You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

245 lines
5.6KB

  1. /*
  2. * adaptive and fixed codebook vector operations for ACELP-based codecs
  3. *
  4. * Copyright (c) 2008 Vladimir Voroshilov
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include <inttypes.h>
  23. #include "avcodec.h"
  24. #include "acelp_vectors.h"
  25. #include "celp_math.h"
  26. const uint8_t ff_fc_2pulses_9bits_track1[16] =
  27. {
  28. 1, 3,
  29. 6, 8,
  30. 11, 13,
  31. 16, 18,
  32. 21, 23,
  33. 26, 28,
  34. 31, 33,
  35. 36, 38
  36. };
  37. const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
  38. {
  39. 1, 3,
  40. 8, 6,
  41. 18, 16,
  42. 11, 13,
  43. 38, 36,
  44. 31, 33,
  45. 21, 23,
  46. 28, 26,
  47. };
  48. const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
  49. {
  50. 0, 2,
  51. 5, 4,
  52. 12, 10,
  53. 7, 9,
  54. 25, 24,
  55. 20, 22,
  56. 14, 15,
  57. 19, 17,
  58. 36, 31,
  59. 21, 26,
  60. 1, 6,
  61. 16, 11,
  62. 27, 29,
  63. 32, 30,
  64. 39, 37,
  65. 34, 35,
  66. };
  67. const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
  68. {
  69. 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
  70. };
  71. const uint8_t ff_fc_4pulses_8bits_track_4[32] =
  72. {
  73. 3, 4,
  74. 8, 9,
  75. 13, 14,
  76. 18, 19,
  77. 23, 24,
  78. 28, 29,
  79. 33, 34,
  80. 38, 39,
  81. 43, 44,
  82. 48, 49,
  83. 53, 54,
  84. 58, 59,
  85. 63, 64,
  86. 68, 69,
  87. 73, 74,
  88. 78, 79,
  89. };
  90. #if 0
  91. static uint8_t gray_decode[32] =
  92. {
  93. 0, 1, 3, 2, 7, 6, 4, 5,
  94. 15, 14, 12, 13, 8, 9, 11, 10,
  95. 31, 30, 28, 29, 24, 25, 27, 26,
  96. 16, 17, 19, 18, 23, 22, 20, 21
  97. };
  98. #endif
  99. void ff_acelp_fc_pulse_per_track(
  100. int16_t* fc_v,
  101. const uint8_t *tab1,
  102. const uint8_t *tab2,
  103. int pulse_indexes,
  104. int pulse_signs,
  105. int pulse_count,
  106. int bits)
  107. {
  108. int mask = (1 << bits) - 1;
  109. int i;
  110. for(i=0; i<pulse_count; i++)
  111. {
  112. fc_v[i + tab1[pulse_indexes & mask]] +=
  113. (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
  114. pulse_indexes >>= bits;
  115. pulse_signs >>= 1;
  116. }
  117. fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
  118. }
  119. void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
  120. AMRFixed *fixed_sparse,
  121. const uint8_t *gray_decode,
  122. int half_pulse_count, int bits)
  123. {
  124. int i;
  125. int mask = (1 << bits) - 1;
  126. fixed_sparse->n = 2 * half_pulse_count;
  127. for (i = 0; i < half_pulse_count; i++) {
  128. const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
  129. const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
  130. const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
  131. fixed_sparse->x[2*i+1] = pos1;
  132. fixed_sparse->x[2*i ] = pos2;
  133. fixed_sparse->y[2*i+1] = sign;
  134. fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
  135. }
  136. }
  137. void ff_acelp_weighted_vector_sum(
  138. int16_t* out,
  139. const int16_t *in_a,
  140. const int16_t *in_b,
  141. int16_t weight_coeff_a,
  142. int16_t weight_coeff_b,
  143. int16_t rounder,
  144. int shift,
  145. int length)
  146. {
  147. int i;
  148. // Clipping required here; breaks OVERFLOW test.
  149. for(i=0; i<length; i++)
  150. out[i] = av_clip_int16((
  151. in_a[i] * weight_coeff_a +
  152. in_b[i] * weight_coeff_b +
  153. rounder) >> shift);
  154. }
  155. void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
  156. float weight_coeff_a, float weight_coeff_b, int length)
  157. {
  158. int i;
  159. for(i=0; i<length; i++)
  160. out[i] = weight_coeff_a * in_a[i]
  161. + weight_coeff_b * in_b[i];
  162. }
  163. void ff_adaptative_gain_control(float *buf_out, float speech_energ,
  164. int size, float alpha, float *gain_mem)
  165. {
  166. int i;
  167. float postfilter_energ = ff_dot_productf(buf_out, buf_out, size);
  168. float gain_scale_factor = 1.0;
  169. float mem = *gain_mem;
  170. if (postfilter_energ)
  171. gain_scale_factor = sqrt(speech_energ / postfilter_energ);
  172. gain_scale_factor *= 1.0 - alpha;
  173. for (i = 0; i < size; i++) {
  174. mem = alpha * mem + gain_scale_factor;
  175. buf_out[i] *= mem;
  176. }
  177. *gain_mem = mem;
  178. }
  179. void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
  180. float sum_of_squares, const int n)
  181. {
  182. int i;
  183. float scalefactor = ff_dot_productf(in, in, n);
  184. if (scalefactor)
  185. scalefactor = sqrt(sum_of_squares / scalefactor);
  186. for (i = 0; i < n; i++)
  187. out[i] = in[i] * scalefactor;
  188. }
  189. void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
  190. {
  191. int i;
  192. for (i=0; i < in->n; i++) {
  193. int x = in->x[i];
  194. float y = in->y[i] * scale;
  195. out[x] += y;
  196. x += in->pitch_lag;
  197. while (x < size) {
  198. y *= in->pitch_fac;
  199. out[x] += y;
  200. x += in->pitch_lag;
  201. }
  202. }
  203. }
  204. void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
  205. {
  206. int i;
  207. for (i=0; i < in->n; i++) {
  208. int x = in->x[i];
  209. out[x] = 0.0;
  210. x += in->pitch_lag;
  211. while (x < size) {
  212. out[x] = 0.0;
  213. x += in->pitch_lag;
  214. }
  215. }
  216. }