You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1085 lines
30KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your FFmpeg build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section crop
  138. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  139. The parameters are expressions containing the following constants:
  140. @table @option
  141. @item E, PI, PHI
  142. the corresponding mathematical approximated values for e
  143. (euler number), pi (greek PI), PHI (golden ratio)
  144. @item x, y
  145. the computed values for @var{x} and @var{y}. They are evaluated for
  146. each new frame.
  147. @item in_w, in_h
  148. the input width and heigth
  149. @item iw, ih
  150. same as @var{in_w} and @var{in_h}
  151. @item out_w, out_h
  152. the output (cropped) width and heigth
  153. @item ow, oh
  154. same as @var{out_w} and @var{out_h}
  155. @item n
  156. the number of input frame, starting from 0
  157. @item pos
  158. the position in the file of the input frame, NAN if unknown
  159. @item t
  160. timestamp expressed in seconds, NAN if the input timestamp is unknown
  161. @end table
  162. The @var{out_w} and @var{out_h} parameters specify the expressions for
  163. the width and height of the output (cropped) video. They are
  164. evaluated just at the configuration of the filter.
  165. The default value of @var{out_w} is "in_w", and the default value of
  166. @var{out_h} is "in_h".
  167. The expression for @var{out_w} may depend on the value of @var{out_h},
  168. and the expression for @var{out_h} may depend on @var{out_w}, but they
  169. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  170. evaluated after @var{out_w} and @var{out_h}.
  171. The @var{x} and @var{y} parameters specify the expressions for the
  172. position of the top-left corner of the output (non-cropped) area. They
  173. are evaluated for each frame. If the evaluated value is not valid, it
  174. is approximated to the nearest valid value.
  175. The default value of @var{x} is "(in_w-out_w)/2", and the default
  176. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  177. the center of the input image.
  178. The expression for @var{x} may depend on @var{y}, and the expression
  179. for @var{y} may depend on @var{x}.
  180. Follow some examples:
  181. @example
  182. # crop the central input area with size 100x100
  183. crop=100:100
  184. # crop the central input area with size 2/3 of the input video
  185. "crop=2/3*in_w:2/3*in_h"
  186. # crop the input video central square
  187. crop=in_h
  188. # delimit the rectangle with the top-left corner placed at position
  189. # 100:100 and the right-bottom corner corresponding to the right-bottom
  190. # corner of the input image.
  191. crop=in_w-100:in_h-100:100:100
  192. # crop 10 pixels from the lefth and right borders, and 20 pixels from
  193. # the top and bottom borders
  194. "crop=in_w-2*10:in_h-2*20"
  195. # keep only the bottom right quarter of the input image
  196. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  197. # crop height for getting Greek harmony
  198. "crop=in_w:1/PHI*in_w"
  199. # trembling effect
  200. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  201. # erratic camera effect depending on timestamp and position
  202. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  203. # set x depending on the value of y
  204. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  205. @end example
  206. @section cropdetect
  207. Auto-detect crop size.
  208. Calculate necessary cropping parameters and prints the recommended
  209. parameters through the logging system. The detected dimensions
  210. correspond to the non-black area of the input video.
  211. It accepts the syntax:
  212. @example
  213. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  214. @end example
  215. @table @option
  216. @item limit
  217. Threshold, which can be optionally specified from nothing (0) to
  218. everything (255), defaults to 24.
  219. @item round
  220. Value which the width/height should be divisible by, defaults to
  221. 16. The offset is automatically adjusted to center the video. Use 2 to
  222. get only even dimensions (needed for 4:2:2 video). 16 is best when
  223. encoding to most video codecs.
  224. @item reset
  225. Counter that determines after how many frames cropdetect will reset
  226. the previously detected largest video area and start over to detect
  227. the current optimal crop area. Defaults to 0.
  228. This can be useful when channel logos distort the video area. 0
  229. indicates never reset and return the largest area encountered during
  230. playback.
  231. @end table
  232. @section drawbox
  233. Draw a colored box on the input image.
  234. It accepts the syntax:
  235. @example
  236. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  237. @end example
  238. @table @option
  239. @item x, y
  240. Specify the top left corner coordinates of the box. Default to 0.
  241. @item width, height
  242. Specify the width and height of the box, if 0 they are interpreted as
  243. the input width and height. Default to 0.
  244. @item color
  245. Specify the color of the box to write, it can be the name of a color
  246. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  247. @end table
  248. Follow some examples:
  249. @example
  250. # draw a black box around the edge of the input image
  251. drawbox
  252. # draw a box with color red and an opacity of 50%
  253. drawbox=10:20:200:60:red@@0.5"
  254. @end example
  255. @section fifo
  256. Buffer input images and send them when they are requested.
  257. This filter is mainly useful when auto-inserted by the libavfilter
  258. framework.
  259. The filter does not take parameters.
  260. @section format
  261. Convert the input video to one of the specified pixel formats.
  262. Libavfilter will try to pick one that is supported for the input to
  263. the next filter.
  264. The filter accepts a list of pixel format names, separated by ":",
  265. for example "yuv420p:monow:rgb24".
  266. The following command:
  267. @example
  268. ./ffmpeg -i in.avi -vf "format=yuv420p" out.avi
  269. @end example
  270. will convert the input video to the format "yuv420p".
  271. @anchor{frei0r}
  272. @section frei0r
  273. Apply a frei0r effect to the input video.
  274. To enable compilation of this filter you need to install the frei0r
  275. header and configure FFmpeg with --enable-frei0r.
  276. The filter supports the syntax:
  277. @example
  278. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  279. @end example
  280. @var{filter_name} is the name to the frei0r effect to load. If the
  281. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  282. is searched in each one of the directories specified by the colon
  283. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  284. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  285. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  286. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  287. for the frei0r effect.
  288. A frei0r effect parameter can be a boolean (whose values are specified
  289. with "y" and "n"), a double, a color (specified by the syntax
  290. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  291. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  292. description), a position (specified by the syntax @var{X}/@var{Y},
  293. @var{X} and @var{Y} being float numbers) and a string.
  294. The number and kind of parameters depend on the loaded effect. If an
  295. effect parameter is not specified the default value is set.
  296. Some examples follow:
  297. @example
  298. # apply the distort0r effect, set the first two double parameters
  299. frei0r=distort0r:0.5:0.01
  300. # apply the colordistance effect, takes a color as first parameter
  301. frei0r=colordistance:0.2/0.3/0.4
  302. frei0r=colordistance:violet
  303. frei0r=colordistance:0x112233
  304. # apply the perspective effect, specify the top left and top right
  305. # image positions
  306. frei0r=perspective:0.2/0.2:0.8/0.2
  307. @end example
  308. For more information see:
  309. @url{http://piksel.org/frei0r}
  310. @section gradfun
  311. Fix the banding artifacts that are sometimes introduced into nearly flat
  312. regions by truncation to 8bit colordepth.
  313. Interpolate the gradients that should go where the bands are, and
  314. dither them.
  315. The filter takes two optional parameters, separated by ':':
  316. @var{strength}:@var{radius}
  317. @var{strength} is the maximum amount by which the filter will change
  318. any one pixel. Also the threshold for detecting nearly flat
  319. regions. Acceptable values range from .51 to 255, default value is
  320. 1.2, out-of-range values will be clipped to the valid range.
  321. @var{radius} is the neighborhood to fit the gradient to. A larger
  322. radius makes for smoother gradients, but also prevents the filter from
  323. modifying the pixels near detailed regions. Acceptable values are
  324. 8-32, default value is 16, out-of-range values will be clipped to the
  325. valid range.
  326. @example
  327. # default parameters
  328. gradfun=1.2:16
  329. # omitting radius
  330. gradfun=1.2
  331. @end example
  332. @section hflip
  333. Flip the input video horizontally.
  334. For example to horizontally flip the video in input with
  335. @file{ffmpeg}:
  336. @example
  337. ffmpeg -i in.avi -vf "hflip" out.avi
  338. @end example
  339. @section hqdn3d
  340. High precision/quality 3d denoise filter. This filter aims to reduce
  341. image noise producing smooth images and making still images really
  342. still. It should enhance compressibility.
  343. It accepts the following optional parameters:
  344. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  345. @table @option
  346. @item luma_spatial
  347. a non-negative float number which specifies spatial luma strength,
  348. defaults to 4.0
  349. @item chroma_spatial
  350. a non-negative float number which specifies spatial chroma strength,
  351. defaults to 3.0*@var{luma_spatial}/4.0
  352. @item luma_tmp
  353. a float number which specifies luma temporal strength, defaults to
  354. 6.0*@var{luma_spatial}/4.0
  355. @item chroma_tmp
  356. a float number which specifies chroma temporal strength, defaults to
  357. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  358. @end table
  359. @section noformat
  360. Force libavfilter not to use any of the specified pixel formats for the
  361. input to the next filter.
  362. The filter accepts a list of pixel format names, separated by ":",
  363. for example "yuv420p:monow:rgb24".
  364. The following command:
  365. @example
  366. ./ffmpeg -i in.avi -vf "noformat=yuv420p, vflip" out.avi
  367. @end example
  368. will make libavfilter use a format different from "yuv420p" for the
  369. input to the vflip filter.
  370. @section null
  371. Pass the video source unchanged to the output.
  372. @section ocv
  373. Apply video transform using libopencv.
  374. To enable this filter install libopencv library and headers and
  375. configure FFmpeg with --enable-libopencv.
  376. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  377. @var{filter_name} is the name of the libopencv filter to apply.
  378. @var{filter_params} specifies the parameters to pass to the libopencv
  379. filter. If not specified the default values are assumed.
  380. Refer to the official libopencv documentation for more precise
  381. informations:
  382. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  383. Follows the list of supported libopencv filters.
  384. @subsection smooth
  385. Smooth the input video.
  386. The filter takes the following parameters:
  387. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  388. @var{type} is the type of smooth filter to apply, and can be one of
  389. the following values: "blur", "blur_no_scale", "median", "gaussian",
  390. "bilateral". The default value is "gaussian".
  391. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  392. parameters whose meanings depend on smooth type. @var{param1} and
  393. @var{param2} accept integer positive values or 0, @var{param3} and
  394. @var{param4} accept float values.
  395. The default value for @var{param1} is 3, the default value for the
  396. other parameters is 0.
  397. These parameters correspond to the parameters assigned to the
  398. libopencv function @code{cvSmooth}.
  399. @section overlay
  400. Overlay one video on top of another.
  401. It takes two inputs and one output, the first input is the "main"
  402. video on which the second input is overlayed.
  403. It accepts the parameters: @var{x}:@var{y}.
  404. @var{x} is the x coordinate of the overlayed video on the main video,
  405. @var{y} is the y coordinate. The parameters are expressions containing
  406. the following parameters:
  407. @table @option
  408. @item main_w, main_h
  409. main input width and height
  410. @item W, H
  411. same as @var{main_w} and @var{main_h}
  412. @item overlay_w, overlay_h
  413. overlay input width and height
  414. @item w, h
  415. same as @var{overlay_w} and @var{overlay_h}
  416. @end table
  417. Be aware that frames are taken from each input video in timestamp
  418. order, hence, if their initial timestamps differ, it is a a good idea
  419. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  420. have them begin in the same zero timestamp, as it does the example for
  421. the @var{movie} filter.
  422. Follow some examples:
  423. @example
  424. # draw the overlay at 10 pixels from the bottom right
  425. # corner of the main video.
  426. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  427. # insert a transparent PNG logo in the bottom left corner of the input
  428. movie=0:png:logo.png [logo];
  429. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  430. # insert 2 different transparent PNG logos (second logo on bottom
  431. # right corner):
  432. movie=0:png:logo1.png [logo1];
  433. movie=0:png:logo2.png [logo2];
  434. [in][logo1] overlay=10:H-h-10 [in+logo1];
  435. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  436. # add a transparent color layer on top of the main video,
  437. # WxH specifies the size of the main input to the overlay filter
  438. color=red@.3:WxH [over]; [in][over] overlay [out]
  439. @end example
  440. You can chain togheter more overlays but the efficiency of such
  441. approach is yet to be tested.
  442. @section pad
  443. Add paddings to the input image, and places the original input at the
  444. given coordinates @var{x}, @var{y}.
  445. It accepts the following parameters:
  446. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  447. Follows the description of the accepted parameters.
  448. @table @option
  449. @item width, height
  450. Specify the size of the output image with the paddings added. If the
  451. value for @var{width} or @var{height} is 0, the corresponding input size
  452. is used for the output.
  453. The default value of @var{width} and @var{height} is 0.
  454. @item x, y
  455. Specify the offsets where to place the input image in the padded area
  456. with respect to the top/left border of the output image.
  457. The default value of @var{x} and @var{y} is 0.
  458. @item color
  459. Specify the color of the padded area, it can be the name of a color
  460. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  461. The default value of @var{color} is "black".
  462. @end table
  463. For example:
  464. @example
  465. # Add paddings with color "violet" to the input video. Output video
  466. # size is 640x480, the top-left corner of the input video is placed at
  467. # row 0, column 40.
  468. pad=640:480:0:40:violet
  469. @end example
  470. @section pixdesctest
  471. Pixel format descriptor test filter, mainly useful for internal
  472. testing. The output video should be equal to the input video.
  473. For example:
  474. @example
  475. format=monow, pixdesctest
  476. @end example
  477. can be used to test the monowhite pixel format descriptor definition.
  478. @section scale
  479. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  480. For example the command:
  481. @example
  482. ./ffmpeg -i in.avi -vf "scale=200:100" out.avi
  483. @end example
  484. will scale the input video to a size of 200x100.
  485. If the input image format is different from the format requested by
  486. the next filter, the scale filter will convert the input to the
  487. requested format.
  488. If the value for @var{width} or @var{height} is 0, the respective input
  489. size is used for the output.
  490. If the value for @var{width} or @var{height} is -1, the scale filter will
  491. use, for the respective output size, a value that maintains the aspect
  492. ratio of the input image.
  493. The default value of @var{width} and @var{height} is 0.
  494. @section setpts
  495. Change the PTS (presentation timestamp) of the input video frames.
  496. Accept in input an expression evaluated through the eval API, which
  497. can contain the following constants:
  498. @table @option
  499. @item PTS
  500. the presentation timestamp in input
  501. @item PI
  502. Greek PI
  503. @item PHI
  504. golden ratio
  505. @item E
  506. Euler number
  507. @item N
  508. the count of the input frame, starting from 0.
  509. @item STARTPTS
  510. the PTS of the first video frame
  511. @item INTERLACED
  512. tell if the current frame is interlaced
  513. @item POS
  514. original position in the file of the frame, or undefined if undefined
  515. for the current frame
  516. @item PREV_INPTS
  517. previous input PTS
  518. @item PREV_OUTPTS
  519. previous output PTS
  520. @end table
  521. Some examples follow:
  522. @example
  523. # start counting PTS from zero
  524. setpts=PTS-STARTPTS
  525. # fast motion
  526. setpts=0.5*PTS
  527. # slow motion
  528. setpts=2.0*PTS
  529. # fixed rate 25 fps
  530. setpts=N/(25*TB)
  531. # fixed rate 25 fps with some jitter
  532. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  533. @end example
  534. @section settb
  535. Set the timebase to use for the output frames timestamps.
  536. It is mainly useful for testing timebase configuration.
  537. It accepts in input an arithmetic expression representing a rational.
  538. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  539. default timebase), and "intb" (the input timebase).
  540. The default value for the input is "intb".
  541. Follow some examples.
  542. @example
  543. # set the timebase to 1/25
  544. settb=1/25
  545. # set the timebase to 1/10
  546. settb=0.1
  547. #set the timebase to 1001/1000
  548. settb=1+0.001
  549. #set the timebase to 2*intb
  550. settb=2*intb
  551. #set the default timebase value
  552. settb=AVTB
  553. @end example
  554. @section slicify
  555. Pass the images of input video on to next video filter as multiple
  556. slices.
  557. @example
  558. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  559. @end example
  560. The filter accepts the slice height as parameter. If the parameter is
  561. not specified it will use the default value of 16.
  562. Adding this in the beginning of filter chains should make filtering
  563. faster due to better use of the memory cache.
  564. @section transpose
  565. Transpose rows with columns in the input video and optionally flip it.
  566. It accepts a parameter representing an integer, which can assume the
  567. values:
  568. @table @samp
  569. @item 0
  570. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  571. @example
  572. L.R L.l
  573. . . -> . .
  574. l.r R.r
  575. @end example
  576. @item 1
  577. Rotate by 90 degrees clockwise, that is:
  578. @example
  579. L.R l.L
  580. . . -> . .
  581. l.r r.R
  582. @end example
  583. @item 2
  584. Rotate by 90 degrees counterclockwise, that is:
  585. @example
  586. L.R R.r
  587. . . -> . .
  588. l.r L.l
  589. @end example
  590. @item 3
  591. Rotate by 90 degrees clockwise and vertically flip, that is:
  592. @example
  593. L.R r.R
  594. . . -> . .
  595. l.r l.L
  596. @end example
  597. @end table
  598. @section unsharp
  599. Sharpen or blur the input video.
  600. It accepts the following parameters:
  601. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  602. Negative values for the amount will blur the input video, while positive
  603. values will sharpen. All parameters are optional and default to the
  604. equivalent of the string '5:5:1.0:0:0:0.0'.
  605. @table @option
  606. @item luma_msize_x
  607. Set the luma matrix horizontal size. It can be an integer between 3
  608. and 13, default value is 5.
  609. @item luma_msize_y
  610. Set the luma matrix vertical size. It can be an integer between 3
  611. and 13, default value is 5.
  612. @item luma_amount
  613. Set the luma effect strength. It can be a float number between -2.0
  614. and 5.0, default value is 1.0.
  615. @item chroma_msize_x
  616. Set the chroma matrix horizontal size. It can be an integer between 3
  617. and 13, default value is 0.
  618. @item chroma_msize_y
  619. Set the chroma matrix vertical size. It can be an integer between 3
  620. and 13, default value is 0.
  621. @item luma_amount
  622. Set the chroma effect strength. It can be a float number between -2.0
  623. and 5.0, default value is 0.0.
  624. @end table
  625. @example
  626. # Strong luma sharpen effect parameters
  627. unsharp=7:7:2.5
  628. # Strong blur of both luma and chroma parameters
  629. unsharp=7:7:-2:7:7:-2
  630. # Use the default values with @command{ffmpeg}
  631. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  632. @end example
  633. @section vflip
  634. Flip the input video vertically.
  635. @example
  636. ./ffmpeg -i in.avi -vf "vflip" out.avi
  637. @end example
  638. @section yadif
  639. Deinterlace the input video ("yadif" means "yet another deinterlacing
  640. filter").
  641. It accepts the optional parameters: @var{mode}:@var{parity}.
  642. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  643. following values:
  644. @table @option
  645. @item 0
  646. output 1 frame for each frame
  647. @item 1
  648. output 1 frame for each field
  649. @item 2
  650. like 0 but skips spatial interlacing check
  651. @item 3
  652. like 1 but skips spatial interlacing check
  653. @end table
  654. Default value is 0.
  655. @var{parity} specifies the picture field parity assumed for the input
  656. interlaced video, accepts one of the following values:
  657. @table @option
  658. @item 0
  659. assume bottom field first
  660. @item 1
  661. assume top field first
  662. @item -1
  663. enable automatic detection
  664. @end table
  665. Default value is -1.
  666. @c man end VIDEO FILTERS
  667. @chapter Video Sources
  668. @c man begin VIDEO SOURCES
  669. Below is a description of the currently available video sources.
  670. @section buffer
  671. Buffer video frames, and make them available to the filter chain.
  672. This source is mainly intended for a programmatic use, in particular
  673. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  674. It accepts the following parameters:
  675. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}
  676. All the parameters need to be explicitely defined.
  677. Follows the list of the accepted parameters.
  678. @table @option
  679. @item width, height
  680. Specify the width and height of the buffered video frames.
  681. @item pix_fmt_string
  682. A string representing the pixel format of the buffered video frames.
  683. It may be a number corresponding to a pixel format, or a pixel format
  684. name.
  685. @item timebase_num, timebase_den
  686. Specify numerator and denomitor of the timebase assumed by the
  687. timestamps of the buffered frames.
  688. @end table
  689. For example:
  690. @example
  691. buffer=320:240:yuv410p:1:24
  692. @end example
  693. will instruct the source to accept video frames with size 320x240 and
  694. with format "yuv410p" and assuming 1/24 as the timestamps timebase.
  695. Since the pixel format with name "yuv410p" corresponds to the number 6
  696. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  697. this example corresponds to:
  698. @example
  699. buffer=320:240:6:1:24
  700. @end example
  701. @section color
  702. Provide an uniformly colored input.
  703. It accepts the following parameters:
  704. @var{color}:@var{frame_size}:@var{frame_rate}
  705. Follows the description of the accepted parameters.
  706. @table @option
  707. @item color
  708. Specify the color of the source. It can be the name of a color (case
  709. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  710. alpha specifier. The default value is "black".
  711. @item frame_size
  712. Specify the size of the sourced video, it may be a string of the form
  713. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  714. default value is "320x240".
  715. @item frame_rate
  716. Specify the frame rate of the sourced video, as the number of frames
  717. generated per second. It has to be a string in the format
  718. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  719. number or a valid video frame rate abbreviation. The default value is
  720. "25".
  721. @end table
  722. For example the following graph description will generate a red source
  723. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  724. frames per second, which will be overlayed over the source connected
  725. to the pad with identifier "in".
  726. @example
  727. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  728. @end example
  729. @section nullsrc
  730. Null video source, never return images. It is mainly useful as a
  731. template and to be employed in analysis / debugging tools.
  732. It accepts as optional parameter a string of the form
  733. @var{width}:@var{height}:@var{timebase}.
  734. @var{width} and @var{height} specify the size of the configured
  735. source. The default values of @var{width} and @var{height} are
  736. respectively 352 and 288 (corresponding to the CIF size format).
  737. @var{timebase} specifies an arithmetic expression representing a
  738. timebase. The expression can contain the constants "PI", "E", "PHI",
  739. "AVTB" (the default timebase), and defaults to the value "AVTB".
  740. @section frei0r_src
  741. Provide a frei0r source.
  742. To enable compilation of this filter you need to install the frei0r
  743. header and configure FFmpeg with --enable-frei0r.
  744. The source supports the syntax:
  745. @example
  746. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  747. @end example
  748. @var{size} is the size of the video to generate, may be a string of the
  749. form @var{width}x@var{height} or a frame size abbreviation.
  750. @var{rate} is the rate of the video to generate, may be a string of
  751. the form @var{num}/@var{den} or a frame rate abbreviation.
  752. @var{src_name} is the name to the frei0r source to load. For more
  753. information regarding frei0r and how to set the parameters read the
  754. section "frei0r" (@pxref{frei0r}) in the description of the video
  755. filters.
  756. Some examples follow:
  757. @example
  758. # generate a frei0r partik0l source with size 200x200 and framerate 10
  759. # which is overlayed on the overlay filter main input
  760. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  761. @end example
  762. @c man end VIDEO SOURCES
  763. @chapter Video Sinks
  764. @c man begin VIDEO SINKS
  765. Below is a description of the currently available video sinks.
  766. @section nullsink
  767. Null video sink, do absolutely nothing with the input video. It is
  768. mainly useful as a template and to be employed in analysis / debugging
  769. tools.
  770. @c man end VIDEO SINKS