You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2094 lines
76KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/intreadwrite.h"
  43. #include "libavutil/mathematics.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. #include "libavutil/ppc/cpu.h"
  47. #include "libavutil/x86/asm.h"
  48. #include "libavutil/x86/cpu.h"
  49. #include "rgb2rgb.h"
  50. #include "swscale.h"
  51. #include "swscale_internal.h"
  52. static void handle_formats(SwsContext *c);
  53. unsigned swscale_version(void)
  54. {
  55. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  56. return LIBSWSCALE_VERSION_INT;
  57. }
  58. const char *swscale_configuration(void)
  59. {
  60. return FFMPEG_CONFIGURATION;
  61. }
  62. const char *swscale_license(void)
  63. {
  64. #define LICENSE_PREFIX "libswscale license: "
  65. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  66. }
  67. #define RET 0xC3 // near return opcode for x86
  68. typedef struct FormatEntry {
  69. uint8_t is_supported_in :1;
  70. uint8_t is_supported_out :1;
  71. uint8_t is_supported_endianness :1;
  72. } FormatEntry;
  73. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  74. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  75. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  76. [AV_PIX_FMT_RGB24] = { 1, 1 },
  77. [AV_PIX_FMT_BGR24] = { 1, 1 },
  78. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  82. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  83. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  84. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  85. [AV_PIX_FMT_PAL8] = { 1, 0 },
  86. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  90. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  91. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  92. [AV_PIX_FMT_BGR8] = { 1, 1 },
  93. [AV_PIX_FMT_BGR4] = { 0, 1 },
  94. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_RGB8] = { 1, 1 },
  96. [AV_PIX_FMT_RGB4] = { 0, 1 },
  97. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  98. [AV_PIX_FMT_NV12] = { 1, 1 },
  99. [AV_PIX_FMT_NV21] = { 1, 1 },
  100. [AV_PIX_FMT_ARGB] = { 1, 1 },
  101. [AV_PIX_FMT_RGBA] = { 1, 1 },
  102. [AV_PIX_FMT_ABGR] = { 1, 1 },
  103. [AV_PIX_FMT_BGRA] = { 1, 1 },
  104. [AV_PIX_FMT_0RGB] = { 1, 1 },
  105. [AV_PIX_FMT_RGB0] = { 1, 1 },
  106. [AV_PIX_FMT_0BGR] = { 1, 1 },
  107. [AV_PIX_FMT_BGR0] = { 1, 1 },
  108. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  109. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  111. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  133. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  134. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  135. [AV_PIX_FMT_RGBA64BE] = { 1, 1 },
  136. [AV_PIX_FMT_RGBA64LE] = { 1, 1 },
  137. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  144. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  151. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  152. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  153. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  154. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  155. [AV_PIX_FMT_Y400A] = { 1, 0 },
  156. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  157. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  158. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  159. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  160. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  184. [AV_PIX_FMT_GBRP] = { 1, 1 },
  185. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  186. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  187. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  188. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  189. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  190. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  194. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  195. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  196. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  197. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  198. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  199. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  200. };
  201. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  202. {
  203. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  204. format_entries[pix_fmt].is_supported_in : 0;
  205. }
  206. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  207. {
  208. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  209. format_entries[pix_fmt].is_supported_out : 0;
  210. }
  211. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  212. {
  213. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  214. format_entries[pix_fmt].is_supported_endianness : 0;
  215. }
  216. #if FF_API_SWS_FORMAT_NAME
  217. const char *sws_format_name(enum AVPixelFormat format)
  218. {
  219. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  220. if (desc)
  221. return desc->name;
  222. else
  223. return "Unknown format";
  224. }
  225. #endif
  226. static double getSplineCoeff(double a, double b, double c, double d,
  227. double dist)
  228. {
  229. if (dist <= 1.0)
  230. return ((d * dist + c) * dist + b) * dist + a;
  231. else
  232. return getSplineCoeff(0.0,
  233. b + 2.0 * c + 3.0 * d,
  234. c + 3.0 * d,
  235. -b - 3.0 * c - 6.0 * d,
  236. dist - 1.0);
  237. }
  238. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  239. {
  240. if (pos < 0) {
  241. pos = (128 << chr_subsample) - 128;
  242. }
  243. pos += 128; // relative to ideal left edge
  244. return pos >> chr_subsample;
  245. }
  246. typedef struct {
  247. int flag; ///< flag associated to the algorithm
  248. const char *description; ///< human-readable description
  249. int size_factor; ///< size factor used when initing the filters
  250. } ScaleAlgorithm;
  251. static const ScaleAlgorithm scale_algorithms[] = {
  252. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  253. { SWS_BICUBIC, "bicubic", 4 },
  254. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  255. { SWS_BILINEAR, "bilinear", 2 },
  256. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  257. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  258. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  259. { SWS_POINT, "nearest neighbor / point", -1 },
  260. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  261. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  262. { SWS_X, "experimental", 8 },
  263. };
  264. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  265. int *outFilterSize, int xInc, int srcW,
  266. int dstW, int filterAlign, int one,
  267. int flags, int cpu_flags,
  268. SwsVector *srcFilter, SwsVector *dstFilter,
  269. double param[2], int srcPos, int dstPos)
  270. {
  271. int i;
  272. int filterSize;
  273. int filter2Size;
  274. int minFilterSize;
  275. int64_t *filter = NULL;
  276. int64_t *filter2 = NULL;
  277. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  278. int ret = -1;
  279. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  280. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  281. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  282. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  283. int i;
  284. filterSize = 1;
  285. FF_ALLOCZ_OR_GOTO(NULL, filter,
  286. dstW * sizeof(*filter) * filterSize, fail);
  287. for (i = 0; i < dstW; i++) {
  288. filter[i * filterSize] = fone;
  289. (*filterPos)[i] = i;
  290. }
  291. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  292. int i;
  293. int64_t xDstInSrc;
  294. filterSize = 1;
  295. FF_ALLOC_OR_GOTO(NULL, filter,
  296. dstW * sizeof(*filter) * filterSize, fail);
  297. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  298. for (i = 0; i < dstW; i++) {
  299. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  300. (*filterPos)[i] = xx;
  301. filter[i] = fone;
  302. xDstInSrc += xInc;
  303. }
  304. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  305. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  306. int i;
  307. int64_t xDstInSrc;
  308. filterSize = 2;
  309. FF_ALLOC_OR_GOTO(NULL, filter,
  310. dstW * sizeof(*filter) * filterSize, fail);
  311. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  312. for (i = 0; i < dstW; i++) {
  313. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  314. int j;
  315. (*filterPos)[i] = xx;
  316. // bilinear upscale / linear interpolate / area averaging
  317. for (j = 0; j < filterSize; j++) {
  318. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  319. if (coeff < 0)
  320. coeff = 0;
  321. filter[i * filterSize + j] = coeff;
  322. xx++;
  323. }
  324. xDstInSrc += xInc;
  325. }
  326. } else {
  327. int64_t xDstInSrc;
  328. int sizeFactor = -1;
  329. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  330. if (flags & scale_algorithms[i].flag) {
  331. sizeFactor = scale_algorithms[i].size_factor;
  332. break;
  333. }
  334. }
  335. if (flags & SWS_LANCZOS)
  336. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  337. av_assert0(sizeFactor > 0);
  338. if (xInc <= 1 << 16)
  339. filterSize = 1 + sizeFactor; // upscale
  340. else
  341. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  342. filterSize = FFMIN(filterSize, srcW - 2);
  343. filterSize = FFMAX(filterSize, 1);
  344. FF_ALLOC_OR_GOTO(NULL, filter,
  345. dstW * sizeof(*filter) * filterSize, fail);
  346. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  347. for (i = 0; i < dstW; i++) {
  348. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  349. int j;
  350. (*filterPos)[i] = xx;
  351. for (j = 0; j < filterSize; j++) {
  352. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  353. double floatd;
  354. int64_t coeff;
  355. if (xInc > 1 << 16)
  356. d = d * dstW / srcW;
  357. floatd = d * (1.0 / (1 << 30));
  358. if (flags & SWS_BICUBIC) {
  359. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  360. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  361. if (d >= 1LL << 31) {
  362. coeff = 0.0;
  363. } else {
  364. int64_t dd = (d * d) >> 30;
  365. int64_t ddd = (dd * d) >> 30;
  366. if (d < 1LL << 30)
  367. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  368. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  369. (6 * (1 << 24) - 2 * B) * (1 << 30);
  370. else
  371. coeff = (-B - 6 * C) * ddd +
  372. (6 * B + 30 * C) * dd +
  373. (-12 * B - 48 * C) * d +
  374. (8 * B + 24 * C) * (1 << 30);
  375. }
  376. coeff /= (1LL<<54)/fone;
  377. }
  378. #if 0
  379. else if (flags & SWS_X) {
  380. double p = param ? param * 0.01 : 0.3;
  381. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  382. coeff *= pow(2.0, -p * d * d);
  383. }
  384. #endif
  385. else if (flags & SWS_X) {
  386. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  387. double c;
  388. if (floatd < 1.0)
  389. c = cos(floatd * M_PI);
  390. else
  391. c = -1.0;
  392. if (c < 0.0)
  393. c = -pow(-c, A);
  394. else
  395. c = pow(c, A);
  396. coeff = (c * 0.5 + 0.5) * fone;
  397. } else if (flags & SWS_AREA) {
  398. int64_t d2 = d - (1 << 29);
  399. if (d2 * xInc < -(1LL << (29 + 16)))
  400. coeff = 1.0 * (1LL << (30 + 16));
  401. else if (d2 * xInc < (1LL << (29 + 16)))
  402. coeff = -d2 * xInc + (1LL << (29 + 16));
  403. else
  404. coeff = 0.0;
  405. coeff *= fone >> (30 + 16);
  406. } else if (flags & SWS_GAUSS) {
  407. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  408. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  409. } else if (flags & SWS_SINC) {
  410. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  411. } else if (flags & SWS_LANCZOS) {
  412. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  413. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  414. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  415. if (floatd > p)
  416. coeff = 0;
  417. } else if (flags & SWS_BILINEAR) {
  418. coeff = (1 << 30) - d;
  419. if (coeff < 0)
  420. coeff = 0;
  421. coeff *= fone >> 30;
  422. } else if (flags & SWS_SPLINE) {
  423. double p = -2.196152422706632;
  424. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  425. } else {
  426. av_assert0(0);
  427. }
  428. filter[i * filterSize + j] = coeff;
  429. xx++;
  430. }
  431. xDstInSrc += 2 * xInc;
  432. }
  433. }
  434. /* apply src & dst Filter to filter -> filter2
  435. * av_free(filter);
  436. */
  437. av_assert0(filterSize > 0);
  438. filter2Size = filterSize;
  439. if (srcFilter)
  440. filter2Size += srcFilter->length - 1;
  441. if (dstFilter)
  442. filter2Size += dstFilter->length - 1;
  443. av_assert0(filter2Size > 0);
  444. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  445. for (i = 0; i < dstW; i++) {
  446. int j, k;
  447. if (srcFilter) {
  448. for (k = 0; k < srcFilter->length; k++) {
  449. for (j = 0; j < filterSize; j++)
  450. filter2[i * filter2Size + k + j] +=
  451. srcFilter->coeff[k] * filter[i * filterSize + j];
  452. }
  453. } else {
  454. for (j = 0; j < filterSize; j++)
  455. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  456. }
  457. // FIXME dstFilter
  458. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  459. }
  460. av_freep(&filter);
  461. /* try to reduce the filter-size (step1 find size and shift left) */
  462. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  463. minFilterSize = 0;
  464. for (i = dstW - 1; i >= 0; i--) {
  465. int min = filter2Size;
  466. int j;
  467. int64_t cutOff = 0.0;
  468. /* get rid of near zero elements on the left by shifting left */
  469. for (j = 0; j < filter2Size; j++) {
  470. int k;
  471. cutOff += FFABS(filter2[i * filter2Size]);
  472. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  473. break;
  474. /* preserve monotonicity because the core can't handle the
  475. * filter otherwise */
  476. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  477. break;
  478. // move filter coefficients left
  479. for (k = 1; k < filter2Size; k++)
  480. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  481. filter2[i * filter2Size + k - 1] = 0;
  482. (*filterPos)[i]++;
  483. }
  484. cutOff = 0;
  485. /* count near zeros on the right */
  486. for (j = filter2Size - 1; j > 0; j--) {
  487. cutOff += FFABS(filter2[i * filter2Size + j]);
  488. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  489. break;
  490. min--;
  491. }
  492. if (min > minFilterSize)
  493. minFilterSize = min;
  494. }
  495. if (PPC_ALTIVEC(cpu_flags)) {
  496. // we can handle the special case 4, so we don't want to go the full 8
  497. if (minFilterSize < 5)
  498. filterAlign = 4;
  499. /* We really don't want to waste our time doing useless computation, so
  500. * fall back on the scalar C code for very small filters.
  501. * Vectorizing is worth it only if you have a decent-sized vector. */
  502. if (minFilterSize < 3)
  503. filterAlign = 1;
  504. }
  505. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  506. // special case for unscaled vertical filtering
  507. if (minFilterSize == 1 && filterAlign == 2)
  508. filterAlign = 1;
  509. }
  510. av_assert0(minFilterSize > 0);
  511. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  512. av_assert0(filterSize > 0);
  513. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  514. if (filterSize >= MAX_FILTER_SIZE * 16 /
  515. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
  516. av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreme scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
  517. goto fail;
  518. }
  519. *outFilterSize = filterSize;
  520. if (flags & SWS_PRINT_INFO)
  521. av_log(NULL, AV_LOG_VERBOSE,
  522. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  523. filter2Size, filterSize);
  524. /* try to reduce the filter-size (step2 reduce it) */
  525. for (i = 0; i < dstW; i++) {
  526. int j;
  527. for (j = 0; j < filterSize; j++) {
  528. if (j >= filter2Size)
  529. filter[i * filterSize + j] = 0;
  530. else
  531. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  532. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  533. filter[i * filterSize + j] = 0;
  534. }
  535. }
  536. // FIXME try to align filterPos if possible
  537. // fix borders
  538. for (i = 0; i < dstW; i++) {
  539. int j;
  540. if ((*filterPos)[i] < 0) {
  541. // move filter coefficients left to compensate for filterPos
  542. for (j = 1; j < filterSize; j++) {
  543. int left = FFMAX(j + (*filterPos)[i], 0);
  544. filter[i * filterSize + left] += filter[i * filterSize + j];
  545. filter[i * filterSize + j] = 0;
  546. }
  547. (*filterPos)[i]= 0;
  548. }
  549. if ((*filterPos)[i] + filterSize > srcW) {
  550. int shift = (*filterPos)[i] + filterSize - srcW;
  551. // move filter coefficients right to compensate for filterPos
  552. for (j = filterSize - 2; j >= 0; j--) {
  553. int right = FFMIN(j + shift, filterSize - 1);
  554. filter[i * filterSize + right] += filter[i * filterSize + j];
  555. filter[i * filterSize + j] = 0;
  556. }
  557. (*filterPos)[i]= srcW - filterSize;
  558. }
  559. }
  560. // Note the +1 is for the MMX scaler which reads over the end
  561. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  562. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  563. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  564. /* normalize & store in outFilter */
  565. for (i = 0; i < dstW; i++) {
  566. int j;
  567. int64_t error = 0;
  568. int64_t sum = 0;
  569. for (j = 0; j < filterSize; j++) {
  570. sum += filter[i * filterSize + j];
  571. }
  572. sum = (sum + one / 2) / one;
  573. if (!sum) {
  574. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  575. sum = 1;
  576. }
  577. for (j = 0; j < *outFilterSize; j++) {
  578. int64_t v = filter[i * filterSize + j] + error;
  579. int intV = ROUNDED_DIV(v, sum);
  580. (*outFilter)[i * (*outFilterSize) + j] = intV;
  581. error = v - intV * sum;
  582. }
  583. }
  584. (*filterPos)[dstW + 0] =
  585. (*filterPos)[dstW + 1] =
  586. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  587. * read over the end */
  588. for (i = 0; i < *outFilterSize; i++) {
  589. int k = (dstW - 1) * (*outFilterSize) + i;
  590. (*outFilter)[k + 1 * (*outFilterSize)] =
  591. (*outFilter)[k + 2 * (*outFilterSize)] =
  592. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  593. }
  594. ret = 0;
  595. fail:
  596. if(ret < 0)
  597. av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
  598. av_free(filter);
  599. av_free(filter2);
  600. return ret;
  601. }
  602. #if HAVE_MMXEXT_INLINE
  603. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  604. int16_t *filter, int32_t *filterPos,
  605. int numSplits)
  606. {
  607. uint8_t *fragmentA;
  608. x86_reg imm8OfPShufW1A;
  609. x86_reg imm8OfPShufW2A;
  610. x86_reg fragmentLengthA;
  611. uint8_t *fragmentB;
  612. x86_reg imm8OfPShufW1B;
  613. x86_reg imm8OfPShufW2B;
  614. x86_reg fragmentLengthB;
  615. int fragmentPos;
  616. int xpos, i;
  617. // create an optimized horizontal scaling routine
  618. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  619. * pshufw instructions. For every four output pixels, if four input pixels
  620. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  621. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  622. */
  623. // code fragment
  624. __asm__ volatile (
  625. "jmp 9f \n\t"
  626. // Begin
  627. "0: \n\t"
  628. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  629. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  630. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  631. "punpcklbw %%mm7, %%mm1 \n\t"
  632. "punpcklbw %%mm7, %%mm0 \n\t"
  633. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  634. "1: \n\t"
  635. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  636. "2: \n\t"
  637. "psubw %%mm1, %%mm0 \n\t"
  638. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  639. "pmullw %%mm3, %%mm0 \n\t"
  640. "psllw $7, %%mm1 \n\t"
  641. "paddw %%mm1, %%mm0 \n\t"
  642. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  643. "add $8, %%"REG_a" \n\t"
  644. // End
  645. "9: \n\t"
  646. // "int $3 \n\t"
  647. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  648. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  649. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  650. "dec %1 \n\t"
  651. "dec %2 \n\t"
  652. "sub %0, %1 \n\t"
  653. "sub %0, %2 \n\t"
  654. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  655. "sub %0, %3 \n\t"
  656. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  657. "=r" (fragmentLengthA)
  658. );
  659. __asm__ volatile (
  660. "jmp 9f \n\t"
  661. // Begin
  662. "0: \n\t"
  663. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  664. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  665. "punpcklbw %%mm7, %%mm0 \n\t"
  666. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  667. "1: \n\t"
  668. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  669. "2: \n\t"
  670. "psubw %%mm1, %%mm0 \n\t"
  671. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  672. "pmullw %%mm3, %%mm0 \n\t"
  673. "psllw $7, %%mm1 \n\t"
  674. "paddw %%mm1, %%mm0 \n\t"
  675. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  676. "add $8, %%"REG_a" \n\t"
  677. // End
  678. "9: \n\t"
  679. // "int $3 \n\t"
  680. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  681. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  682. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  683. "dec %1 \n\t"
  684. "dec %2 \n\t"
  685. "sub %0, %1 \n\t"
  686. "sub %0, %2 \n\t"
  687. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  688. "sub %0, %3 \n\t"
  689. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  690. "=r" (fragmentLengthB)
  691. );
  692. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  693. fragmentPos = 0;
  694. for (i = 0; i < dstW / numSplits; i++) {
  695. int xx = xpos >> 16;
  696. if ((i & 3) == 0) {
  697. int a = 0;
  698. int b = ((xpos + xInc) >> 16) - xx;
  699. int c = ((xpos + xInc * 2) >> 16) - xx;
  700. int d = ((xpos + xInc * 3) >> 16) - xx;
  701. int inc = (d + 1 < 4);
  702. uint8_t *fragment = inc ? fragmentB : fragmentA;
  703. x86_reg imm8OfPShufW1 = inc ? imm8OfPShufW1B : imm8OfPShufW1A;
  704. x86_reg imm8OfPShufW2 = inc ? imm8OfPShufW2B : imm8OfPShufW2A;
  705. x86_reg fragmentLength = inc ? fragmentLengthB : fragmentLengthA;
  706. int maxShift = 3 - (d + inc);
  707. int shift = 0;
  708. if (filterCode) {
  709. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  710. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  711. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  712. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  713. filterPos[i / 2] = xx;
  714. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  715. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  716. ((b + inc) << 2) |
  717. ((c + inc) << 4) |
  718. ((d + inc) << 6);
  719. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  720. (c << 4) |
  721. (d << 6);
  722. if (i + 4 - inc >= dstW)
  723. shift = maxShift; // avoid overread
  724. else if ((filterPos[i / 2] & 3) <= maxShift)
  725. shift = filterPos[i / 2] & 3; // align
  726. if (shift && i >= shift) {
  727. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  728. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  729. filterPos[i / 2] -= shift;
  730. }
  731. }
  732. fragmentPos += fragmentLength;
  733. if (filterCode)
  734. filterCode[fragmentPos] = RET;
  735. }
  736. xpos += xInc;
  737. }
  738. if (filterCode)
  739. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  740. return fragmentPos + 1;
  741. }
  742. #endif /* HAVE_MMXEXT_INLINE */
  743. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  744. {
  745. int64_t W, V, Z, Cy, Cu, Cv;
  746. int64_t vr = table[0];
  747. int64_t ub = table[1];
  748. int64_t ug = -table[2];
  749. int64_t vg = -table[3];
  750. int64_t ONE = 65536;
  751. int64_t cy = ONE;
  752. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  753. int i;
  754. static const int8_t map[] = {
  755. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  756. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  757. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  758. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  759. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  760. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  761. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  762. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  763. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  764. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  765. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  766. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  767. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  768. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  769. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  770. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  771. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  772. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  773. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  774. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  775. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  776. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  777. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  778. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  779. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  780. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  781. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  782. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  783. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  784. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  785. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  786. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  787. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  788. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  789. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  790. };
  791. dstRange = 0; //FIXME range = 1 is handled elsewhere
  792. if (!dstRange) {
  793. cy = cy * 255 / 219;
  794. } else {
  795. vr = vr * 224 / 255;
  796. ub = ub * 224 / 255;
  797. ug = ug * 224 / 255;
  798. vg = vg * 224 / 255;
  799. }
  800. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  801. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  802. Z = ONE*ONE-W-V;
  803. Cy = ROUNDED_DIV(cy*Z, ONE);
  804. Cu = ROUNDED_DIV(ub*Z, ONE);
  805. Cv = ROUNDED_DIV(vr*Z, ONE);
  806. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  807. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  808. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  809. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  810. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  811. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  812. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  813. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  814. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  815. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  816. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  817. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  818. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  819. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  820. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  821. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  822. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  823. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  824. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  825. }
  826. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  827. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  828. }
  829. static void fill_xyztables(struct SwsContext *c)
  830. {
  831. int i;
  832. double xyzgamma = XYZ_GAMMA;
  833. double rgbgamma = 1.0 / RGB_GAMMA;
  834. double xyzgammainv = 1.0 / XYZ_GAMMA;
  835. double rgbgammainv = RGB_GAMMA;
  836. static const int16_t xyz2rgb_matrix[3][4] = {
  837. {13270, -6295, -2041},
  838. {-3969, 7682, 170},
  839. { 228, -835, 4329} };
  840. static const int16_t rgb2xyz_matrix[3][4] = {
  841. {1689, 1464, 739},
  842. { 871, 2929, 296},
  843. { 79, 488, 3891} };
  844. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  845. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  846. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  847. c->xyzgamma = xyzgamma_tab;
  848. c->rgbgamma = rgbgamma_tab;
  849. c->xyzgammainv = xyzgammainv_tab;
  850. c->rgbgammainv = rgbgammainv_tab;
  851. if (rgbgamma_tab[4095])
  852. return;
  853. /* set gamma vectors */
  854. for (i = 0; i < 4096; i++) {
  855. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  856. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  857. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  858. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  859. }
  860. }
  861. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  862. int srcRange, const int table[4], int dstRange,
  863. int brightness, int contrast, int saturation)
  864. {
  865. const AVPixFmtDescriptor *desc_dst;
  866. const AVPixFmtDescriptor *desc_src;
  867. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  868. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  869. handle_formats(c);
  870. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  871. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  872. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  873. dstRange = 0;
  874. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  875. srcRange = 0;
  876. c->brightness = brightness;
  877. c->contrast = contrast;
  878. c->saturation = saturation;
  879. c->srcRange = srcRange;
  880. c->dstRange = dstRange;
  881. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  882. return -1;
  883. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  884. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  885. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  886. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  887. contrast, saturation);
  888. // FIXME factorize
  889. if (ARCH_PPC)
  890. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  891. contrast, saturation);
  892. }
  893. fill_rgb2yuv_table(c, table, dstRange);
  894. return 0;
  895. }
  896. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  897. int *srcRange, int **table, int *dstRange,
  898. int *brightness, int *contrast, int *saturation)
  899. {
  900. if (!c )
  901. return -1;
  902. *inv_table = c->srcColorspaceTable;
  903. *table = c->dstColorspaceTable;
  904. *srcRange = c->srcRange;
  905. *dstRange = c->dstRange;
  906. *brightness = c->brightness;
  907. *contrast = c->contrast;
  908. *saturation = c->saturation;
  909. return 0;
  910. }
  911. static int handle_jpeg(enum AVPixelFormat *format)
  912. {
  913. switch (*format) {
  914. case AV_PIX_FMT_YUVJ420P:
  915. *format = AV_PIX_FMT_YUV420P;
  916. return 1;
  917. case AV_PIX_FMT_YUVJ411P:
  918. *format = AV_PIX_FMT_YUV411P;
  919. return 1;
  920. case AV_PIX_FMT_YUVJ422P:
  921. *format = AV_PIX_FMT_YUV422P;
  922. return 1;
  923. case AV_PIX_FMT_YUVJ444P:
  924. *format = AV_PIX_FMT_YUV444P;
  925. return 1;
  926. case AV_PIX_FMT_YUVJ440P:
  927. *format = AV_PIX_FMT_YUV440P;
  928. return 1;
  929. case AV_PIX_FMT_GRAY8:
  930. return 1;
  931. default:
  932. return 0;
  933. }
  934. }
  935. static int handle_0alpha(enum AVPixelFormat *format)
  936. {
  937. switch (*format) {
  938. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  939. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  940. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  941. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  942. default: return 0;
  943. }
  944. }
  945. static int handle_xyz(enum AVPixelFormat *format)
  946. {
  947. switch (*format) {
  948. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  949. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  950. default: return 0;
  951. }
  952. }
  953. static void handle_formats(SwsContext *c)
  954. {
  955. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  956. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  957. c->srcXYZ |= handle_xyz(&c->srcFormat);
  958. c->dstXYZ |= handle_xyz(&c->dstFormat);
  959. if (c->srcXYZ || c->dstXYZ)
  960. fill_xyztables(c);
  961. }
  962. SwsContext *sws_alloc_context(void)
  963. {
  964. SwsContext *c = av_mallocz(sizeof(SwsContext));
  965. if (c) {
  966. c->av_class = &sws_context_class;
  967. av_opt_set_defaults(c);
  968. }
  969. return c;
  970. }
  971. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  972. SwsFilter *dstFilter)
  973. {
  974. int i, j;
  975. int usesVFilter, usesHFilter;
  976. int unscaled;
  977. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  978. int srcW = c->srcW;
  979. int srcH = c->srcH;
  980. int dstW = c->dstW;
  981. int dstH = c->dstH;
  982. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  983. int flags, cpu_flags;
  984. enum AVPixelFormat srcFormat = c->srcFormat;
  985. enum AVPixelFormat dstFormat = c->dstFormat;
  986. const AVPixFmtDescriptor *desc_src;
  987. const AVPixFmtDescriptor *desc_dst;
  988. cpu_flags = av_get_cpu_flags();
  989. flags = c->flags;
  990. emms_c();
  991. if (!rgb15to16)
  992. sws_rgb2rgb_init();
  993. unscaled = (srcW == dstW && srcH == dstH);
  994. c->srcRange |= handle_jpeg(&c->srcFormat);
  995. c->dstRange |= handle_jpeg(&c->dstFormat);
  996. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  997. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  998. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  999. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1000. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1001. c->dstRange, 0, 1 << 16, 1 << 16);
  1002. handle_formats(c);
  1003. srcFormat = c->srcFormat;
  1004. dstFormat = c->dstFormat;
  1005. desc_src = av_pix_fmt_desc_get(srcFormat);
  1006. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1007. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1008. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1009. if (!sws_isSupportedInput(srcFormat)) {
  1010. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1011. av_get_pix_fmt_name(srcFormat));
  1012. return AVERROR(EINVAL);
  1013. }
  1014. if (!sws_isSupportedOutput(dstFormat)) {
  1015. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1016. av_get_pix_fmt_name(dstFormat));
  1017. return AVERROR(EINVAL);
  1018. }
  1019. }
  1020. i = flags & (SWS_POINT |
  1021. SWS_AREA |
  1022. SWS_BILINEAR |
  1023. SWS_FAST_BILINEAR |
  1024. SWS_BICUBIC |
  1025. SWS_X |
  1026. SWS_GAUSS |
  1027. SWS_LANCZOS |
  1028. SWS_SINC |
  1029. SWS_SPLINE |
  1030. SWS_BICUBLIN);
  1031. /* provide a default scaler if not set by caller */
  1032. if (!i) {
  1033. if (dstW < srcW && dstH < srcH)
  1034. flags |= SWS_BICUBIC;
  1035. else if (dstW > srcW && dstH > srcH)
  1036. flags |= SWS_BICUBIC;
  1037. else
  1038. flags |= SWS_BICUBIC;
  1039. c->flags = flags;
  1040. } else if (i & (i - 1)) {
  1041. av_log(c, AV_LOG_ERROR,
  1042. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1043. return AVERROR(EINVAL);
  1044. }
  1045. /* sanity check */
  1046. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1047. /* FIXME check if these are enough and try to lower them after
  1048. * fixing the relevant parts of the code */
  1049. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1050. srcW, srcH, dstW, dstH);
  1051. return AVERROR(EINVAL);
  1052. }
  1053. if (!dstFilter)
  1054. dstFilter = &dummyFilter;
  1055. if (!srcFilter)
  1056. srcFilter = &dummyFilter;
  1057. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1058. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1059. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1060. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1061. c->vRounder = 4 * 0x0001000100010001ULL;
  1062. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1063. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1064. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1065. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1066. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1067. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1068. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1069. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1070. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1071. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1072. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1073. if (dstW&1) {
  1074. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1075. flags |= SWS_FULL_CHR_H_INT;
  1076. c->flags = flags;
  1077. }
  1078. if ( c->chrSrcHSubSample == 0
  1079. && c->chrSrcVSubSample == 0
  1080. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1081. && !(c->flags & SWS_FAST_BILINEAR)
  1082. ) {
  1083. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1084. flags |= SWS_FULL_CHR_H_INT;
  1085. c->flags = flags;
  1086. }
  1087. }
  1088. if (c->dither == SWS_DITHER_AUTO) {
  1089. if (flags & SWS_ERROR_DIFFUSION)
  1090. c->dither = SWS_DITHER_ED;
  1091. }
  1092. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1093. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1094. dstFormat == AV_PIX_FMT_BGR8 ||
  1095. dstFormat == AV_PIX_FMT_RGB8) {
  1096. if (c->dither == SWS_DITHER_AUTO)
  1097. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1098. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1099. if (c->dither == SWS_DITHER_ED) {
  1100. av_log(c, AV_LOG_DEBUG,
  1101. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1102. av_get_pix_fmt_name(dstFormat));
  1103. flags |= SWS_FULL_CHR_H_INT;
  1104. c->flags = flags;
  1105. }
  1106. }
  1107. if (flags & SWS_FULL_CHR_H_INT) {
  1108. if (c->dither == SWS_DITHER_BAYER) {
  1109. av_log(c, AV_LOG_DEBUG,
  1110. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1111. av_get_pix_fmt_name(dstFormat));
  1112. c->dither = SWS_DITHER_ED;
  1113. }
  1114. }
  1115. }
  1116. if (isPlanarRGB(dstFormat)) {
  1117. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1118. av_log(c, AV_LOG_DEBUG,
  1119. "%s output is not supported with half chroma resolution, switching to full\n",
  1120. av_get_pix_fmt_name(dstFormat));
  1121. flags |= SWS_FULL_CHR_H_INT;
  1122. c->flags = flags;
  1123. }
  1124. }
  1125. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1126. * chroma interpolation */
  1127. if (flags & SWS_FULL_CHR_H_INT &&
  1128. isAnyRGB(dstFormat) &&
  1129. !isPlanarRGB(dstFormat) &&
  1130. dstFormat != AV_PIX_FMT_RGBA &&
  1131. dstFormat != AV_PIX_FMT_ARGB &&
  1132. dstFormat != AV_PIX_FMT_BGRA &&
  1133. dstFormat != AV_PIX_FMT_ABGR &&
  1134. dstFormat != AV_PIX_FMT_RGB24 &&
  1135. dstFormat != AV_PIX_FMT_BGR24 &&
  1136. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1137. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1138. dstFormat != AV_PIX_FMT_BGR8 &&
  1139. dstFormat != AV_PIX_FMT_RGB8
  1140. ) {
  1141. av_log(c, AV_LOG_WARNING,
  1142. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1143. av_get_pix_fmt_name(dstFormat));
  1144. flags &= ~SWS_FULL_CHR_H_INT;
  1145. c->flags = flags;
  1146. }
  1147. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1148. c->chrDstHSubSample = 1;
  1149. // drop some chroma lines if the user wants it
  1150. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1151. SWS_SRC_V_CHR_DROP_SHIFT;
  1152. c->chrSrcVSubSample += c->vChrDrop;
  1153. /* drop every other pixel for chroma calculation unless user
  1154. * wants full chroma */
  1155. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1156. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1157. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1158. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1159. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1160. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1161. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1162. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1163. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1164. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1165. (flags & SWS_FAST_BILINEAR)))
  1166. c->chrSrcHSubSample = 1;
  1167. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1168. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1169. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1170. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1171. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1172. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1173. /* unscaled special cases */
  1174. if (unscaled && !usesHFilter && !usesVFilter &&
  1175. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1176. ff_get_unscaled_swscale(c);
  1177. if (c->swscale) {
  1178. if (flags & SWS_PRINT_INFO)
  1179. av_log(c, AV_LOG_INFO,
  1180. "using unscaled %s -> %s special converter\n",
  1181. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1182. return 0;
  1183. }
  1184. }
  1185. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1186. if (c->srcBpc < 8)
  1187. c->srcBpc = 8;
  1188. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1189. if (c->dstBpc < 8)
  1190. c->dstBpc = 8;
  1191. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1192. c->srcBpc = 16;
  1193. if (c->dstBpc == 16)
  1194. dst_stride <<= 1;
  1195. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1196. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1197. c->chrDstW >= c->chrSrcW &&
  1198. (srcW & 15) == 0;
  1199. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1200. && (flags & SWS_FAST_BILINEAR)) {
  1201. if (flags & SWS_PRINT_INFO)
  1202. av_log(c, AV_LOG_INFO,
  1203. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1204. }
  1205. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1206. c->canMMXEXTBeUsed = 0;
  1207. } else
  1208. c->canMMXEXTBeUsed = 0;
  1209. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1210. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1211. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1212. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1213. * correct scaling.
  1214. * n-2 is the last chrominance sample available.
  1215. * This is not perfect, but no one should notice the difference, the more
  1216. * correct variant would be like the vertical one, but that would require
  1217. * some special code for the first and last pixel */
  1218. if (flags & SWS_FAST_BILINEAR) {
  1219. if (c->canMMXEXTBeUsed) {
  1220. c->lumXInc += 20;
  1221. c->chrXInc += 20;
  1222. }
  1223. // we don't use the x86 asm scaler if MMX is available
  1224. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1225. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1226. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1227. }
  1228. }
  1229. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1230. /* precalculate horizontal scaler filter coefficients */
  1231. {
  1232. #if HAVE_MMXEXT_INLINE
  1233. // can't downscale !!!
  1234. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1235. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1236. NULL, NULL, 8);
  1237. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1238. NULL, NULL, NULL, 4);
  1239. #if USE_MMAP
  1240. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1241. PROT_READ | PROT_WRITE,
  1242. MAP_PRIVATE | MAP_ANONYMOUS,
  1243. -1, 0);
  1244. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1245. PROT_READ | PROT_WRITE,
  1246. MAP_PRIVATE | MAP_ANONYMOUS,
  1247. -1, 0);
  1248. #elif HAVE_VIRTUALALLOC
  1249. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1250. c->lumMmxextFilterCodeSize,
  1251. MEM_COMMIT,
  1252. PAGE_EXECUTE_READWRITE);
  1253. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1254. c->chrMmxextFilterCodeSize,
  1255. MEM_COMMIT,
  1256. PAGE_EXECUTE_READWRITE);
  1257. #else
  1258. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1259. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1260. #endif
  1261. #ifdef MAP_ANONYMOUS
  1262. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1263. #else
  1264. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1265. #endif
  1266. {
  1267. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1268. return AVERROR(ENOMEM);
  1269. }
  1270. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1271. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1272. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1273. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1274. init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1275. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1276. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1277. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1278. #if USE_MMAP
  1279. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1280. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1281. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1282. goto fail;
  1283. }
  1284. #endif
  1285. } else
  1286. #endif /* HAVE_MMXEXT_INLINE */
  1287. {
  1288. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1289. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1290. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1291. &c->hLumFilterSize, c->lumXInc,
  1292. srcW, dstW, filterAlign, 1 << 14,
  1293. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1294. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1295. c->param,
  1296. get_local_pos(c, 0, 0, 0),
  1297. get_local_pos(c, 0, 0, 0)) < 0)
  1298. goto fail;
  1299. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1300. &c->hChrFilterSize, c->chrXInc,
  1301. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1302. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1303. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1304. c->param,
  1305. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1306. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0)) < 0)
  1307. goto fail;
  1308. }
  1309. } // initialize horizontal stuff
  1310. /* precalculate vertical scaler filter coefficients */
  1311. {
  1312. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1313. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1314. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1315. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1316. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1317. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1318. c->param,
  1319. get_local_pos(c, 0, 0, 1),
  1320. get_local_pos(c, 0, 0, 1)) < 0)
  1321. goto fail;
  1322. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1323. c->chrYInc, c->chrSrcH, c->chrDstH,
  1324. filterAlign, (1 << 12),
  1325. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1326. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1327. c->param,
  1328. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1329. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1)) < 0)
  1330. goto fail;
  1331. #if HAVE_ALTIVEC
  1332. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1333. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1334. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1335. int j;
  1336. short *p = (short *)&c->vYCoeffsBank[i];
  1337. for (j = 0; j < 8; j++)
  1338. p[j] = c->vLumFilter[i];
  1339. }
  1340. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1341. int j;
  1342. short *p = (short *)&c->vCCoeffsBank[i];
  1343. for (j = 0; j < 8; j++)
  1344. p[j] = c->vChrFilter[i];
  1345. }
  1346. #endif
  1347. }
  1348. // calculate buffer sizes so that they won't run out while handling these damn slices
  1349. c->vLumBufSize = c->vLumFilterSize;
  1350. c->vChrBufSize = c->vChrFilterSize;
  1351. for (i = 0; i < dstH; i++) {
  1352. int chrI = (int64_t)i * c->chrDstH / dstH;
  1353. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1354. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1355. << c->chrSrcVSubSample));
  1356. nextSlice >>= c->chrSrcVSubSample;
  1357. nextSlice <<= c->chrSrcVSubSample;
  1358. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1359. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1360. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1361. (nextSlice >> c->chrSrcVSubSample))
  1362. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1363. c->vChrFilterPos[chrI];
  1364. }
  1365. for (i = 0; i < 4; i++)
  1366. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1367. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1368. * need to allocate several megabytes to handle all possible cases) */
  1369. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1370. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1371. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1372. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1373. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1374. /* Note we need at least one pixel more at the end because of the MMX code
  1375. * (just in case someone wants to replace the 4000/8000). */
  1376. /* align at 16 bytes for AltiVec */
  1377. for (i = 0; i < c->vLumBufSize; i++) {
  1378. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1379. dst_stride + 16, fail);
  1380. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1381. }
  1382. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1383. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1384. c->uv_offx2 = dst_stride + 16;
  1385. for (i = 0; i < c->vChrBufSize; i++) {
  1386. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1387. dst_stride * 2 + 32, fail);
  1388. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1389. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1390. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1391. }
  1392. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1393. for (i = 0; i < c->vLumBufSize; i++) {
  1394. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1395. dst_stride + 16, fail);
  1396. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1397. }
  1398. // try to avoid drawing green stuff between the right end and the stride end
  1399. for (i = 0; i < c->vChrBufSize; i++)
  1400. if(desc_dst->comp[0].depth_minus1 == 15){
  1401. av_assert0(c->dstBpc > 14);
  1402. for(j=0; j<dst_stride/2+1; j++)
  1403. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1404. } else
  1405. for(j=0; j<dst_stride+1; j++)
  1406. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1407. av_assert0(c->chrDstH <= dstH);
  1408. if (flags & SWS_PRINT_INFO) {
  1409. const char *scaler = NULL, *cpucaps;
  1410. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1411. if (flags & scale_algorithms[i].flag) {
  1412. scaler = scale_algorithms[i].description;
  1413. break;
  1414. }
  1415. }
  1416. if (!scaler)
  1417. scaler = "ehh flags invalid?!";
  1418. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1419. scaler,
  1420. av_get_pix_fmt_name(srcFormat),
  1421. #ifdef DITHER1XBPP
  1422. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1423. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1424. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1425. "dithered " : "",
  1426. #else
  1427. "",
  1428. #endif
  1429. av_get_pix_fmt_name(dstFormat));
  1430. if (INLINE_MMXEXT(cpu_flags))
  1431. cpucaps = "MMXEXT";
  1432. else if (INLINE_AMD3DNOW(cpu_flags))
  1433. cpucaps = "3DNOW";
  1434. else if (INLINE_MMX(cpu_flags))
  1435. cpucaps = "MMX";
  1436. else if (PPC_ALTIVEC(cpu_flags))
  1437. cpucaps = "AltiVec";
  1438. else
  1439. cpucaps = "C";
  1440. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1441. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1442. av_log(c, AV_LOG_DEBUG,
  1443. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1444. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1445. av_log(c, AV_LOG_DEBUG,
  1446. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1447. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1448. c->chrXInc, c->chrYInc);
  1449. }
  1450. c->swscale = ff_getSwsFunc(c);
  1451. return 0;
  1452. fail: // FIXME replace things by appropriate error codes
  1453. return -1;
  1454. }
  1455. #if FF_API_SWS_GETCONTEXT
  1456. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1457. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1458. int flags, SwsFilter *srcFilter,
  1459. SwsFilter *dstFilter, const double *param)
  1460. {
  1461. SwsContext *c;
  1462. if (!(c = sws_alloc_context()))
  1463. return NULL;
  1464. c->flags = flags;
  1465. c->srcW = srcW;
  1466. c->srcH = srcH;
  1467. c->dstW = dstW;
  1468. c->dstH = dstH;
  1469. c->srcFormat = srcFormat;
  1470. c->dstFormat = dstFormat;
  1471. if (param) {
  1472. c->param[0] = param[0];
  1473. c->param[1] = param[1];
  1474. }
  1475. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1476. sws_freeContext(c);
  1477. return NULL;
  1478. }
  1479. return c;
  1480. }
  1481. #endif
  1482. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1483. float lumaSharpen, float chromaSharpen,
  1484. float chromaHShift, float chromaVShift,
  1485. int verbose)
  1486. {
  1487. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1488. if (!filter)
  1489. return NULL;
  1490. if (lumaGBlur != 0.0) {
  1491. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1492. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1493. } else {
  1494. filter->lumH = sws_getIdentityVec();
  1495. filter->lumV = sws_getIdentityVec();
  1496. }
  1497. if (chromaGBlur != 0.0) {
  1498. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1499. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1500. } else {
  1501. filter->chrH = sws_getIdentityVec();
  1502. filter->chrV = sws_getIdentityVec();
  1503. }
  1504. if (chromaSharpen != 0.0) {
  1505. SwsVector *id = sws_getIdentityVec();
  1506. sws_scaleVec(filter->chrH, -chromaSharpen);
  1507. sws_scaleVec(filter->chrV, -chromaSharpen);
  1508. sws_addVec(filter->chrH, id);
  1509. sws_addVec(filter->chrV, id);
  1510. sws_freeVec(id);
  1511. }
  1512. if (lumaSharpen != 0.0) {
  1513. SwsVector *id = sws_getIdentityVec();
  1514. sws_scaleVec(filter->lumH, -lumaSharpen);
  1515. sws_scaleVec(filter->lumV, -lumaSharpen);
  1516. sws_addVec(filter->lumH, id);
  1517. sws_addVec(filter->lumV, id);
  1518. sws_freeVec(id);
  1519. }
  1520. if (chromaHShift != 0.0)
  1521. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1522. if (chromaVShift != 0.0)
  1523. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1524. sws_normalizeVec(filter->chrH, 1.0);
  1525. sws_normalizeVec(filter->chrV, 1.0);
  1526. sws_normalizeVec(filter->lumH, 1.0);
  1527. sws_normalizeVec(filter->lumV, 1.0);
  1528. if (verbose)
  1529. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1530. if (verbose)
  1531. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1532. return filter;
  1533. }
  1534. SwsVector *sws_allocVec(int length)
  1535. {
  1536. SwsVector *vec;
  1537. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1538. return NULL;
  1539. vec = av_malloc(sizeof(SwsVector));
  1540. if (!vec)
  1541. return NULL;
  1542. vec->length = length;
  1543. vec->coeff = av_malloc(sizeof(double) * length);
  1544. if (!vec->coeff)
  1545. av_freep(&vec);
  1546. return vec;
  1547. }
  1548. SwsVector *sws_getGaussianVec(double variance, double quality)
  1549. {
  1550. const int length = (int)(variance * quality + 0.5) | 1;
  1551. int i;
  1552. double middle = (length - 1) * 0.5;
  1553. SwsVector *vec;
  1554. if(variance < 0 || quality < 0)
  1555. return NULL;
  1556. vec = sws_allocVec(length);
  1557. if (!vec)
  1558. return NULL;
  1559. for (i = 0; i < length; i++) {
  1560. double dist = i - middle;
  1561. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1562. sqrt(2 * variance * M_PI);
  1563. }
  1564. sws_normalizeVec(vec, 1.0);
  1565. return vec;
  1566. }
  1567. SwsVector *sws_getConstVec(double c, int length)
  1568. {
  1569. int i;
  1570. SwsVector *vec = sws_allocVec(length);
  1571. if (!vec)
  1572. return NULL;
  1573. for (i = 0; i < length; i++)
  1574. vec->coeff[i] = c;
  1575. return vec;
  1576. }
  1577. SwsVector *sws_getIdentityVec(void)
  1578. {
  1579. return sws_getConstVec(1.0, 1);
  1580. }
  1581. static double sws_dcVec(SwsVector *a)
  1582. {
  1583. int i;
  1584. double sum = 0;
  1585. for (i = 0; i < a->length; i++)
  1586. sum += a->coeff[i];
  1587. return sum;
  1588. }
  1589. void sws_scaleVec(SwsVector *a, double scalar)
  1590. {
  1591. int i;
  1592. for (i = 0; i < a->length; i++)
  1593. a->coeff[i] *= scalar;
  1594. }
  1595. void sws_normalizeVec(SwsVector *a, double height)
  1596. {
  1597. sws_scaleVec(a, height / sws_dcVec(a));
  1598. }
  1599. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1600. {
  1601. int length = a->length + b->length - 1;
  1602. int i, j;
  1603. SwsVector *vec = sws_getConstVec(0.0, length);
  1604. if (!vec)
  1605. return NULL;
  1606. for (i = 0; i < a->length; i++) {
  1607. for (j = 0; j < b->length; j++) {
  1608. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1609. }
  1610. }
  1611. return vec;
  1612. }
  1613. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1614. {
  1615. int length = FFMAX(a->length, b->length);
  1616. int i;
  1617. SwsVector *vec = sws_getConstVec(0.0, length);
  1618. if (!vec)
  1619. return NULL;
  1620. for (i = 0; i < a->length; i++)
  1621. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1622. for (i = 0; i < b->length; i++)
  1623. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1624. return vec;
  1625. }
  1626. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1627. {
  1628. int length = FFMAX(a->length, b->length);
  1629. int i;
  1630. SwsVector *vec = sws_getConstVec(0.0, length);
  1631. if (!vec)
  1632. return NULL;
  1633. for (i = 0; i < a->length; i++)
  1634. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1635. for (i = 0; i < b->length; i++)
  1636. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1637. return vec;
  1638. }
  1639. /* shift left / or right if "shift" is negative */
  1640. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1641. {
  1642. int length = a->length + FFABS(shift) * 2;
  1643. int i;
  1644. SwsVector *vec = sws_getConstVec(0.0, length);
  1645. if (!vec)
  1646. return NULL;
  1647. for (i = 0; i < a->length; i++) {
  1648. vec->coeff[i + (length - 1) / 2 -
  1649. (a->length - 1) / 2 - shift] = a->coeff[i];
  1650. }
  1651. return vec;
  1652. }
  1653. void sws_shiftVec(SwsVector *a, int shift)
  1654. {
  1655. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1656. av_free(a->coeff);
  1657. a->coeff = shifted->coeff;
  1658. a->length = shifted->length;
  1659. av_free(shifted);
  1660. }
  1661. void sws_addVec(SwsVector *a, SwsVector *b)
  1662. {
  1663. SwsVector *sum = sws_sumVec(a, b);
  1664. av_free(a->coeff);
  1665. a->coeff = sum->coeff;
  1666. a->length = sum->length;
  1667. av_free(sum);
  1668. }
  1669. void sws_subVec(SwsVector *a, SwsVector *b)
  1670. {
  1671. SwsVector *diff = sws_diffVec(a, b);
  1672. av_free(a->coeff);
  1673. a->coeff = diff->coeff;
  1674. a->length = diff->length;
  1675. av_free(diff);
  1676. }
  1677. void sws_convVec(SwsVector *a, SwsVector *b)
  1678. {
  1679. SwsVector *conv = sws_getConvVec(a, b);
  1680. av_free(a->coeff);
  1681. a->coeff = conv->coeff;
  1682. a->length = conv->length;
  1683. av_free(conv);
  1684. }
  1685. SwsVector *sws_cloneVec(SwsVector *a)
  1686. {
  1687. SwsVector *vec = sws_allocVec(a->length);
  1688. if (!vec)
  1689. return NULL;
  1690. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1691. return vec;
  1692. }
  1693. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1694. {
  1695. int i;
  1696. double max = 0;
  1697. double min = 0;
  1698. double range;
  1699. for (i = 0; i < a->length; i++)
  1700. if (a->coeff[i] > max)
  1701. max = a->coeff[i];
  1702. for (i = 0; i < a->length; i++)
  1703. if (a->coeff[i] < min)
  1704. min = a->coeff[i];
  1705. range = max - min;
  1706. for (i = 0; i < a->length; i++) {
  1707. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1708. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1709. for (; x > 0; x--)
  1710. av_log(log_ctx, log_level, " ");
  1711. av_log(log_ctx, log_level, "|\n");
  1712. }
  1713. }
  1714. void sws_freeVec(SwsVector *a)
  1715. {
  1716. if (!a)
  1717. return;
  1718. av_freep(&a->coeff);
  1719. a->length = 0;
  1720. av_free(a);
  1721. }
  1722. void sws_freeFilter(SwsFilter *filter)
  1723. {
  1724. if (!filter)
  1725. return;
  1726. sws_freeVec(filter->lumH);
  1727. sws_freeVec(filter->lumV);
  1728. sws_freeVec(filter->chrH);
  1729. sws_freeVec(filter->chrV);
  1730. av_free(filter);
  1731. }
  1732. void sws_freeContext(SwsContext *c)
  1733. {
  1734. int i;
  1735. if (!c)
  1736. return;
  1737. if (c->lumPixBuf) {
  1738. for (i = 0; i < c->vLumBufSize; i++)
  1739. av_freep(&c->lumPixBuf[i]);
  1740. av_freep(&c->lumPixBuf);
  1741. }
  1742. if (c->chrUPixBuf) {
  1743. for (i = 0; i < c->vChrBufSize; i++)
  1744. av_freep(&c->chrUPixBuf[i]);
  1745. av_freep(&c->chrUPixBuf);
  1746. av_freep(&c->chrVPixBuf);
  1747. }
  1748. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1749. for (i = 0; i < c->vLumBufSize; i++)
  1750. av_freep(&c->alpPixBuf[i]);
  1751. av_freep(&c->alpPixBuf);
  1752. }
  1753. for (i = 0; i < 4; i++)
  1754. av_freep(&c->dither_error[i]);
  1755. av_freep(&c->vLumFilter);
  1756. av_freep(&c->vChrFilter);
  1757. av_freep(&c->hLumFilter);
  1758. av_freep(&c->hChrFilter);
  1759. #if HAVE_ALTIVEC
  1760. av_freep(&c->vYCoeffsBank);
  1761. av_freep(&c->vCCoeffsBank);
  1762. #endif
  1763. av_freep(&c->vLumFilterPos);
  1764. av_freep(&c->vChrFilterPos);
  1765. av_freep(&c->hLumFilterPos);
  1766. av_freep(&c->hChrFilterPos);
  1767. #if HAVE_MMX_INLINE
  1768. #if USE_MMAP
  1769. if (c->lumMmxextFilterCode)
  1770. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1771. if (c->chrMmxextFilterCode)
  1772. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1773. #elif HAVE_VIRTUALALLOC
  1774. if (c->lumMmxextFilterCode)
  1775. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1776. if (c->chrMmxextFilterCode)
  1777. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1778. #else
  1779. av_free(c->lumMmxextFilterCode);
  1780. av_free(c->chrMmxextFilterCode);
  1781. #endif
  1782. c->lumMmxextFilterCode = NULL;
  1783. c->chrMmxextFilterCode = NULL;
  1784. #endif /* HAVE_MMX_INLINE */
  1785. av_freep(&c->yuvTable);
  1786. av_freep(&c->formatConvBuffer);
  1787. av_free(c);
  1788. }
  1789. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1790. int srcH, enum AVPixelFormat srcFormat,
  1791. int dstW, int dstH,
  1792. enum AVPixelFormat dstFormat, int flags,
  1793. SwsFilter *srcFilter,
  1794. SwsFilter *dstFilter,
  1795. const double *param)
  1796. {
  1797. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1798. SWS_PARAM_DEFAULT };
  1799. if (!param)
  1800. param = default_param;
  1801. if (context &&
  1802. (context->srcW != srcW ||
  1803. context->srcH != srcH ||
  1804. context->srcFormat != srcFormat ||
  1805. context->dstW != dstW ||
  1806. context->dstH != dstH ||
  1807. context->dstFormat != dstFormat ||
  1808. context->flags != flags ||
  1809. context->param[0] != param[0] ||
  1810. context->param[1] != param[1])) {
  1811. sws_freeContext(context);
  1812. context = NULL;
  1813. }
  1814. if (!context) {
  1815. if (!(context = sws_alloc_context()))
  1816. return NULL;
  1817. context->srcW = srcW;
  1818. context->srcH = srcH;
  1819. context->srcFormat = srcFormat;
  1820. context->dstW = dstW;
  1821. context->dstH = dstH;
  1822. context->dstFormat = dstFormat;
  1823. context->flags = flags;
  1824. context->param[0] = param[0];
  1825. context->param[1] = param[1];
  1826. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1827. sws_freeContext(context);
  1828. return NULL;
  1829. }
  1830. }
  1831. return context;
  1832. }