You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

582 lines
23KB

  1. /*
  2. * RV40 decoder
  3. * Copyright (c) 2007 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV40 decoder
  24. */
  25. #include "libavutil/imgutils.h"
  26. #include "avcodec.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "rv34.h"
  30. #include "rv40vlc2.h"
  31. #include "rv40data.h"
  32. static VLC aic_top_vlc;
  33. static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
  34. static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
  35. static const int16_t mode2_offs[] = {
  36. 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
  37. 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
  38. };
  39. /**
  40. * Initialize all tables.
  41. */
  42. static av_cold void rv40_init_tables(void)
  43. {
  44. int i;
  45. static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
  46. static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
  47. static VLC_TYPE aic_mode2_table[11814][2];
  48. static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
  49. static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
  50. aic_top_vlc.table = aic_table;
  51. aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
  52. init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
  53. rv40_aic_top_vlc_bits, 1, 1,
  54. rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
  55. for(i = 0; i < AIC_MODE1_NUM; i++){
  56. // Every tenth VLC table is empty
  57. if((i % 10) == 9) continue;
  58. aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
  59. aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
  60. init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
  61. aic_mode1_vlc_bits[i], 1, 1,
  62. aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  63. }
  64. for(i = 0; i < AIC_MODE2_NUM; i++){
  65. aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
  66. aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
  67. init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
  68. aic_mode2_vlc_bits[i], 1, 1,
  69. aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  70. }
  71. for(i = 0; i < NUM_PTYPE_VLCS; i++){
  72. ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
  73. ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
  74. ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
  75. ptype_vlc_bits[i], 1, 1,
  76. ptype_vlc_codes[i], 1, 1,
  77. ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  78. }
  79. for(i = 0; i < NUM_BTYPE_VLCS; i++){
  80. btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
  81. btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
  82. ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
  83. btype_vlc_bits[i], 1, 1,
  84. btype_vlc_codes[i], 1, 1,
  85. btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
  86. }
  87. }
  88. /**
  89. * Get stored dimension from bitstream.
  90. *
  91. * If the width/height is the standard one then it's coded as a 3-bit index.
  92. * Otherwise it is coded as escaped 8-bit portions.
  93. */
  94. static int get_dimension(GetBitContext *gb, const int *dim)
  95. {
  96. int t = get_bits(gb, 3);
  97. int val = dim[t];
  98. if(val < 0)
  99. val = dim[get_bits1(gb) - val];
  100. if(!val){
  101. do{
  102. t = get_bits(gb, 8);
  103. val += t << 2;
  104. }while(t == 0xFF);
  105. }
  106. return val;
  107. }
  108. /**
  109. * Get encoded picture size - usually this is called from rv40_parse_slice_header.
  110. */
  111. static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
  112. {
  113. *w = get_dimension(gb, rv40_standard_widths);
  114. *h = get_dimension(gb, rv40_standard_heights);
  115. }
  116. static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
  117. {
  118. int mb_bits;
  119. int w = r->s.width, h = r->s.height;
  120. int mb_size;
  121. memset(si, 0, sizeof(SliceInfo));
  122. if(get_bits1(gb))
  123. return -1;
  124. si->type = get_bits(gb, 2);
  125. if(si->type == 1) si->type = 0;
  126. si->quant = get_bits(gb, 5);
  127. if(get_bits(gb, 2))
  128. return -1;
  129. si->vlc_set = get_bits(gb, 2);
  130. skip_bits1(gb);
  131. si->pts = get_bits(gb, 13);
  132. if(!si->type || !get_bits1(gb))
  133. rv40_parse_picture_size(gb, &w, &h);
  134. if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
  135. return -1;
  136. si->width = w;
  137. si->height = h;
  138. mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
  139. mb_bits = ff_rv34_get_start_offset(gb, mb_size);
  140. si->start = get_bits(gb, mb_bits);
  141. return 0;
  142. }
  143. /**
  144. * Decode 4x4 intra types array.
  145. */
  146. static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
  147. {
  148. MpegEncContext *s = &r->s;
  149. int i, j, k, v;
  150. int A, B, C;
  151. int pattern;
  152. int8_t *ptr;
  153. for(i = 0; i < 4; i++, dst += r->intra_types_stride){
  154. if(!i && s->first_slice_line){
  155. pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
  156. dst[0] = (pattern >> 2) & 2;
  157. dst[1] = (pattern >> 1) & 2;
  158. dst[2] = pattern & 2;
  159. dst[3] = (pattern << 1) & 2;
  160. continue;
  161. }
  162. ptr = dst;
  163. for(j = 0; j < 4; j++){
  164. /* Coefficients are read using VLC chosen by the prediction pattern
  165. * The first one (used for retrieving a pair of coefficients) is
  166. * constructed from the top, top right and left coefficients
  167. * The second one (used for retrieving only one coefficient) is
  168. * top + 10 * left.
  169. */
  170. A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
  171. B = ptr[-r->intra_types_stride];
  172. C = ptr[-1];
  173. pattern = A + (B << 4) + (C << 8);
  174. for(k = 0; k < MODE2_PATTERNS_NUM; k++)
  175. if(pattern == rv40_aic_table_index[k])
  176. break;
  177. if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
  178. v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
  179. *ptr++ = v/9;
  180. *ptr++ = v%9;
  181. j++;
  182. }else{
  183. if(B != -1 && C != -1)
  184. v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
  185. else{ // tricky decoding
  186. v = 0;
  187. switch(C){
  188. case -1: // code 0 -> 1, 1 -> 0
  189. if(B < 2)
  190. v = get_bits1(gb) ^ 1;
  191. break;
  192. case 0:
  193. case 2: // code 0 -> 2, 1 -> 0
  194. v = (get_bits1(gb) ^ 1) << 1;
  195. break;
  196. }
  197. }
  198. *ptr++ = v;
  199. }
  200. }
  201. }
  202. return 0;
  203. }
  204. /**
  205. * Decode macroblock information.
  206. */
  207. static int rv40_decode_mb_info(RV34DecContext *r)
  208. {
  209. MpegEncContext *s = &r->s;
  210. GetBitContext *gb = &s->gb;
  211. int q, i;
  212. int prev_type = 0;
  213. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  214. if(!r->s.mb_skip_run) {
  215. r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
  216. if(r->s.mb_skip_run > (unsigned)s->mb_num)
  217. return -1;
  218. }
  219. if(--r->s.mb_skip_run)
  220. return RV34_MB_SKIP;
  221. if(r->avail_cache[6-4]){
  222. int blocks[RV34_MB_TYPES] = {0};
  223. int count = 0;
  224. if(r->avail_cache[6-1])
  225. blocks[r->mb_type[mb_pos - 1]]++;
  226. blocks[r->mb_type[mb_pos - s->mb_stride]]++;
  227. if(r->avail_cache[6-2])
  228. blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
  229. if(r->avail_cache[6-5])
  230. blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
  231. for(i = 0; i < RV34_MB_TYPES; i++){
  232. if(blocks[i] > count){
  233. count = blocks[i];
  234. prev_type = i;
  235. if(count>1)
  236. break;
  237. }
  238. }
  239. } else if (r->avail_cache[6-1])
  240. prev_type = r->mb_type[mb_pos - 1];
  241. if(s->pict_type == AV_PICTURE_TYPE_P){
  242. prev_type = block_num_to_ptype_vlc_num[prev_type];
  243. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  244. if(q < PBTYPE_ESCAPE)
  245. return q;
  246. q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
  247. av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
  248. }else{
  249. prev_type = block_num_to_btype_vlc_num[prev_type];
  250. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  251. if(q < PBTYPE_ESCAPE)
  252. return q;
  253. q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
  254. av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
  255. }
  256. return 0;
  257. }
  258. enum RV40BlockPos{
  259. POS_CUR,
  260. POS_TOP,
  261. POS_LEFT,
  262. POS_BOTTOM,
  263. };
  264. #define MASK_CUR 0x0001
  265. #define MASK_RIGHT 0x0008
  266. #define MASK_BOTTOM 0x0010
  267. #define MASK_TOP 0x1000
  268. #define MASK_Y_TOP_ROW 0x000F
  269. #define MASK_Y_LAST_ROW 0xF000
  270. #define MASK_Y_LEFT_COL 0x1111
  271. #define MASK_Y_RIGHT_COL 0x8888
  272. #define MASK_C_TOP_ROW 0x0003
  273. #define MASK_C_LAST_ROW 0x000C
  274. #define MASK_C_LEFT_COL 0x0005
  275. #define MASK_C_RIGHT_COL 0x000A
  276. static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
  277. static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
  278. static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
  279. uint8_t *src, int stride, int dmode,
  280. int lim_q1, int lim_p1,
  281. int alpha, int beta, int beta2,
  282. int chroma, int edge, int dir)
  283. {
  284. int filter_p1, filter_q1;
  285. int strong;
  286. int lims;
  287. strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
  288. edge, &filter_p1, &filter_q1);
  289. lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
  290. if (strong) {
  291. rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
  292. lims, dmode, chroma);
  293. } else if (filter_p1 & filter_q1) {
  294. rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
  295. lims, lim_q1, lim_p1);
  296. } else if (filter_p1 | filter_q1) {
  297. rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
  298. alpha, beta, lims >> 1, lim_q1 >> 1,
  299. lim_p1 >> 1);
  300. }
  301. }
  302. /**
  303. * RV40 loop filtering function
  304. */
  305. static void rv40_loop_filter(RV34DecContext *r, int row)
  306. {
  307. MpegEncContext *s = &r->s;
  308. int mb_pos, mb_x;
  309. int i, j, k;
  310. uint8_t *Y, *C;
  311. int alpha, beta, betaY, betaC;
  312. int q;
  313. int mbtype[4]; ///< current macroblock and its neighbours types
  314. /**
  315. * flags indicating that macroblock can be filtered with strong filter
  316. * it is set only for intra coded MB and MB with DCs coded separately
  317. */
  318. int mb_strong[4];
  319. int clip[4]; ///< MB filter clipping value calculated from filtering strength
  320. /**
  321. * coded block patterns for luma part of current macroblock and its neighbours
  322. * Format:
  323. * LSB corresponds to the top left block,
  324. * each nibble represents one row of subblocks.
  325. */
  326. int cbp[4];
  327. /**
  328. * coded block patterns for chroma part of current macroblock and its neighbours
  329. * Format is the same as for luma with two subblocks in a row.
  330. */
  331. int uvcbp[4][2];
  332. /**
  333. * This mask represents the pattern of luma subblocks that should be filtered
  334. * in addition to the coded ones because they lie at the edge of
  335. * 8x8 block with different enough motion vectors
  336. */
  337. unsigned mvmasks[4];
  338. mb_pos = row * s->mb_stride;
  339. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  340. int mbtype = s->current_picture_ptr->mb_type[mb_pos];
  341. if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
  342. r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
  343. if(IS_INTRA(mbtype))
  344. r->cbp_chroma[mb_pos] = 0xFF;
  345. }
  346. mb_pos = row * s->mb_stride;
  347. for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
  348. int y_h_deblock, y_v_deblock;
  349. int c_v_deblock[2], c_h_deblock[2];
  350. int clip_left;
  351. int avail[4];
  352. unsigned y_to_deblock;
  353. int c_to_deblock[2];
  354. q = s->current_picture_ptr->qscale_table[mb_pos];
  355. alpha = rv40_alpha_tab[q];
  356. beta = rv40_beta_tab [q];
  357. betaY = betaC = beta * 3;
  358. if(s->width * s->height <= 176*144)
  359. betaY += beta;
  360. avail[0] = 1;
  361. avail[1] = row;
  362. avail[2] = mb_x;
  363. avail[3] = row < s->mb_height - 1;
  364. for(i = 0; i < 4; i++){
  365. if(avail[i]){
  366. int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
  367. mvmasks[i] = r->deblock_coefs[pos];
  368. mbtype [i] = s->current_picture_ptr->mb_type[pos];
  369. cbp [i] = r->cbp_luma[pos];
  370. uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
  371. uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
  372. }else{
  373. mvmasks[i] = 0;
  374. mbtype [i] = mbtype[0];
  375. cbp [i] = 0;
  376. uvcbp[i][0] = uvcbp[i][1] = 0;
  377. }
  378. mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
  379. clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
  380. }
  381. y_to_deblock = mvmasks[POS_CUR]
  382. | (mvmasks[POS_BOTTOM] << 16);
  383. /* This pattern contains bits signalling that horizontal edges of
  384. * the current block can be filtered.
  385. * That happens when either of adjacent subblocks is coded or lies on
  386. * the edge of 8x8 blocks with motion vectors differing by more than
  387. * 3/4 pel in any component (any edge orientation for some reason).
  388. */
  389. y_h_deblock = y_to_deblock
  390. | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
  391. | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
  392. /* This pattern contains bits signalling that vertical edges of
  393. * the current block can be filtered.
  394. * That happens when either of adjacent subblocks is coded or lies on
  395. * the edge of 8x8 blocks with motion vectors differing by more than
  396. * 3/4 pel in any component (any edge orientation for some reason).
  397. */
  398. y_v_deblock = y_to_deblock
  399. | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
  400. | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
  401. if(!mb_x)
  402. y_v_deblock &= ~MASK_Y_LEFT_COL;
  403. if(!row)
  404. y_h_deblock &= ~MASK_Y_TOP_ROW;
  405. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
  406. y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
  407. /* Calculating chroma patterns is similar and easier since there is
  408. * no motion vector pattern for them.
  409. */
  410. for(i = 0; i < 2; i++){
  411. c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
  412. c_v_deblock[i] = c_to_deblock[i]
  413. | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
  414. | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
  415. c_h_deblock[i] = c_to_deblock[i]
  416. | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
  417. | (uvcbp[POS_CUR][i] << 2);
  418. if(!mb_x)
  419. c_v_deblock[i] &= ~MASK_C_LEFT_COL;
  420. if(!row)
  421. c_h_deblock[i] &= ~MASK_C_TOP_ROW;
  422. if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
  423. c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
  424. }
  425. for(j = 0; j < 16; j += 4){
  426. Y = s->current_picture_ptr->f.data[0] + mb_x*16 + (row*16 + j) * s->linesize;
  427. for(i = 0; i < 4; i++, Y += 4){
  428. int ij = i + j;
  429. int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  430. int dither = j ? ij : i*4;
  431. // if bottom block is coded then we can filter its top edge
  432. // (or bottom edge of this block, which is the same)
  433. if(y_h_deblock & (MASK_BOTTOM << ij)){
  434. rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
  435. s->linesize, dither,
  436. y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
  437. clip_cur, alpha, beta, betaY,
  438. 0, 0, 0);
  439. }
  440. // filter left block edge in ordinary mode (with low filtering strength)
  441. if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
  442. if(!i)
  443. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  444. else
  445. clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  446. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  447. clip_cur,
  448. clip_left,
  449. alpha, beta, betaY, 0, 0, 1);
  450. }
  451. // filter top edge of the current macroblock when filtering strength is high
  452. if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
  453. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  454. clip_cur,
  455. mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
  456. alpha, beta, betaY, 0, 1, 0);
  457. }
  458. // filter left block edge in edge mode (with high filtering strength)
  459. if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
  460. clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
  461. rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
  462. clip_cur,
  463. clip_left,
  464. alpha, beta, betaY, 0, 1, 1);
  465. }
  466. }
  467. }
  468. for(k = 0; k < 2; k++){
  469. for(j = 0; j < 2; j++){
  470. C = s->current_picture_ptr->f.data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
  471. for(i = 0; i < 2; i++, C += 4){
  472. int ij = i + j*2;
  473. int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
  474. if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
  475. int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
  476. rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
  477. clip_bot,
  478. clip_cur,
  479. alpha, beta, betaC, 1, 0, 0);
  480. }
  481. if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
  482. if(!i)
  483. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  484. else
  485. clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
  486. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
  487. clip_cur,
  488. clip_left,
  489. alpha, beta, betaC, 1, 0, 1);
  490. }
  491. if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
  492. int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
  493. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
  494. clip_cur,
  495. clip_top,
  496. alpha, beta, betaC, 1, 1, 0);
  497. }
  498. if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
  499. clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
  500. rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
  501. clip_cur,
  502. clip_left,
  503. alpha, beta, betaC, 1, 1, 1);
  504. }
  505. }
  506. }
  507. }
  508. }
  509. }
  510. /**
  511. * Initialize decoder.
  512. */
  513. static av_cold int rv40_decode_init(AVCodecContext *avctx)
  514. {
  515. RV34DecContext *r = avctx->priv_data;
  516. int ret;
  517. r->rv30 = 0;
  518. if ((ret = ff_rv34_decode_init(avctx)) < 0)
  519. return ret;
  520. if(!aic_top_vlc.bits)
  521. rv40_init_tables();
  522. r->parse_slice_header = rv40_parse_slice_header;
  523. r->decode_intra_types = rv40_decode_intra_types;
  524. r->decode_mb_info = rv40_decode_mb_info;
  525. r->loop_filter = rv40_loop_filter;
  526. r->luma_dc_quant_i = rv40_luma_dc_quant[0];
  527. r->luma_dc_quant_p = rv40_luma_dc_quant[1];
  528. return 0;
  529. }
  530. AVCodec ff_rv40_decoder = {
  531. .name = "rv40",
  532. .type = AVMEDIA_TYPE_VIDEO,
  533. .id = AV_CODEC_ID_RV40,
  534. .priv_data_size = sizeof(RV34DecContext),
  535. .init = rv40_decode_init,
  536. .close = ff_rv34_decode_end,
  537. .decode = ff_rv34_decode_frame,
  538. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
  539. CODEC_CAP_FRAME_THREADS,
  540. .flush = ff_mpeg_flush,
  541. .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
  542. .pix_fmts = ff_pixfmt_list_420,
  543. .init_thread_copy = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy),
  544. .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
  545. };