You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1568 lines
51KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor {
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext {
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. } HYuvContext;
  78. #define classic_shift_luma_table_size 42
  79. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  80. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  81. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  82. 69,68, 0
  83. };
  84. #define classic_shift_chroma_table_size 59
  85. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  86. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  87. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  88. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  89. };
  90. static const unsigned char classic_add_luma[256] = {
  91. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  92. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  93. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  94. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  95. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  96. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  97. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  98. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  99. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  100. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  101. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  102. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  103. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  104. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  105. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  106. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  107. };
  108. static const unsigned char classic_add_chroma[256] = {
  109. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  110. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  111. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  112. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  113. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  114. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  115. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  116. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  117. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  118. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  119. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  120. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  121. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  122. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  123. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  124. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  125. };
  126. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  127. uint8_t *src, int w, int left)
  128. {
  129. int i;
  130. if (w < 32) {
  131. for (i = 0; i < w; i++) {
  132. const int temp = src[i];
  133. dst[i] = temp - left;
  134. left = temp;
  135. }
  136. return left;
  137. } else {
  138. for (i = 0; i < 16; i++) {
  139. const int temp = src[i];
  140. dst[i] = temp - left;
  141. left = temp;
  142. }
  143. s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  144. return src[w-1];
  145. }
  146. }
  147. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  148. uint8_t *src, int w,
  149. int *red, int *green, int *blue)
  150. {
  151. int i;
  152. int r,g,b;
  153. r = *red;
  154. g = *green;
  155. b = *blue;
  156. for (i = 0; i < FFMIN(w, 4); i++) {
  157. const int rt = src[i * 4 + R];
  158. const int gt = src[i * 4 + G];
  159. const int bt = src[i * 4 + B];
  160. dst[i * 4 + R] = rt - r;
  161. dst[i * 4 + G] = gt - g;
  162. dst[i * 4 + B] = bt - b;
  163. r = rt;
  164. g = gt;
  165. b = bt;
  166. }
  167. s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  168. *red = src[(w - 1) * 4 + R];
  169. *green = src[(w - 1) * 4 + G];
  170. *blue = src[(w - 1) * 4 + B];
  171. }
  172. static int read_len_table(uint8_t *dst, GetBitContext *gb)
  173. {
  174. int i, val, repeat;
  175. for (i = 0; i < 256;) {
  176. repeat = get_bits(gb, 3);
  177. val = get_bits(gb, 5);
  178. if (repeat == 0)
  179. repeat = get_bits(gb, 8);
  180. if (i + repeat > 256 || get_bits_left(gb) < 0) {
  181. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  182. return -1;
  183. }
  184. while (repeat--)
  185. dst[i++] = val;
  186. }
  187. return 0;
  188. }
  189. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table)
  190. {
  191. int len, index;
  192. uint32_t bits = 0;
  193. for (len = 32; len > 0; len--) {
  194. for (index = 0; index < 256; index++) {
  195. if (len_table[index] == len)
  196. dst[index] = bits++;
  197. }
  198. if (bits & 1) {
  199. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  200. return -1;
  201. }
  202. bits >>= 1;
  203. }
  204. return 0;
  205. }
  206. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  207. typedef struct {
  208. uint64_t val;
  209. int name;
  210. } HeapElem;
  211. static void heap_sift(HeapElem *h, int root, int size)
  212. {
  213. while (root * 2 + 1 < size) {
  214. int child = root * 2 + 1;
  215. if (child < size - 1 && h[child].val > h[child + 1].val)
  216. child++;
  217. if (h[root].val > h[child].val) {
  218. FFSWAP(HeapElem, h[root], h[child]);
  219. root = child;
  220. } else
  221. break;
  222. }
  223. }
  224. static void generate_len_table(uint8_t *dst, const uint64_t *stats)
  225. {
  226. HeapElem h[256];
  227. int up[2*256];
  228. int len[2*256];
  229. int offset, i, next;
  230. int size = 256;
  231. for (offset = 1; ; offset <<= 1) {
  232. for (i = 0; i < size; i++) {
  233. h[i].name = i;
  234. h[i].val = (stats[i] << 8) + offset;
  235. }
  236. for (i = size / 2 - 1; i >= 0; i--)
  237. heap_sift(h, i, size);
  238. for (next = size; next < size * 2 - 1; next++) {
  239. // merge the two smallest entries, and put it back in the heap
  240. uint64_t min1v = h[0].val;
  241. up[h[0].name] = next;
  242. h[0].val = INT64_MAX;
  243. heap_sift(h, 0, size);
  244. up[h[0].name] = next;
  245. h[0].name = next;
  246. h[0].val += min1v;
  247. heap_sift(h, 0, size);
  248. }
  249. len[2 * size - 2] = 0;
  250. for (i = 2 * size - 3; i >= size; i--)
  251. len[i] = len[up[i]] + 1;
  252. for (i = 0; i < size; i++) {
  253. dst[i] = len[up[i]] + 1;
  254. if (dst[i] >= 32) break;
  255. }
  256. if (i==size) break;
  257. }
  258. }
  259. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  260. static void generate_joint_tables(HYuvContext *s)
  261. {
  262. uint16_t symbols[1 << VLC_BITS];
  263. uint16_t bits[1 << VLC_BITS];
  264. uint8_t len[1 << VLC_BITS];
  265. if (s->bitstream_bpp < 24) {
  266. int p, i, y, u;
  267. for (p = 0; p < 3; p++) {
  268. for (i = y = 0; y < 256; y++) {
  269. int len0 = s->len[0][y];
  270. int limit = VLC_BITS - len0;
  271. if(limit <= 0)
  272. continue;
  273. for (u = 0; u < 256; u++) {
  274. int len1 = s->len[p][u];
  275. if (len1 > limit)
  276. continue;
  277. len[i] = len0 + len1;
  278. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  279. symbols[i] = (y << 8) + u;
  280. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  281. i++;
  282. }
  283. }
  284. ff_free_vlc(&s->vlc[3 + p]);
  285. ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1,
  286. bits, 2, 2, symbols, 2, 2, 0);
  287. }
  288. } else {
  289. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  290. int i, b, g, r, code;
  291. int p0 = s->decorrelate;
  292. int p1 = !s->decorrelate;
  293. // restrict the range to +/-16 because that's pretty much guaranteed to
  294. // cover all the combinations that fit in 11 bits total, and it doesn't
  295. // matter if we miss a few rare codes.
  296. for (i = 0, g = -16; g < 16; g++) {
  297. int len0 = s->len[p0][g & 255];
  298. int limit0 = VLC_BITS - len0;
  299. if (limit0 < 2)
  300. continue;
  301. for (b = -16; b < 16; b++) {
  302. int len1 = s->len[p1][b & 255];
  303. int limit1 = limit0 - len1;
  304. if (limit1 < 1)
  305. continue;
  306. code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255];
  307. for (r = -16; r < 16; r++) {
  308. int len2 = s->len[2][r & 255];
  309. if (len2 > limit1)
  310. continue;
  311. len[i] = len0 + len1 + len2;
  312. bits[i] = (code << len2) + s->bits[2][r & 255];
  313. if (s->decorrelate) {
  314. map[i][G] = g;
  315. map[i][B] = g + b;
  316. map[i][R] = g + r;
  317. } else {
  318. map[i][B] = g;
  319. map[i][G] = b;
  320. map[i][R] = r;
  321. }
  322. i++;
  323. }
  324. }
  325. }
  326. ff_free_vlc(&s->vlc[3]);
  327. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  328. }
  329. }
  330. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length)
  331. {
  332. GetBitContext gb;
  333. int i;
  334. init_get_bits(&gb, src, length * 8);
  335. for (i = 0; i < 3; i++) {
  336. if (read_len_table(s->len[i], &gb) < 0)
  337. return -1;
  338. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  339. return -1;
  340. }
  341. ff_free_vlc(&s->vlc[i]);
  342. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  343. s->bits[i], 4, 4, 0);
  344. }
  345. generate_joint_tables(s);
  346. return (get_bits_count(&gb) + 7) / 8;
  347. }
  348. static int read_old_huffman_tables(HYuvContext *s)
  349. {
  350. #if 1
  351. GetBitContext gb;
  352. int i;
  353. init_get_bits(&gb, classic_shift_luma,
  354. classic_shift_luma_table_size * 8);
  355. if (read_len_table(s->len[0], &gb) < 0)
  356. return -1;
  357. init_get_bits(&gb, classic_shift_chroma,
  358. classic_shift_chroma_table_size * 8);
  359. if (read_len_table(s->len[1], &gb) < 0)
  360. return -1;
  361. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  362. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  363. if (s->bitstream_bpp >= 24) {
  364. memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t));
  365. memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t));
  366. }
  367. memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t));
  368. memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t));
  369. for (i = 0; i < 3; i++) {
  370. ff_free_vlc(&s->vlc[i]);
  371. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  372. s->bits[i], 4, 4, 0);
  373. }
  374. generate_joint_tables(s);
  375. return 0;
  376. #else
  377. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  378. return -1;
  379. #endif
  380. }
  381. static av_cold void alloc_temp(HYuvContext *s)
  382. {
  383. int i;
  384. if (s->bitstream_bpp<24) {
  385. for (i=0; i<3; i++) {
  386. s->temp[i]= av_malloc(s->width + 16);
  387. }
  388. } else {
  389. s->temp[0]= av_mallocz(4*s->width + 16);
  390. }
  391. }
  392. static av_cold int common_init(AVCodecContext *avctx)
  393. {
  394. HYuvContext *s = avctx->priv_data;
  395. s->avctx = avctx;
  396. s->flags = avctx->flags;
  397. ff_dsputil_init(&s->dsp, avctx);
  398. s->width = avctx->width;
  399. s->height = avctx->height;
  400. assert(s->width>0 && s->height>0);
  401. return 0;
  402. }
  403. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  404. static av_cold int decode_init(AVCodecContext *avctx)
  405. {
  406. HYuvContext *s = avctx->priv_data;
  407. common_init(avctx);
  408. memset(s->vlc, 0, 3 * sizeof(VLC));
  409. avctx->coded_frame = &s->picture;
  410. s->interlaced = s->height > 288;
  411. s->bgr32 = 1;
  412. if (avctx->extradata_size) {
  413. if ((avctx->bits_per_coded_sample & 7) &&
  414. avctx->bits_per_coded_sample != 12)
  415. s->version = 1; // do such files exist at all?
  416. else
  417. s->version = 2;
  418. } else
  419. s->version = 0;
  420. if (s->version == 2) {
  421. int method, interlace;
  422. if (avctx->extradata_size < 4)
  423. return -1;
  424. method = ((uint8_t*)avctx->extradata)[0];
  425. s->decorrelate = method & 64 ? 1 : 0;
  426. s->predictor = method & 63;
  427. s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1];
  428. if (s->bitstream_bpp == 0)
  429. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  430. interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  431. s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced;
  432. s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  433. if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  434. avctx->extradata_size - 4) < 0)
  435. return -1;
  436. }else{
  437. switch (avctx->bits_per_coded_sample & 7) {
  438. case 1:
  439. s->predictor = LEFT;
  440. s->decorrelate = 0;
  441. break;
  442. case 2:
  443. s->predictor = LEFT;
  444. s->decorrelate = 1;
  445. break;
  446. case 3:
  447. s->predictor = PLANE;
  448. s->decorrelate = avctx->bits_per_coded_sample >= 24;
  449. break;
  450. case 4:
  451. s->predictor = MEDIAN;
  452. s->decorrelate = 0;
  453. break;
  454. default:
  455. s->predictor = LEFT; //OLD
  456. s->decorrelate = 0;
  457. break;
  458. }
  459. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  460. s->context = 0;
  461. if (read_old_huffman_tables(s) < 0)
  462. return -1;
  463. }
  464. switch (s->bitstream_bpp) {
  465. case 12:
  466. avctx->pix_fmt = PIX_FMT_YUV420P;
  467. break;
  468. case 16:
  469. if (s->yuy2) {
  470. avctx->pix_fmt = PIX_FMT_YUYV422;
  471. } else {
  472. avctx->pix_fmt = PIX_FMT_YUV422P;
  473. }
  474. break;
  475. case 24:
  476. case 32:
  477. if (s->bgr32) {
  478. avctx->pix_fmt = PIX_FMT_RGB32;
  479. } else {
  480. avctx->pix_fmt = PIX_FMT_BGR24;
  481. }
  482. break;
  483. default:
  484. return AVERROR_INVALIDDATA;
  485. }
  486. alloc_temp(s);
  487. return 0;
  488. }
  489. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  490. {
  491. HYuvContext *s = avctx->priv_data;
  492. int i;
  493. avctx->coded_frame= &s->picture;
  494. alloc_temp(s);
  495. for (i = 0; i < 6; i++)
  496. s->vlc[i].table = NULL;
  497. if (s->version == 2) {
  498. if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  499. avctx->extradata_size) < 0)
  500. return -1;
  501. } else {
  502. if (read_old_huffman_tables(s) < 0)
  503. return -1;
  504. }
  505. return 0;
  506. }
  507. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  508. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  509. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  510. {
  511. int i;
  512. int index = 0;
  513. for (i = 0; i < 256;) {
  514. int val = len[i];
  515. int repeat = 0;
  516. for (; i < 256 && len[i] == val && repeat < 255; i++)
  517. repeat++;
  518. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  519. if ( repeat > 7) {
  520. buf[index++] = val;
  521. buf[index++] = repeat;
  522. } else {
  523. buf[index++] = val | (repeat << 5);
  524. }
  525. }
  526. return index;
  527. }
  528. static av_cold int encode_init(AVCodecContext *avctx)
  529. {
  530. HYuvContext *s = avctx->priv_data;
  531. int i, j;
  532. common_init(avctx);
  533. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  534. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  535. s->version = 2;
  536. avctx->coded_frame = &s->picture;
  537. switch (avctx->pix_fmt) {
  538. case PIX_FMT_YUV420P:
  539. s->bitstream_bpp = 12;
  540. break;
  541. case PIX_FMT_YUV422P:
  542. s->bitstream_bpp = 16;
  543. break;
  544. case PIX_FMT_RGB32:
  545. s->bitstream_bpp = 24;
  546. break;
  547. default:
  548. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  549. return -1;
  550. }
  551. avctx->bits_per_coded_sample = s->bitstream_bpp;
  552. s->decorrelate = s->bitstream_bpp >= 24;
  553. s->predictor = avctx->prediction_method;
  554. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  555. if (avctx->context_model == 1) {
  556. s->context = avctx->context_model;
  557. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  558. av_log(avctx, AV_LOG_ERROR,
  559. "context=1 is not compatible with "
  560. "2 pass huffyuv encoding\n");
  561. return -1;
  562. }
  563. }else s->context= 0;
  564. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  565. if (avctx->pix_fmt == PIX_FMT_YUV420P) {
  566. av_log(avctx, AV_LOG_ERROR,
  567. "Error: YV12 is not supported by huffyuv; use "
  568. "vcodec=ffvhuff or format=422p\n");
  569. return -1;
  570. }
  571. if (avctx->context_model) {
  572. av_log(avctx, AV_LOG_ERROR,
  573. "Error: per-frame huffman tables are not supported "
  574. "by huffyuv; use vcodec=ffvhuff\n");
  575. return -1;
  576. }
  577. if (s->interlaced != ( s->height > 288 ))
  578. av_log(avctx, AV_LOG_INFO,
  579. "using huffyuv 2.2.0 or newer interlacing flag\n");
  580. }
  581. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  582. av_log(avctx, AV_LOG_ERROR,
  583. "Error: RGB is incompatible with median predictor\n");
  584. return -1;
  585. }
  586. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  587. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  588. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  589. if (s->context)
  590. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  591. ((uint8_t*)avctx->extradata)[3] = 0;
  592. s->avctx->extradata_size = 4;
  593. if (avctx->stats_in) {
  594. char *p = avctx->stats_in;
  595. for (i = 0; i < 3; i++)
  596. for (j = 0; j < 256; j++)
  597. s->stats[i][j] = 1;
  598. for (;;) {
  599. for (i = 0; i < 3; i++) {
  600. char *next;
  601. for (j = 0; j < 256; j++) {
  602. s->stats[i][j] += strtol(p, &next, 0);
  603. if (next == p) return -1;
  604. p = next;
  605. }
  606. }
  607. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  608. }
  609. } else {
  610. for (i = 0; i < 3; i++)
  611. for (j = 0; j < 256; j++) {
  612. int d = FFMIN(j, 256 - j);
  613. s->stats[i][j] = 100000000 / (d + 1);
  614. }
  615. }
  616. for (i = 0; i < 3; i++) {
  617. generate_len_table(s->len[i], s->stats[i]);
  618. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  619. return -1;
  620. }
  621. s->avctx->extradata_size +=
  622. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  623. }
  624. if (s->context) {
  625. for (i = 0; i < 3; i++) {
  626. int pels = s->width * s->height / (i ? 40 : 10);
  627. for (j = 0; j < 256; j++) {
  628. int d = FFMIN(j, 256 - j);
  629. s->stats[i][j] = pels/(d + 1);
  630. }
  631. }
  632. } else {
  633. for (i = 0; i < 3; i++)
  634. for (j = 0; j < 256; j++)
  635. s->stats[i][j]= 0;
  636. }
  637. alloc_temp(s);
  638. s->picture_number=0;
  639. return 0;
  640. }
  641. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  642. /* TODO instead of restarting the read when the code isn't in the first level
  643. * of the joint table, jump into the 2nd level of the individual table. */
  644. #define READ_2PIX(dst0, dst1, plane1){\
  645. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  646. if(code != 0xffff){\
  647. dst0 = code>>8;\
  648. dst1 = code;\
  649. }else{\
  650. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  651. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  652. }\
  653. }
  654. static void decode_422_bitstream(HYuvContext *s, int count)
  655. {
  656. int i;
  657. count /= 2;
  658. if (count >= (get_bits_left(&s->gb)) / (31 * 4)) {
  659. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  660. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  661. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  662. }
  663. } else {
  664. for (i = 0; i < count; i++) {
  665. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  666. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  667. }
  668. }
  669. }
  670. static void decode_gray_bitstream(HYuvContext *s, int count)
  671. {
  672. int i;
  673. count/=2;
  674. if (count >= (get_bits_left(&s->gb)) / (31 * 2)) {
  675. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  676. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  677. }
  678. } else {
  679. for(i=0; i<count; i++){
  680. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  681. }
  682. }
  683. }
  684. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  685. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  686. {
  687. int i;
  688. const uint8_t *y = s->temp[0] + offset;
  689. const uint8_t *u = s->temp[1] + offset / 2;
  690. const uint8_t *v = s->temp[2] + offset / 2;
  691. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  692. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  693. return -1;
  694. }
  695. #define LOAD4\
  696. int y0 = y[2 * i];\
  697. int y1 = y[2 * i + 1];\
  698. int u0 = u[i];\
  699. int v0 = v[i];
  700. count /= 2;
  701. if (s->flags & CODEC_FLAG_PASS1) {
  702. for(i = 0; i < count; i++) {
  703. LOAD4;
  704. s->stats[0][y0]++;
  705. s->stats[1][u0]++;
  706. s->stats[0][y1]++;
  707. s->stats[2][v0]++;
  708. }
  709. }
  710. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  711. return 0;
  712. if (s->context) {
  713. for (i = 0; i < count; i++) {
  714. LOAD4;
  715. s->stats[0][y0]++;
  716. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  717. s->stats[1][u0]++;
  718. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  719. s->stats[0][y1]++;
  720. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  721. s->stats[2][v0]++;
  722. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  723. }
  724. } else {
  725. for(i = 0; i < count; i++) {
  726. LOAD4;
  727. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  728. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  729. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  730. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  731. }
  732. }
  733. return 0;
  734. }
  735. static int encode_gray_bitstream(HYuvContext *s, int count)
  736. {
  737. int i;
  738. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  739. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  740. return -1;
  741. }
  742. #define LOAD2\
  743. int y0 = s->temp[0][2 * i];\
  744. int y1 = s->temp[0][2 * i + 1];
  745. #define STAT2\
  746. s->stats[0][y0]++;\
  747. s->stats[0][y1]++;
  748. #define WRITE2\
  749. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  750. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  751. count /= 2;
  752. if (s->flags & CODEC_FLAG_PASS1) {
  753. for (i = 0; i < count; i++) {
  754. LOAD2;
  755. STAT2;
  756. }
  757. }
  758. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  759. return 0;
  760. if (s->context) {
  761. for (i = 0; i < count; i++) {
  762. LOAD2;
  763. STAT2;
  764. WRITE2;
  765. }
  766. } else {
  767. for (i = 0; i < count; i++) {
  768. LOAD2;
  769. WRITE2;
  770. }
  771. }
  772. return 0;
  773. }
  774. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  775. static av_always_inline void decode_bgr_1(HYuvContext *s, int count,
  776. int decorrelate, int alpha)
  777. {
  778. int i;
  779. for (i = 0; i < count; i++) {
  780. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  781. if (code != -1) {
  782. *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code];
  783. } else if(decorrelate) {
  784. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  785. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) +
  786. s->temp[0][4 * i + G];
  787. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) +
  788. s->temp[0][4 * i + G];
  789. } else {
  790. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  791. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  792. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  793. }
  794. if (alpha)
  795. s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  796. }
  797. }
  798. static void decode_bgr_bitstream(HYuvContext *s, int count)
  799. {
  800. if (s->decorrelate) {
  801. if (s->bitstream_bpp==24)
  802. decode_bgr_1(s, count, 1, 0);
  803. else
  804. decode_bgr_1(s, count, 1, 1);
  805. } else {
  806. if (s->bitstream_bpp==24)
  807. decode_bgr_1(s, count, 0, 0);
  808. else
  809. decode_bgr_1(s, count, 0, 1);
  810. }
  811. }
  812. static int encode_bgr_bitstream(HYuvContext *s, int count)
  813. {
  814. int i;
  815. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 3 * 4 * count) {
  816. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  817. return -1;
  818. }
  819. #define LOAD3\
  820. int g = s->temp[0][4 * i + G];\
  821. int b = (s->temp[0][4 * i + B] - g) & 0xff;\
  822. int r = (s->temp[0][4 * i + R] - g) & 0xff;
  823. #define STAT3\
  824. s->stats[0][b]++;\
  825. s->stats[1][g]++;\
  826. s->stats[2][r]++;
  827. #define WRITE3\
  828. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  829. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  830. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  831. if ((s->flags & CODEC_FLAG_PASS1) &&
  832. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  833. for (i = 0; i < count; i++) {
  834. LOAD3;
  835. STAT3;
  836. }
  837. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  838. for (i = 0; i < count; i++) {
  839. LOAD3;
  840. STAT3;
  841. WRITE3;
  842. }
  843. } else {
  844. for (i = 0; i < count; i++) {
  845. LOAD3;
  846. WRITE3;
  847. }
  848. }
  849. return 0;
  850. }
  851. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  852. static void draw_slice(HYuvContext *s, int y)
  853. {
  854. int h, cy, i;
  855. int offset[AV_NUM_DATA_POINTERS];
  856. if (s->avctx->draw_horiz_band==NULL)
  857. return;
  858. h = y - s->last_slice_end;
  859. y -= h;
  860. if (s->bitstream_bpp == 12) {
  861. cy = y>>1;
  862. } else {
  863. cy = y;
  864. }
  865. offset[0] = s->picture.linesize[0]*y;
  866. offset[1] = s->picture.linesize[1]*cy;
  867. offset[2] = s->picture.linesize[2]*cy;
  868. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  869. offset[i] = 0;
  870. emms_c();
  871. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  872. s->last_slice_end = y + h;
  873. }
  874. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  875. AVPacket *avpkt)
  876. {
  877. const uint8_t *buf = avpkt->data;
  878. int buf_size = avpkt->size;
  879. HYuvContext *s = avctx->priv_data;
  880. const int width = s->width;
  881. const int width2 = s->width>>1;
  882. const int height = s->height;
  883. int fake_ystride, fake_ustride, fake_vstride;
  884. AVFrame * const p = &s->picture;
  885. int table_size = 0;
  886. AVFrame *picture = data;
  887. av_fast_malloc(&s->bitstream_buffer,
  888. &s->bitstream_buffer_size,
  889. buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  890. if (!s->bitstream_buffer)
  891. return AVERROR(ENOMEM);
  892. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  893. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer,
  894. (const uint32_t*)buf, buf_size / 4);
  895. if (p->data[0])
  896. ff_thread_release_buffer(avctx, p);
  897. p->reference = 0;
  898. if (ff_thread_get_buffer(avctx, p) < 0) {
  899. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  900. return -1;
  901. }
  902. if (s->context) {
  903. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  904. if (table_size < 0)
  905. return -1;
  906. }
  907. if ((unsigned)(buf_size-table_size) >= INT_MAX / 8)
  908. return -1;
  909. init_get_bits(&s->gb, s->bitstream_buffer+table_size,
  910. (buf_size-table_size) * 8);
  911. fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0];
  912. fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1];
  913. fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2];
  914. s->last_slice_end = 0;
  915. if (s->bitstream_bpp < 24) {
  916. int y, cy;
  917. int lefty, leftu, leftv;
  918. int lefttopy, lefttopu, lefttopv;
  919. if (s->yuy2) {
  920. p->data[0][3] = get_bits(&s->gb, 8);
  921. p->data[0][2] = get_bits(&s->gb, 8);
  922. p->data[0][1] = get_bits(&s->gb, 8);
  923. p->data[0][0] = get_bits(&s->gb, 8);
  924. av_log(avctx, AV_LOG_ERROR,
  925. "YUY2 output is not implemented yet\n");
  926. return -1;
  927. } else {
  928. leftv = p->data[2][0] = get_bits(&s->gb, 8);
  929. lefty = p->data[0][1] = get_bits(&s->gb, 8);
  930. leftu = p->data[1][0] = get_bits(&s->gb, 8);
  931. p->data[0][0] = get_bits(&s->gb, 8);
  932. switch (s->predictor) {
  933. case LEFT:
  934. case PLANE:
  935. decode_422_bitstream(s, width-2);
  936. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  937. if (!(s->flags&CODEC_FLAG_GRAY)) {
  938. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  939. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  940. }
  941. for (cy = y = 1; y < s->height; y++, cy++) {
  942. uint8_t *ydst, *udst, *vdst;
  943. if (s->bitstream_bpp == 12) {
  944. decode_gray_bitstream(s, width);
  945. ydst = p->data[0] + p->linesize[0] * y;
  946. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  947. if (s->predictor == PLANE) {
  948. if (y > s->interlaced)
  949. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  950. }
  951. y++;
  952. if (y >= s->height) break;
  953. }
  954. draw_slice(s, y);
  955. ydst = p->data[0] + p->linesize[0]*y;
  956. udst = p->data[1] + p->linesize[1]*cy;
  957. vdst = p->data[2] + p->linesize[2]*cy;
  958. decode_422_bitstream(s, width);
  959. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  960. if (!(s->flags & CODEC_FLAG_GRAY)) {
  961. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  962. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  963. }
  964. if (s->predictor == PLANE) {
  965. if (cy > s->interlaced) {
  966. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  967. if (!(s->flags & CODEC_FLAG_GRAY)) {
  968. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  969. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  970. }
  971. }
  972. }
  973. }
  974. draw_slice(s, height);
  975. break;
  976. case MEDIAN:
  977. /* first line except first 2 pixels is left predicted */
  978. decode_422_bitstream(s, width - 2);
  979. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty);
  980. if (!(s->flags & CODEC_FLAG_GRAY)) {
  981. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  982. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  983. }
  984. cy = y = 1;
  985. /* second line is left predicted for interlaced case */
  986. if (s->interlaced) {
  987. decode_422_bitstream(s, width);
  988. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  989. if (!(s->flags & CODEC_FLAG_GRAY)) {
  990. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  991. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  992. }
  993. y++; cy++;
  994. }
  995. /* next 4 pixels are left predicted too */
  996. decode_422_bitstream(s, 4);
  997. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  998. if (!(s->flags&CODEC_FLAG_GRAY)) {
  999. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  1000. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  1001. }
  1002. /* next line except the first 4 pixels is median predicted */
  1003. lefttopy = p->data[0][3];
  1004. decode_422_bitstream(s, width - 4);
  1005. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  1006. if (!(s->flags&CODEC_FLAG_GRAY)) {
  1007. lefttopu = p->data[1][1];
  1008. lefttopv = p->data[2][1];
  1009. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu);
  1010. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv);
  1011. }
  1012. y++; cy++;
  1013. for (; y<height; y++, cy++) {
  1014. uint8_t *ydst, *udst, *vdst;
  1015. if (s->bitstream_bpp == 12) {
  1016. while (2 * cy > y) {
  1017. decode_gray_bitstream(s, width);
  1018. ydst = p->data[0] + p->linesize[0] * y;
  1019. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1020. y++;
  1021. }
  1022. if (y >= height) break;
  1023. }
  1024. draw_slice(s, y);
  1025. decode_422_bitstream(s, width);
  1026. ydst = p->data[0] + p->linesize[0] * y;
  1027. udst = p->data[1] + p->linesize[1] * cy;
  1028. vdst = p->data[2] + p->linesize[2] * cy;
  1029. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1030. if (!(s->flags & CODEC_FLAG_GRAY)) {
  1031. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1032. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1033. }
  1034. }
  1035. draw_slice(s, height);
  1036. break;
  1037. }
  1038. }
  1039. } else {
  1040. int y;
  1041. int leftr, leftg, leftb, lefta;
  1042. const int last_line = (height - 1) * p->linesize[0];
  1043. if (s->bitstream_bpp == 32) {
  1044. lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8);
  1045. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  1046. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  1047. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  1048. } else {
  1049. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  1050. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  1051. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  1052. lefta = p->data[0][last_line+A] = 255;
  1053. skip_bits(&s->gb, 8);
  1054. }
  1055. if (s->bgr32) {
  1056. switch (s->predictor) {
  1057. case LEFT:
  1058. case PLANE:
  1059. decode_bgr_bitstream(s, width - 1);
  1060. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta);
  1061. for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down.
  1062. decode_bgr_bitstream(s, width);
  1063. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1064. if (s->predictor == PLANE) {
  1065. if (s->bitstream_bpp != 32) lefta = 0;
  1066. if ((y & s->interlaced) == 0 &&
  1067. y < s->height - 1 - s->interlaced) {
  1068. s->dsp.add_bytes(p->data[0] + p->linesize[0] * y,
  1069. p->data[0] + p->linesize[0] * y +
  1070. fake_ystride, fake_ystride);
  1071. }
  1072. }
  1073. }
  1074. // just 1 large slice as this is not possible in reverse order
  1075. draw_slice(s, height);
  1076. break;
  1077. default:
  1078. av_log(avctx, AV_LOG_ERROR,
  1079. "prediction type not supported!\n");
  1080. }
  1081. }else{
  1082. av_log(avctx, AV_LOG_ERROR,
  1083. "BGR24 output is not implemented yet\n");
  1084. return -1;
  1085. }
  1086. }
  1087. emms_c();
  1088. *picture = *p;
  1089. *data_size = sizeof(AVFrame);
  1090. return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size;
  1091. }
  1092. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1093. static int common_end(HYuvContext *s)
  1094. {
  1095. int i;
  1096. for(i = 0; i < 3; i++) {
  1097. av_freep(&s->temp[i]);
  1098. }
  1099. return 0;
  1100. }
  1101. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1102. static av_cold int decode_end(AVCodecContext *avctx)
  1103. {
  1104. HYuvContext *s = avctx->priv_data;
  1105. int i;
  1106. if (s->picture.data[0])
  1107. avctx->release_buffer(avctx, &s->picture);
  1108. common_end(s);
  1109. av_freep(&s->bitstream_buffer);
  1110. for (i = 0; i < 6; i++) {
  1111. ff_free_vlc(&s->vlc[i]);
  1112. }
  1113. return 0;
  1114. }
  1115. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1116. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1117. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1118. const AVFrame *pict, int *got_packet)
  1119. {
  1120. HYuvContext *s = avctx->priv_data;
  1121. const int width = s->width;
  1122. const int width2 = s->width>>1;
  1123. const int height = s->height;
  1124. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1125. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1126. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1127. AVFrame * const p = &s->picture;
  1128. int i, j, size = 0, ret;
  1129. if (!pkt->data &&
  1130. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  1131. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  1132. return ret;
  1133. }
  1134. *p = *pict;
  1135. p->pict_type = AV_PICTURE_TYPE_I;
  1136. p->key_frame = 1;
  1137. if (s->context) {
  1138. for (i = 0; i < 3; i++) {
  1139. generate_len_table(s->len[i], s->stats[i]);
  1140. if (generate_bits_table(s->bits[i], s->len[i]) < 0)
  1141. return -1;
  1142. size += store_table(s, s->len[i], &pkt->data[size]);
  1143. }
  1144. for (i = 0; i < 3; i++)
  1145. for (j = 0; j < 256; j++)
  1146. s->stats[i][j] >>= 1;
  1147. }
  1148. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1149. if (avctx->pix_fmt == PIX_FMT_YUV422P ||
  1150. avctx->pix_fmt == PIX_FMT_YUV420P) {
  1151. int lefty, leftu, leftv, y, cy;
  1152. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  1153. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  1154. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  1155. put_bits(&s->pb, 8, p->data[0][0]);
  1156. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1157. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1158. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1159. encode_422_bitstream(s, 2, width-2);
  1160. if (s->predictor==MEDIAN) {
  1161. int lefttopy, lefttopu, lefttopv;
  1162. cy = y = 1;
  1163. if (s->interlaced) {
  1164. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  1165. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  1166. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  1167. encode_422_bitstream(s, 0, width);
  1168. y++; cy++;
  1169. }
  1170. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  1171. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  1172. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  1173. encode_422_bitstream(s, 0, 4);
  1174. lefttopy = p->data[0][3];
  1175. lefttopu = p->data[1][1];
  1176. lefttopv = p->data[2][1];
  1177. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
  1178. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  1179. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  1180. encode_422_bitstream(s, 0, width - 4);
  1181. y++; cy++;
  1182. for (; y < height; y++,cy++) {
  1183. uint8_t *ydst, *udst, *vdst;
  1184. if (s->bitstream_bpp == 12) {
  1185. while (2 * cy > y) {
  1186. ydst = p->data[0] + p->linesize[0] * y;
  1187. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1188. encode_gray_bitstream(s, width);
  1189. y++;
  1190. }
  1191. if (y >= height) break;
  1192. }
  1193. ydst = p->data[0] + p->linesize[0] * y;
  1194. udst = p->data[1] + p->linesize[1] * cy;
  1195. vdst = p->data[2] + p->linesize[2] * cy;
  1196. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1197. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1198. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1199. encode_422_bitstream(s, 0, width);
  1200. }
  1201. } else {
  1202. for (cy = y = 1; y < height; y++, cy++) {
  1203. uint8_t *ydst, *udst, *vdst;
  1204. /* encode a luma only line & y++ */
  1205. if (s->bitstream_bpp == 12) {
  1206. ydst = p->data[0] + p->linesize[0] * y;
  1207. if (s->predictor == PLANE && s->interlaced < y) {
  1208. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1209. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1210. } else {
  1211. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1212. }
  1213. encode_gray_bitstream(s, width);
  1214. y++;
  1215. if (y >= height) break;
  1216. }
  1217. ydst = p->data[0] + p->linesize[0] * y;
  1218. udst = p->data[1] + p->linesize[1] * cy;
  1219. vdst = p->data[2] + p->linesize[2] * cy;
  1220. if (s->predictor == PLANE && s->interlaced < cy) {
  1221. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1222. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1223. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1224. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1225. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1226. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1227. } else {
  1228. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1229. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1230. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1231. }
  1232. encode_422_bitstream(s, 0, width);
  1233. }
  1234. }
  1235. } else if(avctx->pix_fmt == PIX_FMT_RGB32) {
  1236. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  1237. const int stride = -p->linesize[0];
  1238. const int fake_stride = -fake_ystride;
  1239. int y;
  1240. int leftr, leftg, leftb;
  1241. put_bits(&s->pb, 8, leftr = data[R]);
  1242. put_bits(&s->pb, 8, leftg = data[G]);
  1243. put_bits(&s->pb, 8, leftb = data[B]);
  1244. put_bits(&s->pb, 8, 0);
  1245. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb);
  1246. encode_bgr_bitstream(s, width - 1);
  1247. for (y = 1; y < s->height; y++) {
  1248. uint8_t *dst = data + y*stride;
  1249. if (s->predictor == PLANE && s->interlaced < y) {
  1250. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  1251. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1252. } else {
  1253. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1254. }
  1255. encode_bgr_bitstream(s, width);
  1256. }
  1257. } else {
  1258. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1259. }
  1260. emms_c();
  1261. size += (put_bits_count(&s->pb) + 31) / 8;
  1262. put_bits(&s->pb, 16, 0);
  1263. put_bits(&s->pb, 15, 0);
  1264. size /= 4;
  1265. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  1266. int j;
  1267. char *p = avctx->stats_out;
  1268. char *end = p + 1024*30;
  1269. for (i = 0; i < 3; i++) {
  1270. for (j = 0; j < 256; j++) {
  1271. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1272. p += strlen(p);
  1273. s->stats[i][j]= 0;
  1274. }
  1275. snprintf(p, end-p, "\n");
  1276. p++;
  1277. }
  1278. } else
  1279. avctx->stats_out[0] = '\0';
  1280. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  1281. flush_put_bits(&s->pb);
  1282. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1283. }
  1284. s->picture_number++;
  1285. pkt->size = size * 4;
  1286. pkt->flags |= AV_PKT_FLAG_KEY;
  1287. *got_packet = 1;
  1288. return 0;
  1289. }
  1290. static av_cold int encode_end(AVCodecContext *avctx)
  1291. {
  1292. HYuvContext *s = avctx->priv_data;
  1293. common_end(s);
  1294. av_freep(&avctx->extradata);
  1295. av_freep(&avctx->stats_out);
  1296. return 0;
  1297. }
  1298. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1299. #if CONFIG_HUFFYUV_DECODER
  1300. AVCodec ff_huffyuv_decoder = {
  1301. .name = "huffyuv",
  1302. .type = AVMEDIA_TYPE_VIDEO,
  1303. .id = AV_CODEC_ID_HUFFYUV,
  1304. .priv_data_size = sizeof(HYuvContext),
  1305. .init = decode_init,
  1306. .close = decode_end,
  1307. .decode = decode_frame,
  1308. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1309. CODEC_CAP_FRAME_THREADS,
  1310. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1311. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1312. };
  1313. #endif
  1314. #if CONFIG_FFVHUFF_DECODER
  1315. AVCodec ff_ffvhuff_decoder = {
  1316. .name = "ffvhuff",
  1317. .type = AVMEDIA_TYPE_VIDEO,
  1318. .id = AV_CODEC_ID_FFVHUFF,
  1319. .priv_data_size = sizeof(HYuvContext),
  1320. .init = decode_init,
  1321. .close = decode_end,
  1322. .decode = decode_frame,
  1323. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1324. CODEC_CAP_FRAME_THREADS,
  1325. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1326. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1327. };
  1328. #endif
  1329. #if CONFIG_HUFFYUV_ENCODER
  1330. AVCodec ff_huffyuv_encoder = {
  1331. .name = "huffyuv",
  1332. .type = AVMEDIA_TYPE_VIDEO,
  1333. .id = AV_CODEC_ID_HUFFYUV,
  1334. .priv_data_size = sizeof(HYuvContext),
  1335. .init = encode_init,
  1336. .encode2 = encode_frame,
  1337. .close = encode_end,
  1338. .pix_fmts = (const enum PixelFormat[]){
  1339. PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE
  1340. },
  1341. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1342. };
  1343. #endif
  1344. #if CONFIG_FFVHUFF_ENCODER
  1345. AVCodec ff_ffvhuff_encoder = {
  1346. .name = "ffvhuff",
  1347. .type = AVMEDIA_TYPE_VIDEO,
  1348. .id = AV_CODEC_ID_FFVHUFF,
  1349. .priv_data_size = sizeof(HYuvContext),
  1350. .init = encode_init,
  1351. .encode2 = encode_frame,
  1352. .close = encode_end,
  1353. .pix_fmts = (const enum PixelFormat[]){
  1354. PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE
  1355. },
  1356. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1357. };
  1358. #endif