step between decoding and encoding:
  100. @verbatim
  101. _________ ______________
  102. | | | |
  103. | decoded | | encoded data |
  104. | frames |\ _ | packets |
  105. |_________| \ /||______________|
  106. \ __________ /
  107. simple _\|| | / encoder
  108. filtergraph | filtered |/
  109. | frames |
  110. |__________|
  111. @end verbatim
  112. Simple filtergraphs are configured with the per-stream @option{-filter} option
  113. (with @option{-vf} and @option{-af} aliases for video and audio respectively).
  114. A simple filtergraph for video can look for example like this:
  115. @verbatim
  116. _______ _____________ _______ ________
  117. | | | | | | | |
  118. | input | ---> | deinterlace | ---> | scale | ---> | output |
  119. |_______| |_____________| |_______| |________|
  120. @end verbatim
  121. Note that some filters change frame properties but not frame contents. E.g. the
  122. @code{fps} filter in the example above changes number of frames, but does not
  123. touch the frame contents. Another example is the @code{setpts} filter, which
  124. only sets timestamps and otherwise passes the frames unchanged.
  125. @subsection Complex filtergraphs
  126. Complex filtergraphs are those which cannot be described as simply a linear
  127. processing chain applied to one stream. This is the case, for example, when the graph has
  128. more than one input and/or output, or when output stream type is different from
  129. input. They can be represented with the following diagram:
  130. @verbatim
  131. _________
  132. | |
  133. | input 0 |\ __________
  134. |_________| \ | |
  135. \ _________ /| output 0 |
  136. \ | | / |__________|
  137. _________ \| complex | /
  138. | | | |/
  139. | input 1 |---->| filter |\
  140. |_________| | | \ __________
  141. /| graph | \ | |
  142. / | | \| output 1 |
  143. _________ / |_________| |__________|
  144. | | /
  145. | input 2 |/
  146. |_________|
  147. @end verbatim
  148. Complex filtergraphs are configured with the @option{-filter_complex} option.
  149. Note that this option is global, since a complex filtergraph, by its nature,
  150. cannot be unambiguously associated with a single stream or file.
  151. The @option{-lavfi} option is equivalent to @option{-filter_complex}.
  152. A trivial example of a complex filtergraph is the @code{overlay} filter, which
  153. has two video inputs and one video output, containing one video overlaid on top
  154. of the other. Its audio counterpart is the @code{amix} filter.
  155. @section Stream copy
  156. Stream copy is a mode selected by supplying the @code{copy} parameter to the
  157. @option{-codec} option. It makes @command{ffmpeg} omit the decoding and encoding
  158. step for the specified stream, so it does only demuxing and muxing. It is useful
  159. for changing the container format or modifying container-level metadata. The
  160. diagram above will, in this case, simplify to this:
  161. @verbatim
  162. _______ ______________ ________
  163. | | | | | |
  164. | input | demuxer | encoded data | muxer | output |
  165. | file | ---------> | packets | -------> | file |
  166. |_______| |______________| |________|
  167. @end verbatim
  168. Since there is no decoding or encoding, it is very fast and there is no quality
  169. loss. However, it might not work in some cases because of many factors. Applying
  170. filters is obviously also impossible, since filters work on uncompressed data.
  171. @c man end DETAILED DESCRIPTION
  172. @chapter Stream selection
  173. @c man begin STREAM SELECTION
  174. @command{ffmpeg} provides the @code{-map} option for manual control of stream selection in each
  175. output file. Users can skip @code{-map} and let ffmpeg perform automatic stream selection as
  176. described below. The @code{-vn / -an / -sn / -dn} options can be used to skip inclusion of
  177. video, audio, subtitle and data streams respectively, whether manually mapped or automatically
  178. selected, except for those streams which are outputs of complex filtergraphs.
  179. @section Description
  180. The sub-sections that follow describe the various rules that are involved in stream selection.
  181. The examples that follow next show how these rules are applied in practice.
  182. While every effort is made to accurately reflect the behavior of the program, FFmpeg is under
  183. continuous development and the code may have changed since the time of this writing.
  184. @subsection Automatic stream selection
  185. In the absence of any map options for a particular output file, ffmpeg inspects the output
  186. format to check which type of streams can be included in it, viz. video, audio and/or
  187. subtitles. For each acceptable stream type, ffmpeg will pick one stream, when available,
  188. from among all the inputs.
  189. It will select that stream based upon the following criteria:
  190. @itemize
  191. @item
  192. for video, it is the stream with the highest resolution,
  193. @item
  194. for audio, it is the stream with the most channels,
  195. @item
  196. for subtitles, it is the first subtitle stream found but there's a caveat.
  197. The output format's default subtitle encoder can be either text-based or image-based,
  198. and only a subtitle stream of the same type will be chosen.
  199. @end itemize
  200. In the case where several streams of the same type rate equally, the stream with the lowest
  201. index is chosen.
  202. Data or attachment streams are not automatically selected and can only be included
  203. using @code{-map}.
  204. @subsection Manual stream selection
  205. When @code{-map} is used, only user-mapped streams are included in that output file,
  206. with one possible exception for filtergraph outputs described below.
  207. @subsection Complex filtergraphs
  208. If there are any complex filtergraph output streams with unlabeled pads, they will be added
  209. to the first output file. This will lead to a fatal error if the stream type is not supported
  210. by the output format. In the absence of the map option, the inclusion of these streams leads
  211. to the automatic stream selection of their types being skipped. If map options are present,
  212. these filtergraph streams are included in addition to the mapped streams.
  213. Complex filtergraph output streams with labeled pads must be mapped once and exactly once.
  214. @subsection Stream handling
  215. Stream handling is independent of stream selection, with an exception for subtitles described
  216. below. Stream handling is set via the @code{-codec} option addressed to streams within a
  217. specific @emph{output} file. In particular, codec options are applied by ffmpeg after the
  218. stream selection process and thus do not influence the latter. If no @code{-codec} option is
  219. specified for a stream type, ffmpeg will select the default encoder registered by the output
  220. file muxer.
  221. An exception exists for subtitles. If a subtitle encoder is specified for an output file, the
  222. first subtitle stream found of any type, text or image, will be included. ffmpeg does not validate
  223. if the specified encoder can convert the selected stream or if the converted stream is acceptable
  224. within the output format. This applies generally as well: when the user sets an encoder manually,
  225. the stream selection process cannot check if the encoded stream can be muxed into the output file.
  226. If it cannot, ffmpeg will abort and @emph{all} output files will fail to be processed.
  227. @section Examples
  228. The following examples illustrate the behavior, quirks and limitations of ffmpeg's stream
  229. selection methods.
  230. They assume the following three input files.
  231. @verbatim
  232. input file 'A.avi'
  233. stream 0: video 640x360
  234. stream 1: audio 2 channels
  235. input file 'B.mp4'
  236. stream 0: video 1920x1080
  237. stream 1: audio 2 channels
  238. stream 2: subtitles (text)
  239. stream 3: audio 5.1 channels
  240. stream 4: subtitles (text)
  241. input file 'C.mkv'
  242. stream 0: video 1280x720
  243. stream 1: audio 2 channels
  244. stream 2: subtitles (image)
  245. @end verbatim
  246. @subsubheading Example: automatic stream selection
  247. @example
  248. ffmpeg -i A.avi -i B.mp4 out1.mkv out2.wav -map 1:a -c:a copy out3.mov
  249. @end example
  250. There are three output files specified, and for the first two, no @code{-map} options
  251. are set, so ffmpeg will select streams for these two files automatically.
  252. @file{out1.mkv} is a Matroska container file and accepts video, audio and subtitle streams,
  253. so ffmpeg will try to select one of each type.@*
  254. For video, it will select @code{stream 0} from @file{B.mp4}, which has the highest
  255. resolution among all the input video streams.@*
  256. For audio, it will select @code{stream 3} from @file{B.mp4}, since it has the greatest
  257. number of channels.@*
  258. For subtitles, it will select @code{stream 2} from @file{B.mp4}, which is the first subtitle
  259. stream from among @file{A.avi} and @file{B.mp4}.
  260. @file{out2.wav} accepts only audio streams, so only @code{stream 3} from @file{B.mp4} is
  261. selected.
  262. For @file{out3.mov}, since a @code{-map} option is set, no automatic stream selection will
  263. occur. The @code{-map 1:a} option will select all audio streams from the second input
  264. @file{B.mp4}. No other streams will be included in this output file.
  265. For the first two outputs, all included streams will be transcoded. The encoders chosen will
  266. be the default ones registered by each output format, which may not match the codec of the
  267. selected input streams.
  268. For the third output, codec option for audio streams has been set
  269. to @code{copy}, so no decoding-filtering-encoding operations will occur, or @emph{can} occur.
  270. Packets of selected streams shall be conveyed from the input file and muxed within the output
  271. file.
  272. @subsubheading Example: automatic subtitles selection
  273. @example
  274. ffmpeg -i C.mkv out1.mkv -c:s dvdsub -an out2.mkv
  275. @end example
  276. Although @file{out1.mkv} is a Matroska container file which accepts subtitle streams, only a
  277. video and audio stream shall be selected. The subtitle stream of @file{C.mkv} is image-based
  278. and the default subtitle encoder of the Matroska muxer is text-based, so a transcode operation
  279. for the subtitles is expected to fail and hence the stream isn't selected. However, in
  280. @file{out2.mkv}, a subtitle encoder is specified in the command and so, the subtitle stream is
  281. selected, in addition to the video stream. The presence of @code{-an} disables audio stream
  282. selection for @file{out2.mkv}.
  283. @subsubheading Example: unlabeled filtergraph outputs
  284. @example
  285. ffmpeg -i A.avi -i C.mkv -i B.mp4 -filter_complex "overlay" out1.mp4 out2.srt
  286. @end example
  287. A filtergraph is setup here using the @code{-filter_complex} option and consists of a single
  288. video filter. The @code{overlay} filter requires exactly two video inputs, but none are
  289. specified, so the first two available video streams are used, those of @file{A.avi} and
  290. @file{C.mkv}. The output pad of the filter has no label and so is sent to the first output file
  291. @file{out1.mp4}. Due to this, automatic selection of the video stream is skipped, which would
  292. have selected the stream in @file{B.mp4}. The audio stream with most channels viz. @code{stream 3}
  293. in @file{B.mp4}, is chosen automatically. No subtitle stream is chosen however, since the MP4
  294. format has no default subtitle encoder registered, and the user hasn't specified a subtitle encoder.
  295. The 2nd output file, @file{out2.srt}, only accepts text-based subtitle streams. So, even though
  296. the first subtitle stream available belongs to @file{C.mkv}, it is image-based and hence skipped.
  297. The selected stream, @code{stream 2} in @file{B.mp4}, is the first text-based subtitle stream.
  298. @subsubheading Example: labeled filtergraph outputs
  299. @example
  300. ffmpeg -i A.avi -i B.mp4 -i C.mkv -filter_complex "[1:v]hue=s=0[outv];overlay;aresample" \
  301. -map '[outv]' -an out1.mp4 \
  302. out2.mkv \
  303. -map '[outv]' -map 1:a:0 out3.mkv
  304. @end example
  305. The above command will fail, as the output pad labelled @code{[outv]} has been mapped twice.
  306. None of the output files shall be processed.
  307. @example
  308. ffmpeg -i A.avi -i B.mp4 -i C.mkv -filter_complex "[1:v]hue=s=0[outv];overlay;aresample" \
  309. -an out1.mp4 \
  310. out2.mkv \
  311. -map 1:a:0 out3.mkv
  312. @end example
  313. This command above will also fail as the hue filter output has a label, @code{[outv]},
  314. and hasn't been mapped anywhere.
  315. The command should be modified as follows,
  316. @example
  317. ffmpeg -i A.avi -i B.mp4 -i C.mkv -filter_complex "[1:v]hue=s=0,split=2[outv1][outv2];overlay;aresample" \
  318. -map '[outv1]' -an out1.mp4 \
  319. out2.mkv \
  320. -map '[outv2]' -map 1:a:0 out3.mkv
  321. @end example
  322. The video stream from @file{B.mp4} is sent to the hue filter, whose output is cloned once using
  323. the split filter, and both outputs labelled. Then a copy each is mapped to the first and third
  324. output files.
  325. The overlay filter, requiring two video inputs, uses the first two unused video streams. Those
  326. are the streams from @file{A.avi} and @file{C.mkv}. The overlay output isn't labelled, so it is
  327. sent to the first output file @file{out1.mp4}, regardless of the presence of the @code{-map} option.
  328. The aresample filter is sent the first unused audio stream, that of @file{A.avi}. Since this filter
  329. output is also unlabelled, it too is mapped to the first output file. The presence of @code{-an}
  330. only suppresses automatic or manual stream selection of audio streams, not outputs sent from
  331. filtergraphs. Both these mapped streams shall be ordered before the mapped stream in @file{out1.mp4}.
  332. The video, audio and subtitle streams mapped to @code{out2.mkv} are entirely determined by
  333. automatic stream selection.
  334. @file{out3.mkv} consists of the cloned video output from the hue filter and the first audio
  335. stream from @file{B.mp4}.
  336. @*
  337. @c man end STREAM SELECTION
  338. @chapter Options
  339. @c man begin OPTIONS
  340. @include fftools-common-opts.texi
  341. @section Main options
  342. @table @option
  343. @item -f @var{fmt} (@emph{input/output})
  344. Force input or output file format. The format is normally auto detected for input
  345. files and guessed from the file extension for output files, so this option is not
  346. needed in most cases.
  347. @item -i @var{url} (@emph{input})
  348. input file url
  349. @item -y (@emph{global})
  350. Overwrite output files without asking.
  351. @item -n (@emph{global})
  352. Do not overwrite output files, and exit immediately if a specified
  353. output file already exists.
  354. @item -stream_loop @var{number} (@emph{input})
  355. Set number of times input stream shall be looped. Loop 0 means no loop,
  356. loop -1 means infinite loop.
  357. @item -c[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  358. @itemx -codec[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  359. Select an encoder (when used before an output file) or a decoder (when used
  360. before an input file) for one or more streams. @var{codec} is the name of a
  361. decoder/encoder or a special value @code{copy} (output only) to indicate that
  362. the stream is not to be re-encoded.
  363. For example
  364. @example
  365. ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT
  366. @end example
  367. encodes all video streams with libx264 and copies all audio streams.
  368. For each stream, the last matching @code{c} option is applied, so
  369. @example
  370. ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT
  371. @end example
  372. will copy all the streams except the second video, which will be encoded with
  373. libx264, and the 138th audio, which will be encoded with libvorbis.
  374. @item -t @var{duration} (@emph{input/output})
  375. When used as an input option (before @code{-i}), limit the @var{duration} of
  376. data read from the input file.
  377. When used as an output option (before an output url), stop writing the
  378. output after its duration reaches @var{duration}.
  379. @var{duration} must be a time duration specification,
  380. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  381. -to and -t are mutually exclusive and -t has priority.
  382. @item -to @var{position} (@emph{input/output})
  383. Stop writing the output or reading the input at @var{position}.
  384. @var{position} must be a time duration specification,
  385. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  386. -to and -t are mutually exclusive and -t has priority.
  387. @item -fs @var{limit_size} (@emph{output})
  388. Set the file size limit, expressed in bytes. No further chunk of bytes is written
  389. after the limit is exceeded. The size of the output file is slightly more than the
  390. requested file size.
  391. @item -ss @var{position} (@emph{input/output})
  392. When used as an input option (before @code{-i}), seeks in this input file to
  393. @var{position}. Note that in most formats it is not possible to seek exactly,
  394. so @command{ffmpeg} will seek to the closest seek point before @var{position}.
  395. When transcoding and @option{-accurate_seek} is enabled (the default), this
  396. extra segment between the seek point and @var{position} will be decoded and
  397. discarded. When doing stream copy or when @option{-noaccurate_seek} is used, it
  398. will be preserved.
  399. When used as an output option (before an output url), decodes but discards
  400. input until the timestamps reach @var{position}.
  401. @var{position} must be a time duration specification,
  402. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  403. @item -sseof @var{position} (@emph{input})
  404. Like the @code{-ss} option but relative to the "end of file". That is negative
  405. values are earlier in the file, 0 is at EOF.
  406. @item -itsoffset @var{offset} (@emph{input})
  407. Set the input time offset.
  408. @var{offset} must be a time duration specification,
  409. see @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  410. The offset is added to the timestamps of the input files. Specifying
  411. a positive offset means that the corresponding streams are delayed by
  412. the time duration specified in @var{offset}.
  413. @item -itsscale @var{scale} (@emph{input,per-stream})
  414. Rescale input timestamps. @var{scale} should be a floating point number.
  415. @item -timestamp @var{date} (@emph{output})
  416. Set the recording timestamp in the container.
  417. @var{date} must be a date specification,
  418. see @ref{date syntax,,the Date section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  419. @item -metadata[:metadata_specifier] @var{key}=@var{value} (@emph{output,per-metadata})
  420. Set a metadata key/value pair.
  421. An optional @var{metadata_specifier} may be given to set metadata
  422. on streams, chapters or programs. See @code{-map_metadata}
  423. documentation for details.
  424. This option overrides metadata set with @code{-map_metadata}. It is
  425. also possible to delete metadata by using an empty value.
  426. For example, for setting the title in the output file:
  427. @example
  428. ffmpeg -i in.avi -metadata title="my title" out.flv
  429. @end example
  430. To set the language of the first audio stream:
  431. @example
  432. ffmpeg -i INPUT -metadata:s:a:0 language=eng OUTPUT
  433. @end example
  434. @item -disposition[:stream_specifier] @var{value} (@emph{output,per-stream})
  435. Sets the disposition for a stream.
  436. This option overrides the disposition copied from the input stream. It is also
  437. possible to delete the disposition by setting it to 0.
  438. The following dispositions are recognized:
  439. @table @option
  440. @item default
  441. @item dub
  442. @item original
  443. @item comment
  444. @item lyrics
  445. @item karaoke
  446. @item forced
  447. @item hearing_impaired
  448. @item visual_impaired
  449. @item clean_effects
  450. @item attached_pic
  451. @item captions
  452. @item descriptions
  453. @item dependent
  454. @item metadata
  455. @end table
  456. For example, to make the second audio stream the default stream:
  457. @example
  458. ffmpeg -i in.mkv -c copy -disposition:a:1 default out.mkv
  459. @end example
  460. To make the second subtitle stream the default stream and remove the default
  461. disposition from the first subtitle stream:
  462. @example
  463. ffmpeg -i in.mkv -c copy -disposition:s:0 0 -disposition:s:1 default out.mkv
  464. @end example
  465. To add an embedded cover/thumbnail:
  466. @example
  467. ffmpeg -i in.mp4 -i IMAGE -map 0 -map 1 -c copy -c:v:1 png -disposition:v:1 attached_pic out.mp4
  468. @end example
  469. Not all muxers support embedded thumbnails, and those who do, only support a few formats, like JPEG or PNG.
  470. @item -program [title=@var{title}:][program_num=@var{program_num}:]st=@var{stream}[:st=@var{stream}...] (@emph{output})
  471. Creates a program with the specified @var{title}, @var{program_num} and adds the specified
  472. @var{stream}(s) to it.
  473. @item -target @var{type} (@emph{output})
  474. Specify target file type (@code{vcd}, @code{svcd}, @code{dvd}, @code{dv},
  475. @code{dv50}). @var{type} may be prefixed with @code{pal-}, @code{ntsc-} or
  476. @code{film-} to use the corresponding standard. All the format options
  477. (bitrate, codecs, buffer sizes) are then set automatically. You can just type:
  478. @example
  479. ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg
  480. @end example
  481. Nevertheless you can specify additional options as long as you know
  482. they do not conflict with the standard, as in:
  483. @example
  484. ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg
  485. @end example
  486. @item -dn (@emph{input/output})
  487. As an input option, blocks all data streams of a file from being filtered or
  488. being automatically selected or mapped for any output. See @code{-discard}
  489. option to disable streams individually.
  490. As an output option, disables data recording i.e. automatic selection or
  491. mapping of any data stream. For full manual control see the @code{-map}
  492. option.
  493. @item -dframes @var{number} (@emph{output})
  494. Set the number of data frames to output. This is an obsolete alias for
  495. @code{-frames:d}, which you should use instead.
  496. @item -frames[:@var{stream_specifier}] @var{framecount} (@emph{output,per-stream})
  497. Stop writing to the stream after @var{framecount} frames.
  498. @item -q[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  499. @itemx -qscale[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  500. Use fixed quality scale (VBR). The meaning of @var{q}/@var{qscale} is
  501. codec-dependent.
  502. If @var{qscale} is used without a @var{stream_specifier} then it applies only
  503. to the video stream, this is to maintain compatibility with previous behavior
  504. and as specifying the same codec specific value to 2 different codecs that is
  505. audio and video generally is not what is intended when no stream_specifier is
  506. used.
  507. @anchor{filter_option}
  508. @item -filter[:@var{stream_specifier}] @var{filtergraph} (@emph{output,per-stream})
  509. Create the filtergraph specified by @var{filtergraph} and use it to
  510. filter the stream.
  511. @var{filtergraph} is a description of the filtergraph to apply to
  512. the stream, and must have a single input and a single output of the
  513. same type of the stream. In the filtergraph, the input is associated
  514. to the label @code{in}, and the output to the label @code{out}. See
  515. the ffmpeg-filters manual for more information about the filtergraph
  516. syntax.
  517. See the @ref{filter_complex_option,,-filter_complex option} if you
  518. want to create filtergraphs with multiple inputs and/or outputs.
  519. @item -filter_script[:@var{stream_specifier}] @var{filename} (@emph{output,per-stream})
  520. This option is similar to @option{-filter}, the only difference is that its
  521. argument is the name of the file from which a filtergraph description is to be
  522. read.
  523. @item -filter_threads @var{nb_threads} (@emph{global})
  524. Defines how many threads are used to process a filter pipeline. Each pipeline
  525. will produce a thread pool with this many threads available for parallel processing.
  526. The default is the number of available CPUs.
  527. @item -pre[:@var{stream_specifier}] @var{preset_name} (@emph{output,per-stream})
  528. Specify the preset for matching stream(s).
  529. @item -stats (@emph{global})
  530. Print encoding progress/statistics. It is on by default, to explicitly
  531. disable it you need to specify @code{-nostats}.
  532. @item -stats_period @var{time} (@emph{global})
  533. Set period at which encoding progress/statistics are updated. Default is 0.5 seconds.
  534. @item -progress @var{url} (@emph{global})
  535. Send program-friendly progress information to @var{url}.
  536. Progress information is written periodically and at the end of
  537. the encoding process. It is made of "@var{key}=@var{value}" lines. @var{key}
  538. consists of only alphanumeric characters. The last key of a sequence of
  539. progress information is always "progress".
  540. The update period is set using @code{-stats_period}.
  541. @anchor{stdin option}
  542. @item -stdin
  543. Enable interaction on standard input. On by default unless standard input is
  544. used as an input. To explicitly disable interaction you need to specify
  545. @code{-nostdin}.
  546. Disabling interaction on standard input is useful, for example, if
  547. ffmpeg is in the background process group. Roughly the same result can
  548. be achieved with @code{ffmpeg ... < /dev/null} but it requires a
  549. shell.
  550. @item -debug_ts (@emph{global})
  551. Print timestamp information. It is off by default. This option is
  552. mostly useful for testing and debugging purposes, and the output
  553. format may change from one version to another, so it should not be
  554. employed by portable scripts.
  555. See also the option @code{-fdebug ts}.
  556. @item -attach @var{filename} (@emph{output})
  557. Add an attachment to the output file. This is supported by a few formats
  558. like Matroska for e.g. fonts used in rendering subtitles. Attachments
  559. are implemented as a specific type of stream, so this option will add
  560. a new stream to the file. It is then possible to use per-stream options
  561. on this stream in the usual way. Attachment streams created with this
  562. option will be created after all the other streams (i.e. those created
  563. with @code{-map} or automatic mappings).
  564. Note that for Matroska you also have to set the mimetype metadata tag:
  565. @example
  566. ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv
  567. @end example
  568. (assuming that the attachment stream will be third in the output file).
  569. @item -dump_attachment[:@var{stream_specifier}] @var{filename} (@emph{input,per-stream})
  570. Extract the matching attachment stream into a file named @var{filename}. If
  571. @var{filename} is empty, then the value of the @code{filename} metadata tag
  572. will be used.
  573. E.g. to extract the first attachment to a file named 'out.ttf':
  574. @example
  575. ffmpeg -dump_attachment:t:0 out.ttf -i INPUT
  576. @end example
  577. To extract all attachments to files determined by the @code{filename} tag:
  578. @example
  579. ffmpeg -dump_attachment:t "" -i INPUT
  580. @end example
  581. Technical note -- attachments are implemented as codec extradata, so this
  582. option can actually be used to extract extradata from any stream, not just
  583. attachments.
  584. @end table
  585. @section Video Options
  586. @table @option
  587. @item -vframes @var{number} (@emph{output})
  588. Set the number of video frames to output. This is an obsolete alias for
  589. @code{-frames:v}, which you should use instead.
  590. @item -r[:@var{stream_specifier}] @var{fps} (@emph{input/output,per-stream})
  591. Set frame rate (Hz value, fraction or abbreviation).
  592. As an input option, ignore any timestamps stored in the file and instead
  593. generate timestamps assuming constant frame rate @var{fps}.
  594. This is not the same as the @option{-framerate} option used for some input formats
  595. like image2 or v4l2 (it used to be the same in older versions of FFmpeg).
  596. If in doubt use @option{-framerate} instead of the input option @option{-r}.
  597. As an output option, duplicate or drop input frames to achieve constant output
  598. frame rate @var{fps}.
  599. @item -s[:@var{stream_specifier}] @var{size} (@emph{input/output,per-stream})
  600. Set frame size.
  601. As an input option, this is a shortcut for the @option{video_size} private
  602. option, recognized by some demuxers for which the frame size is either not
  603. stored in the file or is configurable -- e.g. raw video or video grabbers.
  604. As an output option, this inserts the @code{scale} video filter to the
  605. @emph{end} of the corresponding filtergraph. Please use the @code{scale} filter
  606. directly to insert it at the beginning or some other place.
  607. The format is @samp{wxh} (default - same as source).
  608. @item -aspect[:@var{stream_specifier}] @var{aspect} (@emph{output,per-stream})
  609. Set the video display aspect ratio specified by @var{aspect}.
  610. @var{aspect} can be a floating point number string, or a string of the
  611. form @var{num}:@var{den}, where @var{num} and @var{den} are the
  612. numerator and denominator of the aspect ratio. For example "4:3",
  613. "16:9", "1.3333", and "1.7777" are valid argument values.
  614. If used together with @option{-vcodec copy}, it will affect the aspect ratio
  615. stored at container level, but not the aspect ratio stored in encoded
  616. frames, if it exists.
  617. @item -vn (@emph{input/output})
  618. As an input option, blocks all video streams of a file from being filtered or
  619. being automatically selected or mapped for any output. See @code{-discard}
  620. option to disable streams individually.
  621. As an output option, disables video recording i.e. automatic selection or
  622. mapping of any video stream. For full manual control see the @code{-map}
  623. option.
  624. @item -vcodec @var{codec} (@emph{output})
  625. Set the video codec. This is an alias for @code{-codec:v}.
  626. @item -pass[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  627. Select the pass number (1 or 2). It is used to do two-pass
  628. video encoding. The statistics of the video are recorded in the first
  629. pass into a log file (see also the option -passlogfile),
  630. and in the second pass that log file is used to generate the video
  631. at the exact requested bitrate.
  632. On pass 1, you may just deactivate audio and set output to null,
  633. examples for Windows and Unix:
  634. @example
  635. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
  636. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null
  637. @end example
  638. @item -passlogfile[:@var{stream_specifier}] @var{prefix} (@emph{output,per-stream})
  639. Set two-pass log file name prefix to @var{prefix}, the default file name
  640. prefix is ``ffmpeg2pass''. The complete file name will be
  641. @file{PREFIX-N.log}, where N is a number specific to the output
  642. stream
  643. @item -vf @var{filtergraph} (@emph{output})
  644. Create the filtergraph specified by @var{filtergraph} and use it to
  645. filter the stream.
  646. This is an alias for @code{-filter:v}, see the @ref{filter_option,,-filter option}.
  647. @item -autorotate
  648. Automatically rotate the video according to file metadata. Enabled by
  649. default, use @option{-noautorotate} to disable it.
  650. @item -autoscale
  651. Automatically scale the video according to the resolution of first frame.
  652. Enabled by default, use @option{-noautoscale} to disable it. When autoscale is
  653. disabled, all output frames of filter graph might not be in the same resolution
  654. and may be inadequate for some encoder/muxer. Therefore, it is not recommended
  655. to disable it unless you really know what you are doing.
  656. Disable autoscale at your own risk.
  657. @end table
  658. @section Advanced Video options
  659. @table @option
  660. @item -pix_fmt[:@var{stream_specifier}] @var{format} (@emph{input/output,per-stream})
  661. Set pixel format. Use @code{-pix_fmts} to show all the supported
  662. pixel formats.
  663. If the selected pixel format can not be selected, ffmpeg will print a
  664. warning and select the best pixel format supported by the encoder.
  665. If @var{pix_fmt} is prefixed by a @code{+}, ffmpeg will exit with an error
  666. if the requested pixel format can not be selected, and automatic conversions
  667. inside filtergraphs are disabled.
  668. If @var{pix_fmt} is a single @code{+}, ffmpeg selects the same pixel format
  669. as the input (or graph output) and automatic conversions are disabled.
  670. @item -sws_flags @var{flags} (@emph{input/output})
  671. Set SwScaler flags.
  672. @item -rc_override[:@var{stream_specifier}] @var{override} (@emph{output,per-stream})
  673. Rate control override for specific intervals, formatted as "int,int,int"
  674. list separated with slashes. Two first values are the beginning and
  675. end frame numbers, last one is quantizer to use if positive, or quality
  676. factor if negative.
  677. @item -ilme
  678. Force interlacing support in encoder (MPEG-2 and MPEG-4 only).
  679. Use this option if your input file is interlaced and you want
  680. to keep the interlaced format for minimum losses.
  681. The alternative is to deinterlace the input stream by use of a filter
  682. such as @code{yadif} or @code{bwdif}, but deinterlacing introduces losses.
  683. @item -psnr
  684. Calculate PSNR of compressed frames.
  685. @item -vstats
  686. Dump video coding statistics to @file{vstats_HHMMSS.log}.
  687. @item -vstats_file @var{file}
  688. Dump video coding statistics to @var{file}.
  689. @item -vstats_version @var{file}
  690. Specifies which version of the vstats format to use. Default is 2.
  691. version = 1 :
  692. @code{frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s}
  693. version > 1:
  694. @code{out= %2d st= %2d frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s}
  695. @item -top[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  696. top=1/bottom=0/auto=-1 field first
  697. @item -dc @var{precision}
  698. Intra_dc_precision.
  699. @item -vtag @var{fourcc/tag} (@emph{output})
  700. Force video tag/fourcc. This is an alias for @code{-tag:v}.
  701. @item -qphist (@emph{global})
  702. Show QP histogram
  703. @item -vbsf @var{bitstream_filter}
  704. Deprecated see -bsf
  705. @item -force_key_frames[:@var{stream_specifier}] @var{time}[,@var{time}...] (@emph{output,per-stream})
  706. @item -force_key_frames[:@var{stream_specifier}] expr:@var{expr} (@emph{output,per-stream})
  707. @item -force_key_frames[:@var{stream_specifier}] source (@emph{output,per-stream})
  708. @var{force_key_frames} can take arguments of the following form:
  709. @table @option
  710. @item @var{time}[,@var{time}...]
  711. If the argument consists of timestamps, ffmpeg will round the specified times to the nearest
  712. output timestamp as per the encoder time base and force a keyframe at the first frame having
  713. timestamp equal or greater than the computed timestamp. Note that if the encoder time base is too
  714. coarse, then the keyframes may be forced on frames with timestamps lower than the specified time.
  715. The default encoder time base is the inverse of the output framerate but may be set otherwise
  716. via @code{-enc_time_base}.
  717. If one of the times is "@code{chapters}[@var{delta}]", it is expanded into
  718. the time of the beginning of all chapters in the file, shifted by
  719. @var{delta}, expressed as a time in seconds.
  720. This option can be useful to ensure that a seek point is present at a
  721. chapter mark or any other designated place in the output file.
  722. For example, to insert a key frame at 5 minutes, plus key frames 0.1 second
  723. before the beginning of every chapter:
  724. @example
  725. -force_key_frames 0:05:00,chapters-0.1
  726. @end example
  727. @item expr:@var{expr}
  728. If the argument is prefixed with @code{expr:}, the string @var{expr}
  729. is interpreted like an expression and is evaluated for each frame. A
  730. key frame is forced in case the evaluation is non-zero.
  731. The expression in @var{expr} can contain the following constants:
  732. @table @option
  733. @item n
  734. the number of current processed frame, starting from 0
  735. @item n_forced
  736. the number of forced frames
  737. @item prev_forced_n
  738. the number of the previous forced frame, it is @code{NAN} when no
  739. keyframe was forced yet
  740. @item prev_forced_t
  741. the time of the previous forced frame, it is @code{NAN} when no
  742. keyframe was forced yet
  743. @item t
  744. the time of the current processed frame
  745. @end table
  746. For example to force a key frame every 5 seconds, you can specify:
  747. @example
  748. -force_key_frames expr:gte(t,n_forced*5)
  749. @end example
  750. To force a key frame 5 seconds after the time of the last forced one,
  751. starting from second 13:
  752. @example
  753. -force_key_frames expr:if(isnan(prev_forced_t),gte(t,13),gte(t,prev_forced_t+5))
  754. @end example
  755. @item source
  756. If the argument is @code{source}, ffmpeg will force a key frame if
  757. the current frame being encoded is marked as a key frame in its source.
  758. @end table
  759. Note that forcing too many keyframes is very harmful for the lookahead
  760. algorithms of certain encoders: using fixed-GOP options or similar
  761. would be more efficient.
  762. @item -copyinkf[:@var{stream_specifier}] (@emph{output,per-stream})
  763. When doing stream copy, copy also non-key frames found at the
  764. beginning.
  765. @item -init_hw_device @var{type}[=@var{name}][:@var{device}[,@var{key=value}...]]
  766. Initialise a new hardware device of type @var{type} called @var{name}, using the
  767. given device parameters.
  768. If no name is specified it will receive a default name of the form "@var{type}%d".
  769. The meaning of @var{device} and the following arguments depends on the
  770. device type:
  771. @table @option
  772. @item cuda
  773. @var{device} is the number of the CUDA device.
  774. @item dxva2
  775. @var{device} is the number of the Direct3D 9 display adapter.
  776. @item vaapi
  777. @var{device} is either an X11 display name or a DRM render node.
  778. If not specified, it will attempt to open the default X11 display (@emph{$DISPLAY})
  779. and then the first DRM render node (@emph{/dev/dri/renderD128}).
  780. @item vdpau
  781. @var{device} is an X11 display name.
  782. If not specified, it will attempt to open the default X11 display (@emph{$DISPLAY}).
  783. @item qsv
  784. @var{device} selects a value in @samp{MFX_IMPL_*}. Allowed values are:
  785. @table @option
  786. @item auto
  787. @item sw
  788. @item hw
  789. @item auto_any
  790. @item hw_any
  791. @item hw2
  792. @item hw3
  793. @item hw4
  794. @end table
  795. If not specified, @samp{auto_any} is used.
  796. (Note that it may be easier to achieve the desired result for QSV by creating the
  797. platform-appropriate subdevice (@samp{dxva2} or @samp{vaapi}) and then deriving a
  798. QSV device from that.)
  799. @item opencl
  800. @var{device} selects the platform and device as @emph{platform_index.device_index}.
  801. The set of devices can also be filtered using the key-value pairs to find only
  802. devices matching particular platform or device strings.
  803. The strings usable as filters are:
  804. @table @option
  805. @item platform_profile
  806. @item platform_version
  807. @item platform_name
  808. @item platform_vendor
  809. @item platform_extensions
  810. @item device_name
  811. @item device_vendor
  812. @item driver_version
  813. @item device_version
  814. @item device_profile
  815. @item device_extensions
  816. @item device_type
  817. @end table
  818. The indices and filters must together uniquely select a device.
  819. Examples:
  820. @table @emph
  821. @item -init_hw_device opencl:0.1
  822. Choose the second device on the first platform.
  823. @item -init_hw_device opencl:,device_name=Foo9000
  824. Choose the device with a name containing the string @emph{Foo9000}.
  825. @item -init_hw_device opencl:1,device_type=gpu,device_extensions=cl_khr_fp16
  826. Choose the GPU device on the second platform supporting the @emph{cl_khr_fp16}
  827. extension.
  828. @end table
  829. @item vulkan
  830. If @var{device} is an integer, it selects the device by its index in a
  831. system-dependent list of devices. If @var{device} is any other string, it
  832. selects the first device with a name containing that string as a substring.
  833. The following options are recognized:
  834. @table @option
  835. @item debug
  836. If set to 1, enables the validation layer, if installed.
  837. @item linear_images
  838. If set to 1, images allocated by the hwcontext will be linear and locally mappable.
  839. @item instance_extensions
  840. A plus separated list of additional instance extensions to enable.
  841. @item device_extensions
  842. A plus separated list of additional device extensions to enable.
  843. @end table
  844. Examples:
  845. @table @emph
  846. @item -init_hw_device vulkan:1
  847. Choose the second device on the system.
  848. @item -init_hw_device vulkan:RADV
  849. Choose the first device with a name containing the string @emph{RADV}.
  850. @item -init_hw_device vulkan:0,instance_extensions=VK_KHR_wayland_surface+VK_KHR_xcb_surface
  851. Choose the first device and enable the Wayland and XCB instance extensions.
  852. @end table
  853. @end table
  854. @item -init_hw_device @var{type}[=@var{name}]@@@var{source}
  855. Initialise a new hardware device of type @var{type} called @var{name},
  856. deriving it from the existing device with the name @var{source}.
  857. @item -init_hw_device list
  858. List all hardware device types supported in this build of ffmpeg.
  859. @item -filter_hw_device @var{name}
  860. Pass the hardware device called @var{name} to all filters in any filter graph.
  861. This can be used to set the device to upload to with the @code{hwupload} filter,
  862. or the device to map to with the @code{hwmap} filter. Other filters may also
  863. make use of this parameter when they require a hardware device. Note that this
  864. is typically only required when the input is not already in hardware frames -
  865. when it is, filters will derive the device they require from the context of the
  866. frames they receive as input.
  867. This is a global setting, so all filters will receive the same device.
  868. @item -hwaccel[:@var{stream_specifier}] @var{hwaccel} (@emph{input,per-stream})
  869. Use hardware acceleration to decode the matching stream(s). The allowed values
  870. of @var{hwaccel} are:
  871. @table @option
  872. @item none
  873. Do not use any hardware acceleration (the default).
  874. @item auto
  875. Automatically select the hardware acceleration method.
  876. @item vdpau
  877. Use VDPAU (Video Decode and Presentation API for Unix) hardware acceleration.
  878. @item dxva2
  879. Use DXVA2 (DirectX Video Acceleration) hardware acceleration.
  880. @item vaapi
  881. Use VAAPI (Video Acceleration API) hardware acceleration.
  882. @item qsv
  883. Use the Intel QuickSync Video acceleration for video transcoding.
  884. Unlike most other values, this option does not enable accelerated decoding (that
  885. is used automatically whenever a qsv decoder is selected), but accelerated
  886. transcoding, without copying the frames into the system memory.
  887. For it to work, both the decoder and the encoder must support QSV acceleration
  888. and no filters must be used.
  889. @end table
  890. This option has no effect if the selected hwaccel is not available or not
  891. supported by the chosen decoder.
  892. Note that most acceleration methods are intended for playback and will not be
  893. faster than software decoding on modern CPUs. Additionally, @command{ffmpeg}
  894. will usually need to copy the decoded frames from the GPU memory into the system
  895. memory, resulting in further performance loss. This option is thus mainly
  896. useful for testing.
  897. @item -hwaccel_device[:@var{stream_specifier}] @var{hwaccel_device} (@emph{input,per-stream})
  898. Select a device to use for hardware acceleration.
  899. This option only makes sense when the @option{-hwaccel} option is also specified.
  900. It can either refer to an existing device created with @option{-init_hw_device}
  901. by name, or it can create a new device as if
  902. @samp{-init_hw_device} @var{type}:@var{hwaccel_device}
  903. were called immediately before.
  904. @item -hwaccels
  905. List all hardware acceleration methods supported in this build of ffmpeg.
  906. @end table
  907. @section Audio Options
  908. @table @option
  909. @item -aframes @var{number} (@emph{output})
  910. Set the number of audio frames to output. This is an obsolete alias for
  911. @code{-frames:a}, which you should use instead.
  912. @item -ar[:@var{stream_specifier}] @var{freq} (@emph{input/output,per-stream})
  913. Set the audio sampling frequency. For output streams it is set by
  914. default to the frequency of the corresponding input stream. For input
  915. streams this option only makes sense for audio grabbing devices and raw
  916. demuxers and is mapped to the corresponding demuxer options.
  917. @item -aq @var{q} (@emph{output})
  918. Set the audio quality (codec-specific, VBR). This is an alias for -q:a.
  919. @item -ac[:@var{stream_specifier}] @var{channels} (@emph{input/output,per-stream})
  920. Set the number of audio channels. For output streams it is set by
  921. default to the number of input audio channels. For input streams
  922. this option only makes sense for audio grabbing devices and raw demuxers
  923. and is mapped to the corresponding demuxer options.
  924. @item -an (@emph{input/output})
  925. As an input option, blocks all audio streams of a file from being filtered or
  926. being automatically selected or mapped for any output. See @code{-discard}
  927. option to disable streams individually.
  928. As an output option, disables audio recording i.e. automatic selection or
  929. mapping of any audio stream. For full manual control see the @code{-map}
  930. option.
  931. @item -acodec @var{codec} (@emph{input/output})
  932. Set the audio codec. This is an alias for @code{-codec:a}.
  933. @item -sample_fmt[:@var{stream_specifier}] @var{sample_fmt} (@emph{output,per-stream})
  934. Set the audio sample format. Use @code{-sample_fmts} to get a list
  935. of supported sample formats.
  936. @item -af @var{filtergraph} (@emph{output})
  937. Create the filtergraph specified by @var{filtergraph} and use it to
  938. filter the stream.
  939. This is an alias for @code{-filter:a}, see the @ref{filter_option,,-filter option}.
  940. @end table
  941. @section Advanced Audio options
  942. @table @option
  943. @item -atag @var{fourcc/tag} (@emph{output})
  944. Force audio tag/fourcc. This is an alias for @code{-tag:a}.
  945. @item -absf @var{bitstream_filter}
  946. Deprecated, see -bsf
  947. @item -guess_layout_max @var{channels} (@emph{input,per-stream})
  948. If some input channel layout is not known, try to guess only if it
  949. corresponds to at most the specified number of channels. For example, 2
  950. tells to @command{ffmpeg} to recognize 1 channel as mono and 2 channels as
  951. stereo but not 6 channels as 5.1. The default is to always try to guess. Use
  952. 0 to disable all guessing.
  953. @end table
  954. @section Subtitle options
  955. @table @option
  956. @item -scodec @var{codec} (@emph{input/output})
  957. Set the subtitle codec. This is an alias for @code{-codec:s}.
  958. @item -sn (@emph{input/output})
  959. As an input option, blocks all subtitle streams of a file from being filtered or
  960. being automatically selected or mapped for any output. See @code{-discard}
  961. option to disable streams individually.
  962. As an output option, disables subtitle recording i.e. automatic selection or
  963. mapping of any subtitle stream. For full manual control see the @code{-map}
  964. option.
  965. @item -sbsf @var{bitstream_filter}
  966. Deprecated, see -bsf
  967. @end table
  968. @section Advanced Subtitle options
  969. @table @option
  970. @item -fix_sub_duration
  971. Fix subtitles durations. For each subtitle, wait for the next packet in the
  972. same stream and adjust the duration of the first to avoid overlap. This is
  973. necessary with some subtitles codecs, especially DVB subtitles, because the
  974. duration in the original packet is only a rough estimate and the end is
  975. actually marked by an empty subtitle frame. Failing to use this option when
  976. necessary can result in exaggerated durations or muxing failures due to
  977. non-monotonic timestamps.
  978. Note that this option will delay the output of all data until the next
  979. subtitle packet is decoded: it may increase memory consumption and latency a
  980. lot.
  981. @item -canvas_size @var{size}
  982. Set the size of the canvas used to render subtitles.
  983. @end table
  984. @section Advanced options
  985. @table @option
  986. @item -map [-]@var{input_file_id}[:@var{stream_specifier}][?][,@var{sync_file_id}[:@var{stream_specifier}]] | @var{[linklabel]} (@emph{output})
  987. Designate one or more input streams as a source for the output file. Each input
  988. stream is identified by the input file index @var{input_file_id} and
  989. the input stream index @var{input_stream_id} within the input
  990. file. Both indices start at 0. If specified,
  991. @var{sync_file_id}:@var{stream_specifier} sets which input stream
  992. is used as a presentation sync reference.
  993. The first @code{-map} option on the command line specifies the
  994. source for output stream 0, the second @code{-map} option specifies
  995. the source for output stream 1, etc.
  996. A @code{-} character before the stream identifier creates a "negative" mapping.
  997. It disables matching streams from already created mappings.
  998. A trailing @code{?} after the stream index will allow the map to be
  999. optional: if the map matches no streams the map will be ignored instead
  1000. of failing. Note the map will still fail if an invalid input file index
  1001. is used; such as if the map refers to a non-existent input.
  1002. An alternative @var{[linklabel]} form will map outputs from complex filter
  1003. graphs (see the @option{-filter_complex} option) to the output file.
  1004. @var{linklabel} must correspond to a defined output link label in the graph.
  1005. For example, to map ALL streams from the first input file to output
  1006. @example
  1007. ffmpeg -i INPUT -map 0 output
  1008. @end example
  1009. For example, if you have two audio streams in the first input file,
  1010. these streams are identified by "0:0" and "0:1". You can use
  1011. @code{-map} to select which streams to place in an output file. For
  1012. example:
  1013. @example
  1014. ffmpeg -i INPUT -map 0:1 out.wav
  1015. @end example
  1016. will map the input stream in @file{INPUT} identified by "0:1" to
  1017. the (single) output stream in @file{out.wav}.
  1018. For example, to select the stream with index 2 from input file
  1019. @file{a.mov} (specified by the identifier "0:2"), and stream with
  1020. index 6 from input @file{b.mov} (specified by the identifier "1:6"),
  1021. and copy them to the output file @file{out.mov}:
  1022. @example
  1023. ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov
  1024. @end example
  1025. To select all video and the third audio stream from an input file:
  1026. @example
  1027. ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT
  1028. @end example
  1029. To map all the streams except the second audio, use negative mappings
  1030. @example
  1031. ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT
  1032. @end example
  1033. To map the video and audio streams from the first input, and using the
  1034. trailing @code{?}, ignore the audio mapping if no audio streams exist in
  1035. the first input:
  1036. @example
  1037. ffmpeg -i INPUT -map 0:v -map 0:a? OUTPUT
  1038. @end example
  1039. To pick the English audio stream:
  1040. @example
  1041. ffmpeg -i INPUT -map 0:m:language:eng OUTPUT
  1042. @end example
  1043. Note that using this option disables the default mappings for this output file.
  1044. @item -ignore_unknown
  1045. Ignore input streams with unknown type instead of failing if copying
  1046. such streams is attempted.
  1047. @item -copy_unknown
  1048. Allow input streams with unknown type to be copied instead of failing if copying
  1049. such streams is attempted.
  1050. @item -map_channel [@var{input_file_id}.@var{stream_specifier}.@var{channel_id}|-1][?][:@var{output_file_id}.@var{stream_specifier}]
  1051. Map an audio channel from a given input to an output. If
  1052. @var{output_file_id}.@var{stream_specifier} is not set, the audio channel will
  1053. be mapped on all the audio streams.
  1054. Using "-1" instead of
  1055. @var{input_file_id}.@var{stream_specifier}.@var{channel_id} will map a muted
  1056. channel.
  1057. A trailing @code{?} will allow the map_channel to be
  1058. optional: if the map_channel matches no channel the map_channel will be ignored instead
  1059. of failing.
  1060. For example, assuming @var{INPUT} is a stereo audio file, you can switch the
  1061. two audio channels with the following command:
  1062. @example
  1063. ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT
  1064. @end example
  1065. If you want to mute the first channel and keep the second:
  1066. @example
  1067. ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT
  1068. @end example
  1069. The order of the "-map_channel" option specifies the order of the channels in
  1070. the output stream. The output channel layout is guessed from the number of
  1071. channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac"
  1072. in combination of "-map_channel" makes the channel gain levels to be updated if
  1073. input and output channel layouts don't match (for instance two "-map_channel"
  1074. options and "-ac 6").
  1075. You can also extract each channel of an input to specific outputs; the following
  1076. command extracts two channels of the @var{INPUT} audio stream (file 0, stream 0)
  1077. to the respective @var{OUTPUT_CH0} and @var{OUTPUT_CH1} outputs:
  1078. @example
  1079. ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1
  1080. @end example
  1081. The following example splits the channels of a stereo input into two separate
  1082. streams, which are put into the same output file:
  1083. @example
  1084. ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg
  1085. @end example
  1086. Note that currently each output stream can only contain channels from a single
  1087. input stream; you can't for example use "-map_channel" to pick multiple input
  1088. audio channels contained in different streams (from the same or different files)
  1089. and merge them into a single output stream. It is therefore not currently
  1090. possible, for example, to turn two separate mono streams into a single stereo
  1091. stream. However splitting a stereo stream into two single channel mono streams
  1092. is possible.
  1093. If you need this feature, a possible workaround is to use the @emph{amerge}
  1094. filter. For example, if you need to merge a media (here @file{input.mkv}) with 2
  1095. mono audio streams into one single stereo channel audio stream (and keep the
  1096. video stream), you can use the following command:
  1097. @example
  1098. ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv
  1099. @end example
  1100. To map the first two audio channels from the first input, and using the
  1101. trailing @code{?}, ignore the audio channel mapping if the first input is
  1102. mono instead of stereo:
  1103. @example
  1104. ffmpeg -i INPUT -map_channel 0.0.0 -map_channel 0.0.1? OUTPUT
  1105. @end example
  1106. @item -map_metadata[:@var{metadata_spec_out}] @var{infile}[:@var{metadata_spec_in}] (@emph{output,per-metadata})
  1107. Set metadata information of the next output file from @var{infile}. Note that
  1108. those are file indices (zero-based), not filenames.
  1109. Optional @var{metadata_spec_in/out} parameters specify, which metadata to copy.
  1110. A metadata specifier can have the following forms:
  1111. @table @option
  1112. @item @var{g}
  1113. global metadata, i.e. metadata that applies to the whole file
  1114. @item @var{s}[:@var{stream_spec}]
  1115. per-stream metadata. @var{stream_spec} is a stream specifier as described
  1116. in the @ref{Stream specifiers} chapter. In an input metadata specifier, the first
  1117. matching stream is copied from. In an output metadata specifier, all matching
  1118. streams are copied to.
  1119. @item @var{c}:@var{chapter_index}
  1120. per-chapter metadata. @var{chapter_index} is the zero-based chapter index.
  1121. @item @var{p}:@var{program_index}
  1122. per-program metadata. @var{program_index} is the zero-based program index.
  1123. @end table
  1124. If metadata specifier is omitted, it defaults to global.
  1125. By default, global metadata is copied from the first input file,
  1126. per-stream and per-chapter metadata is copied along with streams/chapters. These
  1127. default mappings are disabled by creating any mapping of the relevant type. A negative
  1128. file index can be used to create a dummy mapping that just disables automatic copying.
  1129. For example to copy metadata from the first stream of the input file to global metadata
  1130. of the output file:
  1131. @example
  1132. ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3
  1133. @end example
  1134. To do the reverse, i.e. copy global metadata to all audio streams:
  1135. @example
  1136. ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv
  1137. @end example
  1138. Note that simple @code{0} would work as well in this example, since global
  1139. metadata is assumed by default.
  1140. @item -map_chapters @var{input_file_index} (@emph{output})
  1141. Copy chapters from input file with index @var{input_file_index} to the next
  1142. output file. If no chapter mapping is specified, then chapters are copied from
  1143. the first input file with at least one chapter. Use a negative file index to
  1144. disable any chapter copying.
  1145. @item -benchmark (@emph{global})
  1146. Show benchmarking information at the end of an encode.
  1147. Shows real, system and user time used and maximum memory consumption.
  1148. Maximum memory consumption is not supported on all systems,
  1149. it will usually display as 0 if not supported.
  1150. @item -benchmark_all (@emph{global})
  1151. Show benchmarking information during the encode.
  1152. Shows real, system and user time used in various steps (audio/video encode/decode).
  1153. @item -timelimit @var{duration} (@emph{global})
  1154. Exit after ffmpeg has been running for @var{duration} seconds in CPU user time.
  1155. @item -dump (@emph{global})
  1156. Dump each input packet to stderr.
  1157. @item -hex (@emph{global})
  1158. When dumping packets, also dump the payload.
  1159. @item -re (@emph{input})
  1160. Read input at native frame rate. Mainly used to simulate a grab device,
  1161. or live input stream (e.g. when reading from a file). Should not be used
  1162. with actual grab devices or live input streams (where it can cause packet
  1163. loss).
  1164. By default @command{ffmpeg} attempts to read the input(s) as fast as possible.
  1165. This option will slow down the reading of the input(s) to the native frame rate
  1166. of the input(s). It is useful for real-time output (e.g. live streaming).
  1167. @item -vsync @var{parameter}
  1168. Video sync method.
  1169. For compatibility reasons old values can be specified as numbers.
  1170. Newly added values will have to be specified as strings always.
  1171. @table @option
  1172. @item 0, passthrough
  1173. Each frame is passed with its timestamp from the demuxer to the muxer.
  1174. @item 1, cfr
  1175. Frames will be duplicated and dropped to achieve exactly the requested
  1176. constant frame rate.
  1177. @item 2, vfr
  1178. Frames are passed through with their timestamp or dropped so as to
  1179. prevent 2 frames from having the same timestamp.
  1180. @item drop
  1181. As passthrough but destroys all timestamps, making the muxer generate
  1182. fresh timestamps based on frame-rate.
  1183. @item -1, auto
  1184. Chooses between 1 and 2 depending on muxer capabilities. This is the
  1185. default method.
  1186. @end table
  1187. Note that the timestamps may be further modified by the muxer, after this.
  1188. For example, in the case that the format option @option{avoid_negative_ts}
  1189. is enabled.
  1190. With -map you can select from which stream the timestamps should be
  1191. taken. You can leave either video or audio unchanged and sync the
  1192. remaining stream(s) to the unchanged one.
  1193. @item -frame_drop_threshold @var{parameter}
  1194. Frame drop threshold, which specifies how much behind video frames can
  1195. be before they are dropped. In frame rate units, so 1.0 is one frame.
  1196. The default is -1.1. One possible usecase is to avoid framedrops in case
  1197. of noisy timestamps or to increase frame drop precision in case of exact
  1198. timestamps.
  1199. @item -async @var{samples_per_second}
  1200. Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps,
  1201. the parameter is the maximum samples per second by which the audio is changed.
  1202. -async 1 is a special case where only the start of the audio stream is corrected
  1203. without any later correction.
  1204. Note that the timestamps may be further modified by the muxer, after this.
  1205. For example, in the case that the format option @option{avoid_negative_ts}
  1206. is enabled.
  1207. This option has been deprecated. Use the @code{aresample} audio filter instead.
  1208. @item -copyts
  1209. Do not process input timestamps, but keep their values without trying
  1210. to sanitize them. In particular, do not remove the initial start time
  1211. offset value.
  1212. Note that, depending on the @option{vsync} option or on specific muxer
  1213. processing (e.g. in case the format option @option{avoid_negative_ts}
  1214. is enabled) the output timestamps may mismatch with the input
  1215. timestamps even when this option is selected.
  1216. @item -start_at_zero
  1217. When used with @option{copyts}, shift input timestamps so they start at zero.
  1218. This means that using e.g. @code{-ss 50} will make output timestamps start at
  1219. 50 seconds, regardless of what timestamp the input file started at.
  1220. @item -copytb @var{mode}
  1221. Specify how to set the encoder timebase when stream copying. @var{mode} is an
  1222. integer numeric value, and can assume one of the following values:
  1223. @table @option
  1224. @item 1
  1225. Use the demuxer timebase.
  1226. The time base is copied to the output encoder from the corresponding input
  1227. demuxer. This is sometimes required to avoid non monotonically increasing
  1228. timestamps when copying video streams with variable frame rate.
  1229. @item 0
  1230. Use the decoder timebase.
  1231. The time base is copied to the output encoder from the corresponding input
  1232. decoder.
  1233. @item -1
  1234. Try to make the choice automatically, in order to generate a sane output.
  1235. @end table
  1236. Default value is -1.
  1237. @item -enc_time_base[:@var{stream_specifier}] @var{timebase} (@emph{output,per-stream})
  1238. Set the encoder timebase. @var{timebase} is a floating point number,
  1239. and can assume one of the following values:
  1240. @table @option
  1241. @item 0
  1242. Assign a default value according to the media type.
  1243. For video - use 1/framerate, for audio - use 1/samplerate.
  1244. @item -1
  1245. Use the input stream timebase when possible.
  1246. If an input stream is not available, the default timebase will be used.
  1247. @item >0
  1248. Use the provided number as the timebase.
  1249. This field can be provided as a ratio of two integers (e.g. 1:24, 1:48000)
  1250. or as a floating point number (e.g. 0.04166, 2.0833e-5)
  1251. @end table
  1252. Default value is 0.
  1253. @item -bitexact (@emph{input/output})
  1254. Enable bitexact mode for (de)muxer and (de/en)coder
  1255. @item -shortest (@emph{output})
  1256. Finish encoding when the shortest input stream ends.
  1257. @item -dts_delta_threshold
  1258. Timestamp discontinuity delta threshold.
  1259. @item -dts_error_threshold @var{seconds}
  1260. Timestamp error delta threshold. This threshold use to discard crazy/damaged
  1261. timestamps and the default is 30 hours which is arbitrarily picked and quite
  1262. conservative.
  1263. @item -muxdelay @var{seconds} (@emph{output})
  1264. Set the maximum demux-decode delay.
  1265. @item -muxpreload @var{seconds} (@emph{output})
  1266. Set the initial demux-decode delay.
  1267. @item -streamid @var{output-stream-index}:@var{new-value} (@emph{output})
  1268. Assign a new stream-id value to an output stream. This option should be
  1269. specified prior to the output filename to which it applies.
  1270. For the situation where multiple output files exist, a streamid
  1271. may be reassigned to a different value.
  1272. For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for
  1273. an output mpegts file:
  1274. @example
  1275. ffmpeg -i inurl -streamid 0:33 -streamid 1:36 out.ts
  1276. @end example
  1277. @item -bsf[:@var{stream_specifier}] @var{bitstream_filters} (@emph{output,per-stream})
  1278. Set bitstream filters for matching streams. @var{bitstream_filters} is
  1279. a comma-separated list of bitstream filters. Use the @code{-bsfs} option
  1280. to get the list of bitstream filters.
  1281. @example
  1282. ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264
  1283. @end example
  1284. @example
  1285. ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt
  1286. @end example
  1287. @item -tag[:@var{stream_specifier}] @var{codec_tag} (@emph{input/output,per-stream})
  1288. Force a tag/fourcc for matching streams.
  1289. @item -timecode @var{hh}:@var{mm}:@var{ss}SEP@var{ff}
  1290. Specify Timecode for writing. @var{SEP} is ':' for non drop timecode and ';'
  1291. (or '.') for drop.
  1292. @example
  1293. ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg
  1294. @end example
  1295. @anchor{filter_complex_option}
  1296. @item -filter_complex @var{filtergraph} (@emph{global})
  1297. Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or
  1298. outputs. For simple graphs -- those with one input and one output of the same
  1299. type -- see the @option{-filter} options. @var{filtergraph} is a description of
  1300. the filtergraph, as described in the ``Filtergraph syntax'' section of the
  1301. ffmpeg-filters manual.
  1302. Input link labels must refer to input streams using the
  1303. @code{[file_index:stream_specifier]} syntax (i.e. the same as @option{-map}
  1304. uses). If @var{stream_specifier} matches multiple streams, the first one will be
  1305. used. An unlabeled input will be connected to the first unused input stream of
  1306. the matching type.
  1307. Output link labels are referred to with @option{-map}. Unlabeled outputs are
  1308. added to the first output file.
  1309. Note that with this option it is possible to use only lavfi sources without
  1310. normal input files.
  1311. For example, to overlay an image over video
  1312. @example
  1313. ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map
  1314. '[out]' out.mkv
  1315. @end example
  1316. Here @code{[0:v]} refers to the first video stream in the first input file,
  1317. which is linked to the first (main) input of the overlay filter. Similarly the
  1318. first video stream in the second input is linked to the second (overlay) input
  1319. of overlay.
  1320. Assuming there is only one video stream in each input file, we can omit input
  1321. labels, so the above is equivalent to
  1322. @example
  1323. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map
  1324. '[out]' out.mkv
  1325. @end example
  1326. Furthermore we can omit the output label and the single output from the filter
  1327. graph will be added to the output file automatically, so we can simply write
  1328. @example
  1329. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv
  1330. @end example
  1331. To generate 5 seconds of pure red video using lavfi @code{color} source:
  1332. @example
  1333. ffmpeg -filter_complex 'color=c=red' -t 5 out.mkv
  1334. @end example
  1335. @item -filter_complex_threads @var{nb_threads} (@emph{global})
  1336. Defines how many threads are used to process a filter_complex graph.
  1337. Similar to filter_threads but used for @code{-filter_complex} graphs only.
  1338. The default is the number of available CPUs.
  1339. @item -lavfi @var{filtergraph} (@emph{global})
  1340. Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or
  1341. outputs. Equivalent to @option{-filter_complex}.
  1342. @item -filter_complex_script @var{filename} (@emph{global})
  1343. This option is similar to @option{-filter_complex}, the only difference is that
  1344. its argument is the name of the file from which a complex filtergraph
  1345. description is to be read.
  1346. @item -accurate_seek (@emph{input})
  1347. This option enables or disables accurate seeking in input files with the
  1348. @option{-ss} option. It is enabled by default, so seeking is accurate when
  1349. transcoding. Use @option{-noaccurate_seek} to disable it, which may be useful
  1350. e.g. when copying some streams and transcoding the others.
  1351. @item -seek_timestamp (@emph{input})
  1352. This option enables or disables seeking by timestamp in input files with the
  1353. @option{-ss} option. It is disabled by default. If enabled, the argument
  1354. to the @option{-ss} option is considered an actual timestamp, and is not
  1355. offset by the start time of the file. This matters only for files which do
  1356. not start from timestamp 0, such as transport streams.
  1357. @item -thread_queue_size @var{size} (@emph{input})
  1358. This option sets the maximum number of queued packets when reading from the
  1359. file or device. With low latency / high rate live streams, packets may be
  1360. discarded if they are not read in a timely manner; setting this value can
  1361. force ffmpeg to use a separate input thread and read packets as soon as they
  1362. arrive. By default ffmpeg only do this if multiple inputs are specified.
  1363. @item -sdp_file @var{file} (@emph{global})
  1364. Print sdp information for an output stream to @var{file}.
  1365. This allows dumping sdp information when at least one output isn't an
  1366. rtp stream. (Requires at least one of the output formats to be rtp).
  1367. @item -discard (@emph{input})
  1368. Allows discarding specific streams or frames from streams.
  1369. Any input stream can be fully discarded, using value @code{all} whereas
  1370. selective discarding of frames from a stream occurs at the demuxer
  1371. and is not supported by all demuxers.
  1372. @table @option
  1373. @item none
  1374. Discard no frame.
  1375. @item default
  1376. Default, which discards no frames.
  1377. @item noref
  1378. Discard all non-reference frames.
  1379. @item bidir
  1380. Discard all bidirectional frames.
  1381. @item nokey
  1382. Discard all frames excepts keyframes.
  1383. @item all
  1384. Discard all frames.
  1385. @end table
  1386. @item -abort_on @var{flags} (@emph{global})
  1387. Stop and abort on various conditions. The following flags are available:
  1388. @table @option
  1389. @item empty_output
  1390. No packets were passed to the muxer, the output is empty.
  1391. @item empty_output_stream
  1392. No packets were passed to the muxer in some of the output streams.
  1393. @end table
  1394. @item -max_error_rate (@emph{global})
  1395. Set fraction of decoding frame failures across all inputs which when crossed
  1396. ffmpeg will return exit code 69. Crossing this threshold does not terminate
  1397. processing. Range is a floating-point number between 0 to 1. Default is 2/3.
  1398. @item -xerror (@emph{global})
  1399. Stop and exit on error
  1400. @item -max_muxing_queue_size @var{packets} (@emph{output,per-stream})
  1401. When transcoding audio and/or video streams, ffmpeg will not begin writing into
  1402. the output until it has one packet for each such stream. While waiting for that
  1403. to happen, packets for other streams are buffered. This option sets the size of
  1404. this buffer, in packets, for the matching output stream.
  1405. The default value of this option should be high enough for most uses, so only
  1406. touch this option if you are sure that you need it.
  1407. @item -muxing_queue_data_threshold @var{bytes} (@emph{output,per-stream})
  1408. This is a minimum threshold until which the muxing queue size is not taken into
  1409. account. Defaults to 50 megabytes per stream, and is based on the overall size
  1410. of packets passed to the muxer.
  1411. @item -auto_conversion_filters (@emph{global})
  1412. Enable automatically inserting format conversion filters in all filter
  1413. graphs, including those defined by @option{-vf}, @option{-af},
  1414. @option{-filter_complex} and @option{-lavfi}. If filter format negotiation
  1415. requires a conversion, the initialization of the filters will fail.
  1416. Conversions can still be performed by inserting the relevant conversion
  1417. filter (scale, aresample) in the graph.
  1418. On by default, to explicitly disable it you need to specify
  1419. @code{-noauto_conversion_filters}.
  1420. @end table
  1421. As a special exception, you can use a bitmap subtitle stream as input: it
  1422. will be converted into a video with the same size as the largest video in
  1423. the file, or 720x576 if no video is present. Note that this is an
  1424. experimental and temporary solution. It will be removed once libavfilter has
  1425. proper support for subtitles.
  1426. For example, to hardcode subtitles on top of a DVB-T recording stored in
  1427. MPEG-TS format, delaying the subtitles by 1 second:
  1428. @example
  1429. ffmpeg -i input.ts -filter_complex \
  1430. '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \
  1431. -sn -map '#0x2dc' output.mkv
  1432. @end example
  1433. (0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video,
  1434. audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too)
  1435. @section Preset files
  1436. A preset file contains a sequence of @var{option}=@var{value} pairs,
  1437. one for each line, specifying a sequence of options which would be
  1438. awkward to specify on the command line. Lines starting with the hash
  1439. ('#') character are ignored and are used to provide comments. Check
  1440. the @file{presets} directory in the FFmpeg source tree for examples.
  1441. There are two types of preset files: ffpreset and avpreset files.
  1442. @subsection ffpreset files
  1443. ffpreset files are specified with the @code{vpre}, @code{apre},
  1444. @code{spre}, and @code{fpre} options. The @code{fpre} option takes the
  1445. filename of the preset instead of a preset name as input and can be
  1446. used for any kind of codec. For the @code{vpre}, @code{apre}, and
  1447. @code{spre} options, the options specified in a preset file are
  1448. applied to the currently selected codec of the same type as the preset
  1449. option.
  1450. The argument passed to the @code{vpre}, @code{apre}, and @code{spre}
  1451. preset options identifies the preset file to use according to the
  1452. following rules:
  1453. First ffmpeg searches for a file named @var{arg}.ffpreset in the
  1454. directories @file{$FFMPEG_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  1455. the datadir defined at configuration time (usually @file{PREFIX/share/ffmpeg})
  1456. or in a @file{ffpresets} folder along the executable on win32,
  1457. in that order. For example, if the argument is @code{libvpx-1080p}, it will
  1458. search for the file @file{libvpx-1080p.ffpreset}.
  1459. If no such file is found, then ffmpeg will search for a file named
  1460. @var{codec_name}-@var{arg}.ffpreset in the above-mentioned
  1461. directories, where @var{codec_name} is the name of the codec to which
  1462. the preset file options will be applied. For example, if you select
  1463. the video codec with @code{-vcodec libvpx} and use @code{-vpre 1080p},
  1464. then it will search for the file @file{libvpx-1080p.ffpreset}.
  1465. @subsection avpreset files
  1466. avpreset files are specified with the @code{pre} option. They work similar to
  1467. ffpreset files, but they only allow encoder- specific options. Therefore, an
  1468. @var{option}=@var{value} pair specifying an encoder cannot be used.
  1469. When the @code{pre} option is specified, ffmpeg will look for files with the
  1470. suffix .avpreset in the directories @file{$AVCONV_DATADIR} (if set), and
  1471. @file{$HOME/.avconv}, and in the datadir defined at configuration time (usually
  1472. @file{PREFIX/share/ffmpeg}), in that order.
  1473. First ffmpeg searches for a file named @var{codec_name}-@var{arg}.avpreset in
  1474. the above-mentioned directories, where @var{codec_name} is the name of the codec
  1475. to which the preset file options will be applied. For example, if you select the
  1476. video codec with @code{-vcodec libvpx} and use @code{-pre 1080p}, then it will
  1477. search for the file @file{libvpx-1080p.avpreset}.
  1478. If no such file is found, then ffmpeg will search for a file named
  1479. @var{arg}.avpreset in the same directories.
  1480. @c man end OPTIONS
  1481. @chapter Examples
  1482. @c man begin EXAMPLES
  1483. @section Video and Audio grabbing
  1484. If you specify the input format and device then ffmpeg can grab video
  1485. and audio directly.
  1486. @example
  1487. ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg
  1488. @end example
  1489. Or with an ALSA audio source (mono input, card id 1) instead of OSS:
  1490. @example
  1491. ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg
  1492. @end example
  1493. Note that you must activate the right video source and channel before
  1494. launching ffmpeg with any TV viewer such as
  1495. @uref{http://linux.bytesex.org/xawtv/, xawtv} by Gerd Knorr. You also
  1496. have to set the audio recording levels correctly with a
  1497. standard mixer.
  1498. @section X11 grabbing
  1499. Grab the X11 display with ffmpeg via
  1500. @example
  1501. ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0 /tmp/out.mpg
  1502. @end example
  1503. 0.0 is display.screen number of your X11 server, same as
  1504. the DISPLAY environment variable.
  1505. @example
  1506. ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0+10,20 /tmp/out.mpg
  1507. @end example
  1508. 0.0 is display.screen number of your X11 server, same as the DISPLAY environment
  1509. variable. 10 is the x-offset and 20 the y-offset for the grabbing.
  1510. @section Video and Audio file format conversion
  1511. Any supported file format and protocol can serve as input to ffmpeg:
  1512. Examples:
  1513. @itemize
  1514. @item
  1515. You can use YUV files as input:
  1516. @example
  1517. ffmpeg -i /tmp/test%d.Y /tmp/out.mpg
  1518. @end example
  1519. It will use the files:
  1520. @example
  1521. /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
  1522. /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...
  1523. @end example
  1524. The Y files use twice the resolution of the U and V files. They are
  1525. raw files, without header. They can be generated by all decent video
  1526. decoders. You must specify the size of the image with the @option{-s} option
  1527. if ffmpeg cannot guess it.
  1528. @item
  1529. You can input from a raw YUV420P file:
  1530. @example
  1531. ffmpeg -i /tmp/test.yuv /tmp/out.avi
  1532. @end example
  1533. test.yuv is a file containing raw YUV planar data. Each frame is composed
  1534. of the Y plane followed by the U and V planes at half vertical and
  1535. horizontal resolution.
  1536. @item
  1537. You can output to a raw YUV420P file:
  1538. @example
  1539. ffmpeg -i mydivx.avi hugefile.yuv
  1540. @end example
  1541. @item
  1542. You can set several input files and output files:
  1543. @example
  1544. ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg
  1545. @end example
  1546. Converts the audio file a.wav and the raw YUV video file a.yuv
  1547. to MPEG file a.mpg.
  1548. @item
  1549. You can also do audio and video conversions at the same time:
  1550. @example
  1551. ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2
  1552. @end example
  1553. Converts a.wav to MPEG audio at 22050 Hz sample rate.
  1554. @item
  1555. You can encode to several formats at the same time and define a
  1556. mapping from input stream to output streams:
  1557. @example
  1558. ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2
  1559. @end example
  1560. Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. '-map
  1561. file:index' specifies which input stream is used for each output
  1562. stream, in the order of the definition of output streams.
  1563. @item
  1564. You can transcode decrypted VOBs:
  1565. @example
  1566. ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi
  1567. @end example
  1568. This is a typical DVD ripping example; the input is a VOB file, the
  1569. output an AVI file with MPEG-4 video and MP3 audio. Note that in this
  1570. command we use B-frames so the MPEG-4 stream is DivX5 compatible, and
  1571. GOP size is 300 which means one intra frame every 10 seconds for 29.97fps
  1572. input video. Furthermore, the audio stream is MP3-encoded so you need
  1573. to enable LAME support by passing @code{--enable-libmp3lame} to configure.
  1574. The mapping is particularly useful for DVD transcoding
  1575. to get the desired audio language.
  1576. NOTE: To see the supported input formats, use @code{ffmpeg -demuxers}.
  1577. @item
  1578. You can extract images from a video, or create a video from many images:
  1579. For extracting images from a video:
  1580. @example
  1581. ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg
  1582. @end example
  1583. This will extract one video frame per second from the video and will
  1584. output them in files named @file{foo-001.jpeg}, @file{foo-002.jpeg},
  1585. etc. Images will be rescaled to fit the new WxH values.
  1586. If you want to extract just a limited number of frames, you can use the
  1587. above command in combination with the @code{-frames:v} or @code{-t} option,
  1588. or in combination with -ss to start extracting from a certain point in time.
  1589. For creating a video from many images:
  1590. @example
  1591. ffmpeg -f image2 -framerate 12 -i foo-%03d.jpeg -s WxH foo.avi
  1592. @end example
  1593. The syntax @code{foo-%03d.jpeg} specifies to use a decimal number
  1594. composed of three digits padded with zeroes to express the sequence
  1595. number. It is the same syntax supported by the C printf function, but
  1596. only formats accepting a normal integer are suitable.
  1597. When importing an image sequence, -i also supports expanding
  1598. shell-like wildcard patterns (globbing) internally, by selecting the
  1599. image2-specific @code{-pattern_type glob} option.
  1600. For example, for creating a video from filenames matching the glob pattern
  1601. @code{foo-*.jpeg}:
  1602. @example
  1603. ffmpeg -f image2 -pattern_type glob -framerate 12 -i 'foo-*.jpeg' -s WxH foo.avi
  1604. @end example
  1605. @item
  1606. You can put many streams of the same type in the output:
  1607. @example
  1608. ffmpeg -i test1.avi -i test2.avi -map 1:1 -map 1:0 -map 0:1 -map 0:0 -c copy -y test12.nut
  1609. @end example
  1610. The resulting output file @file{test12.nut} will contain the first four streams
  1611. from the input files in reverse order.
  1612. @item
  1613. To force CBR video output:
  1614. @example
  1615. ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v
  1616. @end example
  1617. @item
  1618. The four options lmin, lmax, mblmin and mblmax use 'lambda' units,
  1619. but you may use the QP2LAMBDA constant to easily convert from 'q' units:
  1620. @example
  1621. ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext
  1622. @end example
  1623. @end itemize
  1624. @c man end EXAMPLES
  1625. @include config.texi
  1626. @ifset config-all
  1627. @ifset config-avutil
  1628. @include utils.texi
  1629. @end ifset
  1630. @ifset config-avcodec
  1631. @include codecs.texi
  1632. @include bitstream_filters.texi
  1633. @end ifset
  1634. @ifset config-avformat
  1635. @include formats.texi
  1636. @include protocols.texi
  1637. @end ifset
  1638. @ifset config-avdevice
  1639. @include devices.texi
  1640. @end ifset
  1641. @ifset config-swresample
  1642. @include resampler.texi
  1643. @end ifset
  1644. @ifset config-swscale
  1645. @include scaler.texi
  1646. @end ifset
  1647. @ifset config-avfilter
  1648. @include filters.texi
  1649. @end ifset
  1650. @include general_contents.texi
  1651. @end ifset
  1652. @chapter See Also
  1653. @ifhtml
  1654. @ifset config-all
  1655. @url{ffmpeg.html,ffmpeg}
  1656. @end ifset
  1657. @ifset config-not-all
  1658. @url{ffmpeg-all.html,ffmpeg-all},
  1659. @end ifset
  1660. @url{ffplay.html,ffplay}, @url{ffprobe.html,ffprobe},
  1661. @url{ffmpeg-utils.html,ffmpeg-utils},
  1662. @url{ffmpeg-scaler.html,ffmpeg-scaler},
  1663. @url{ffmpeg-resampler.html,ffmpeg-resampler},
  1664. @url{ffmpeg-codecs.html,ffmpeg-codecs},
  1665. @url{ffmpeg-bitstream-filters.html,ffmpeg-bitstream-filters},
  1666. @url{ffmpeg-formats.html,ffmpeg-formats},
  1667. @url{ffmpeg-devices.html,ffmpeg-devices},
  1668. @url{ffmpeg-protocols.html,ffmpeg-protocols},
  1669. @url{ffmpeg-filters.html,ffmpeg-filters}
  1670. @end ifhtml
  1671. @ifnothtml
  1672. @ifset config-all
  1673. ffmpeg(1),
  1674. @end ifset
  1675. @ifset config-not-all
  1676. ffmpeg-all(1),
  1677. @end ifset
  1678. ffplay(1), ffprobe(1),
  1679. ffmpeg-utils(1), ffmpeg-scaler(1), ffmpeg-resampler(1),
  1680. ffmpeg-codecs(1), ffmpeg-bitstream-filters(1), ffmpeg-formats(1),
  1681. ffmpeg-devices(1), ffmpeg-protocols(1), ffmpeg-filters(1)
  1682. @end ifnothtml
  1683. @include authors.texi
  1684. @ignore
  1685. @setfilename ffmpeg
  1686. @settitle ffmpeg video converter
  1687. @end ignore
  1688. @bye