You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

821 lines
24KB

  1. /*
  2. * Copyright (C) 2017 Paul B Mahol
  3. * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <math.h>
  21. #include "libavutil/audio_fifo.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/float_dsp.h"
  25. #include "libavutil/intmath.h"
  26. #include "libavutil/opt.h"
  27. #include "libavcodec/avfft.h"
  28. #include "avfilter.h"
  29. #include "internal.h"
  30. #include "audio.h"
  31. #define TIME_DOMAIN 0
  32. #define FREQUENCY_DOMAIN 1
  33. typedef struct HeadphoneContext {
  34. const AVClass *class;
  35. char *map;
  36. int type;
  37. int lfe_channel;
  38. int have_hrirs;
  39. int eof_hrirs;
  40. int64_t pts;
  41. int ir_len;
  42. int mapping[64];
  43. int nb_inputs;
  44. int nb_irs;
  45. float gain;
  46. float lfe_gain, gain_lfe;
  47. float *ringbuffer[2];
  48. int write[2];
  49. int buffer_length;
  50. int n_fft;
  51. int size;
  52. int *delay[2];
  53. float *data_ir[2];
  54. float *temp_src[2];
  55. FFTComplex *temp_fft[2];
  56. FFTContext *fft[2], *ifft[2];
  57. FFTComplex *data_hrtf[2];
  58. AVFloatDSPContext *fdsp;
  59. struct headphone_inputs {
  60. AVAudioFifo *fifo;
  61. AVFrame *frame;
  62. int ir_len;
  63. int delay_l;
  64. int delay_r;
  65. int eof;
  66. } *in;
  67. } HeadphoneContext;
  68. static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf)
  69. {
  70. int len, i, channel_id = 0;
  71. int64_t layout, layout0;
  72. if (sscanf(*arg, "%7[A-Z]%n", buf, &len)) {
  73. layout0 = layout = av_get_channel_layout(buf);
  74. if (layout == AV_CH_LOW_FREQUENCY)
  75. s->lfe_channel = x;
  76. for (i = 32; i > 0; i >>= 1) {
  77. if (layout >= 1LL << i) {
  78. channel_id += i;
  79. layout >>= i;
  80. }
  81. }
  82. if (channel_id >= 64 || layout0 != 1LL << channel_id)
  83. return AVERROR(EINVAL);
  84. *rchannel = channel_id;
  85. *arg += len;
  86. return 0;
  87. }
  88. return AVERROR(EINVAL);
  89. }
  90. static void parse_map(AVFilterContext *ctx)
  91. {
  92. HeadphoneContext *s = ctx->priv;
  93. char *arg, *tokenizer, *p, *args = av_strdup(s->map);
  94. int i;
  95. if (!args)
  96. return;
  97. p = args;
  98. s->lfe_channel = -1;
  99. s->nb_inputs = 1;
  100. for (i = 0; i < 64; i++) {
  101. s->mapping[i] = -1;
  102. }
  103. while ((arg = av_strtok(p, "|", &tokenizer))) {
  104. int out_ch_id;
  105. char buf[8];
  106. p = NULL;
  107. if (parse_channel_name(s, s->nb_inputs - 1, &arg, &out_ch_id, buf)) {
  108. av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf);
  109. continue;
  110. }
  111. s->mapping[s->nb_inputs - 1] = out_ch_id;
  112. s->nb_inputs++;
  113. }
  114. s->nb_irs = s->nb_inputs - 1;
  115. av_free(args);
  116. }
  117. typedef struct ThreadData {
  118. AVFrame *in, *out;
  119. int *write;
  120. int **delay;
  121. float **ir;
  122. int *n_clippings;
  123. float **ringbuffer;
  124. float **temp_src;
  125. FFTComplex **temp_fft;
  126. } ThreadData;
  127. static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  128. {
  129. HeadphoneContext *s = ctx->priv;
  130. ThreadData *td = arg;
  131. AVFrame *in = td->in, *out = td->out;
  132. int offset = jobnr;
  133. int *write = &td->write[jobnr];
  134. const int *const delay = td->delay[jobnr];
  135. const float *const ir = td->ir[jobnr];
  136. int *n_clippings = &td->n_clippings[jobnr];
  137. float *ringbuffer = td->ringbuffer[jobnr];
  138. float *temp_src = td->temp_src[jobnr];
  139. const int ir_len = s->ir_len;
  140. const float *src = (const float *)in->data[0];
  141. float *dst = (float *)out->data[0];
  142. const int in_channels = in->channels;
  143. const int buffer_length = s->buffer_length;
  144. const uint32_t modulo = (uint32_t)buffer_length - 1;
  145. float *buffer[16];
  146. int wr = *write;
  147. int read;
  148. int i, l;
  149. dst += offset;
  150. for (l = 0; l < in_channels; l++) {
  151. buffer[l] = ringbuffer + l * buffer_length;
  152. }
  153. for (i = 0; i < in->nb_samples; i++) {
  154. const float *temp_ir = ir;
  155. *dst = 0;
  156. for (l = 0; l < in_channels; l++) {
  157. *(buffer[l] + wr) = src[l];
  158. }
  159. for (l = 0; l < in_channels; l++) {
  160. const float *const bptr = buffer[l];
  161. if (l == s->lfe_channel) {
  162. *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
  163. temp_ir += FFALIGN(ir_len, 16);
  164. continue;
  165. }
  166. read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo;
  167. if (read + ir_len < buffer_length) {
  168. memcpy(temp_src, bptr + read, ir_len * sizeof(*temp_src));
  169. } else {
  170. int len = FFMIN(ir_len - (read % ir_len), buffer_length - read);
  171. memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
  172. memcpy(temp_src + len, bptr, (ir_len - len) * sizeof(*temp_src));
  173. }
  174. dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, ir_len);
  175. temp_ir += FFALIGN(ir_len, 16);
  176. }
  177. if (fabs(*dst) > 1)
  178. *n_clippings += 1;
  179. dst += 2;
  180. src += in_channels;
  181. wr = (wr + 1) & modulo;
  182. }
  183. *write = wr;
  184. return 0;
  185. }
  186. static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  187. {
  188. HeadphoneContext *s = ctx->priv;
  189. ThreadData *td = arg;
  190. AVFrame *in = td->in, *out = td->out;
  191. int offset = jobnr;
  192. int *write = &td->write[jobnr];
  193. FFTComplex *hrtf = s->data_hrtf[jobnr];
  194. int *n_clippings = &td->n_clippings[jobnr];
  195. float *ringbuffer = td->ringbuffer[jobnr];
  196. const int ir_len = s->ir_len;
  197. const float *src = (const float *)in->data[0];
  198. float *dst = (float *)out->data[0];
  199. const int in_channels = in->channels;
  200. const int buffer_length = s->buffer_length;
  201. const uint32_t modulo = (uint32_t)buffer_length - 1;
  202. FFTComplex *fft_in = s->temp_fft[jobnr];
  203. FFTContext *ifft = s->ifft[jobnr];
  204. FFTContext *fft = s->fft[jobnr];
  205. const int n_fft = s->n_fft;
  206. const float fft_scale = 1.0f / s->n_fft;
  207. FFTComplex *hrtf_offset;
  208. int wr = *write;
  209. int n_read;
  210. int i, j;
  211. dst += offset;
  212. n_read = FFMIN(s->ir_len, in->nb_samples);
  213. for (j = 0; j < n_read; j++) {
  214. dst[2 * j] = ringbuffer[wr];
  215. ringbuffer[wr] = 0.0;
  216. wr = (wr + 1) & modulo;
  217. }
  218. for (j = n_read; j < in->nb_samples; j++) {
  219. dst[2 * j] = 0;
  220. }
  221. for (i = 0; i < in_channels; i++) {
  222. if (i == s->lfe_channel) {
  223. for (j = 0; j < in->nb_samples; j++) {
  224. dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
  225. }
  226. continue;
  227. }
  228. offset = i * n_fft;
  229. hrtf_offset = hrtf + offset;
  230. memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
  231. for (j = 0; j < in->nb_samples; j++) {
  232. fft_in[j].re = src[j * in_channels + i];
  233. }
  234. av_fft_permute(fft, fft_in);
  235. av_fft_calc(fft, fft_in);
  236. for (j = 0; j < n_fft; j++) {
  237. const FFTComplex *hcomplex = hrtf_offset + j;
  238. const float re = fft_in[j].re;
  239. const float im = fft_in[j].im;
  240. fft_in[j].re = re * hcomplex->re - im * hcomplex->im;
  241. fft_in[j].im = re * hcomplex->im + im * hcomplex->re;
  242. }
  243. av_fft_permute(ifft, fft_in);
  244. av_fft_calc(ifft, fft_in);
  245. for (j = 0; j < in->nb_samples; j++) {
  246. dst[2 * j] += fft_in[j].re * fft_scale;
  247. }
  248. for (j = 0; j < ir_len - 1; j++) {
  249. int write_pos = (wr + j) & modulo;
  250. *(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re * fft_scale;
  251. }
  252. }
  253. for (i = 0; i < out->nb_samples; i++) {
  254. if (fabs(*dst) > 1) {
  255. n_clippings[0]++;
  256. }
  257. dst += 2;
  258. }
  259. *write = wr;
  260. return 0;
  261. }
  262. static int read_ir(AVFilterLink *inlink, AVFrame *frame)
  263. {
  264. AVFilterContext *ctx = inlink->dst;
  265. HeadphoneContext *s = ctx->priv;
  266. int ir_len, max_ir_len, input_number;
  267. for (input_number = 0; input_number < s->nb_inputs; input_number++)
  268. if (inlink == ctx->inputs[input_number])
  269. break;
  270. av_audio_fifo_write(s->in[input_number].fifo, (void **)frame->extended_data,
  271. frame->nb_samples);
  272. av_frame_free(&frame);
  273. ir_len = av_audio_fifo_size(s->in[input_number].fifo);
  274. max_ir_len = 4096;
  275. if (ir_len > max_ir_len) {
  276. av_log(ctx, AV_LOG_ERROR, "Too big length of IRs: %d > %d.\n", ir_len, max_ir_len);
  277. return AVERROR(EINVAL);
  278. }
  279. s->in[input_number].ir_len = ir_len;
  280. s->ir_len = FFMAX(ir_len, s->ir_len);
  281. return 0;
  282. }
  283. static int headphone_frame(HeadphoneContext *s, AVFilterLink *outlink)
  284. {
  285. AVFilterContext *ctx = outlink->src;
  286. AVFrame *in = s->in[0].frame;
  287. int n_clippings[2] = { 0 };
  288. ThreadData td;
  289. AVFrame *out;
  290. av_audio_fifo_read(s->in[0].fifo, (void **)in->extended_data, s->size);
  291. out = ff_get_audio_buffer(outlink, in->nb_samples);
  292. if (!out)
  293. return AVERROR(ENOMEM);
  294. out->pts = s->pts;
  295. if (s->pts != AV_NOPTS_VALUE)
  296. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  297. td.in = in; td.out = out; td.write = s->write;
  298. td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
  299. td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
  300. td.temp_fft = s->temp_fft;
  301. if (s->type == TIME_DOMAIN) {
  302. ctx->internal->execute(ctx, headphone_convolute, &td, NULL, 2);
  303. } else {
  304. ctx->internal->execute(ctx, headphone_fast_convolute, &td, NULL, 2);
  305. }
  306. emms_c();
  307. if (n_clippings[0] + n_clippings[1] > 0) {
  308. av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
  309. n_clippings[0] + n_clippings[1], out->nb_samples * 2);
  310. }
  311. return ff_filter_frame(outlink, out);
  312. }
  313. static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
  314. {
  315. struct HeadphoneContext *s = ctx->priv;
  316. const int ir_len = s->ir_len;
  317. int nb_irs = s->nb_irs;
  318. int nb_input_channels = ctx->inputs[0]->channels;
  319. float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10);
  320. FFTComplex *data_hrtf_l = NULL;
  321. FFTComplex *data_hrtf_r = NULL;
  322. FFTComplex *fft_in_l = NULL;
  323. FFTComplex *fft_in_r = NULL;
  324. float *data_ir_l = NULL;
  325. float *data_ir_r = NULL;
  326. int offset = 0, ret = 0;
  327. int n_fft;
  328. int i, j;
  329. s->buffer_length = 1 << (32 - ff_clz(s->ir_len));
  330. s->n_fft = n_fft = 1 << (32 - ff_clz(s->ir_len + inlink->sample_rate));
  331. if (s->type == FREQUENCY_DOMAIN) {
  332. fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
  333. fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
  334. if (!fft_in_l || !fft_in_r) {
  335. ret = AVERROR(ENOMEM);
  336. goto fail;
  337. }
  338. av_fft_end(s->fft[0]);
  339. av_fft_end(s->fft[1]);
  340. s->fft[0] = av_fft_init(log2(s->n_fft), 0);
  341. s->fft[1] = av_fft_init(log2(s->n_fft), 0);
  342. av_fft_end(s->ifft[0]);
  343. av_fft_end(s->ifft[1]);
  344. s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
  345. s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
  346. if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
  347. av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
  348. ret = AVERROR(ENOMEM);
  349. goto fail;
  350. }
  351. }
  352. s->data_ir[0] = av_calloc(FFALIGN(s->ir_len, 16), sizeof(float) * s->nb_irs);
  353. s->data_ir[1] = av_calloc(FFALIGN(s->ir_len, 16), sizeof(float) * s->nb_irs);
  354. s->delay[0] = av_malloc_array(s->nb_irs, sizeof(float));
  355. s->delay[1] = av_malloc_array(s->nb_irs, sizeof(float));
  356. if (s->type == TIME_DOMAIN) {
  357. s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
  358. s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
  359. } else {
  360. s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
  361. s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
  362. s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
  363. s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
  364. if (!s->temp_fft[0] || !s->temp_fft[1]) {
  365. ret = AVERROR(ENOMEM);
  366. goto fail;
  367. }
  368. }
  369. if (!s->data_ir[0] || !s->data_ir[1] ||
  370. !s->ringbuffer[0] || !s->ringbuffer[1]) {
  371. ret = AVERROR(ENOMEM);
  372. goto fail;
  373. }
  374. s->in[0].frame = ff_get_audio_buffer(ctx->inputs[0], s->size);
  375. if (!s->in[0].frame) {
  376. ret = AVERROR(ENOMEM);
  377. goto fail;
  378. }
  379. for (i = 0; i < s->nb_irs; i++) {
  380. s->in[i + 1].frame = ff_get_audio_buffer(ctx->inputs[i + 1], s->ir_len);
  381. if (!s->in[i + 1].frame) {
  382. ret = AVERROR(ENOMEM);
  383. goto fail;
  384. }
  385. }
  386. if (s->type == TIME_DOMAIN) {
  387. s->temp_src[0] = av_calloc(FFALIGN(ir_len, 16), sizeof(float));
  388. s->temp_src[1] = av_calloc(FFALIGN(ir_len, 16), sizeof(float));
  389. data_ir_l = av_calloc(nb_irs * FFALIGN(ir_len, 16), sizeof(*data_ir_l));
  390. data_ir_r = av_calloc(nb_irs * FFALIGN(ir_len, 16), sizeof(*data_ir_r));
  391. if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
  392. ret = AVERROR(ENOMEM);
  393. goto fail;
  394. }
  395. } else {
  396. data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * nb_irs);
  397. data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * nb_irs);
  398. if (!data_hrtf_r || !data_hrtf_l) {
  399. ret = AVERROR(ENOMEM);
  400. goto fail;
  401. }
  402. }
  403. for (i = 0; i < s->nb_irs; i++) {
  404. int len = s->in[i + 1].ir_len;
  405. int delay_l = s->in[i + 1].delay_l;
  406. int delay_r = s->in[i + 1].delay_r;
  407. int idx = -1;
  408. float *ptr;
  409. for (j = 0; j < inlink->channels; j++) {
  410. if (s->mapping[i] < 0) {
  411. continue;
  412. }
  413. if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[i])) {
  414. idx = j;
  415. break;
  416. }
  417. }
  418. if (idx == -1)
  419. continue;
  420. av_audio_fifo_read(s->in[i + 1].fifo, (void **)s->in[i + 1].frame->extended_data, len);
  421. ptr = (float *)s->in[i + 1].frame->extended_data[0];
  422. if (s->type == TIME_DOMAIN) {
  423. offset = idx * FFALIGN(len, 16);
  424. for (j = 0; j < len; j++) {
  425. data_ir_l[offset + j] = ptr[len * 2 - j * 2 - 2] * gain_lin;
  426. data_ir_r[offset + j] = ptr[len * 2 - j * 2 - 1] * gain_lin;
  427. }
  428. } else {
  429. memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
  430. memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
  431. offset = idx * n_fft;
  432. for (j = 0; j < len; j++) {
  433. fft_in_l[delay_l + j].re = ptr[j * 2 ] * gain_lin;
  434. fft_in_r[delay_r + j].re = ptr[j * 2 + 1] * gain_lin;
  435. }
  436. av_fft_permute(s->fft[0], fft_in_l);
  437. av_fft_calc(s->fft[0], fft_in_l);
  438. memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
  439. av_fft_permute(s->fft[0], fft_in_r);
  440. av_fft_calc(s->fft[0], fft_in_r);
  441. memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
  442. }
  443. }
  444. if (s->type == TIME_DOMAIN) {
  445. memcpy(s->data_ir[0], data_ir_l, sizeof(float) * nb_irs * FFALIGN(ir_len, 16));
  446. memcpy(s->data_ir[1], data_ir_r, sizeof(float) * nb_irs * FFALIGN(ir_len, 16));
  447. } else {
  448. s->data_hrtf[0] = av_malloc_array(n_fft * s->nb_irs, sizeof(FFTComplex));
  449. s->data_hrtf[1] = av_malloc_array(n_fft * s->nb_irs, sizeof(FFTComplex));
  450. if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
  451. ret = AVERROR(ENOMEM);
  452. goto fail;
  453. }
  454. memcpy(s->data_hrtf[0], data_hrtf_l,
  455. sizeof(FFTComplex) * nb_irs * n_fft);
  456. memcpy(s->data_hrtf[1], data_hrtf_r,
  457. sizeof(FFTComplex) * nb_irs * n_fft);
  458. }
  459. s->have_hrirs = 1;
  460. fail:
  461. av_freep(&data_ir_l);
  462. av_freep(&data_ir_r);
  463. av_freep(&data_hrtf_l);
  464. av_freep(&data_hrtf_r);
  465. av_freep(&fft_in_l);
  466. av_freep(&fft_in_r);
  467. return ret;
  468. }
  469. static int filter_frame(AVFilterLink *inlink, AVFrame *in)
  470. {
  471. AVFilterContext *ctx = inlink->dst;
  472. HeadphoneContext *s = ctx->priv;
  473. AVFilterLink *outlink = ctx->outputs[0];
  474. int ret = 0;
  475. av_audio_fifo_write(s->in[0].fifo, (void **)in->extended_data,
  476. in->nb_samples);
  477. if (s->pts == AV_NOPTS_VALUE)
  478. s->pts = in->pts;
  479. av_frame_free(&in);
  480. if (!s->have_hrirs && s->eof_hrirs) {
  481. ret = convert_coeffs(ctx, inlink);
  482. if (ret < 0)
  483. return ret;
  484. }
  485. if (s->have_hrirs) {
  486. while (av_audio_fifo_size(s->in[0].fifo) >= s->size) {
  487. ret = headphone_frame(s, outlink);
  488. if (ret < 0)
  489. break;
  490. }
  491. }
  492. return ret;
  493. }
  494. static int query_formats(AVFilterContext *ctx)
  495. {
  496. struct HeadphoneContext *s = ctx->priv;
  497. AVFilterFormats *formats = NULL;
  498. AVFilterChannelLayouts *layouts = NULL;
  499. int ret, i;
  500. ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
  501. if (ret)
  502. return ret;
  503. ret = ff_set_common_formats(ctx, formats);
  504. if (ret)
  505. return ret;
  506. layouts = ff_all_channel_layouts();
  507. if (!layouts)
  508. return AVERROR(ENOMEM);
  509. ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
  510. if (ret)
  511. return ret;
  512. layouts = NULL;
  513. ret = ff_add_channel_layout(&layouts, AV_CH_LAYOUT_STEREO);
  514. if (ret)
  515. return ret;
  516. for (i = 1; i < s->nb_inputs; i++) {
  517. ret = ff_channel_layouts_ref(layouts, &ctx->inputs[i]->out_channel_layouts);
  518. if (ret)
  519. return ret;
  520. }
  521. ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts);
  522. if (ret)
  523. return ret;
  524. formats = ff_all_samplerates();
  525. if (!formats)
  526. return AVERROR(ENOMEM);
  527. return ff_set_common_samplerates(ctx, formats);
  528. }
  529. static int config_input(AVFilterLink *inlink)
  530. {
  531. AVFilterContext *ctx = inlink->dst;
  532. HeadphoneContext *s = ctx->priv;
  533. if (s->type == FREQUENCY_DOMAIN) {
  534. inlink->partial_buf_size =
  535. inlink->min_samples =
  536. inlink->max_samples = inlink->sample_rate;
  537. }
  538. if (s->nb_irs < inlink->channels) {
  539. av_log(ctx, AV_LOG_ERROR, "Number of inputs must be >= %d.\n", inlink->channels + 1);
  540. return AVERROR(EINVAL);
  541. }
  542. return 0;
  543. }
  544. static av_cold int init(AVFilterContext *ctx)
  545. {
  546. HeadphoneContext *s = ctx->priv;
  547. int i, ret;
  548. AVFilterPad pad = {
  549. .name = "in0",
  550. .type = AVMEDIA_TYPE_AUDIO,
  551. .config_props = config_input,
  552. .filter_frame = filter_frame,
  553. };
  554. if ((ret = ff_insert_inpad(ctx, 0, &pad)) < 0)
  555. return ret;
  556. if (!s->map) {
  557. av_log(ctx, AV_LOG_ERROR, "Valid mapping must be set.\n");
  558. return AVERROR(EINVAL);
  559. }
  560. parse_map(ctx);
  561. s->in = av_calloc(s->nb_inputs, sizeof(*s->in));
  562. if (!s->in)
  563. return AVERROR(ENOMEM);
  564. for (i = 1; i < s->nb_inputs; i++) {
  565. char *name = av_asprintf("hrir%d", i - 1);
  566. AVFilterPad pad = {
  567. .name = name,
  568. .type = AVMEDIA_TYPE_AUDIO,
  569. .filter_frame = read_ir,
  570. };
  571. if (!name)
  572. return AVERROR(ENOMEM);
  573. if ((ret = ff_insert_inpad(ctx, i, &pad)) < 0) {
  574. av_freep(&pad.name);
  575. return ret;
  576. }
  577. }
  578. s->fdsp = avpriv_float_dsp_alloc(0);
  579. if (!s->fdsp)
  580. return AVERROR(ENOMEM);
  581. s->pts = AV_NOPTS_VALUE;
  582. return 0;
  583. }
  584. static int config_output(AVFilterLink *outlink)
  585. {
  586. AVFilterContext *ctx = outlink->src;
  587. HeadphoneContext *s = ctx->priv;
  588. AVFilterLink *inlink = ctx->inputs[0];
  589. int i;
  590. if (s->type == TIME_DOMAIN)
  591. s->size = 1024;
  592. else
  593. s->size = inlink->sample_rate;
  594. for (i = 0; i < s->nb_inputs; i++) {
  595. s->in[i].fifo = av_audio_fifo_alloc(ctx->inputs[i]->format, ctx->inputs[i]->channels, 1024);
  596. if (!s->in[i].fifo)
  597. return AVERROR(ENOMEM);
  598. }
  599. s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6 + s->lfe_gain) / 20 * M_LN10);
  600. return 0;
  601. }
  602. static int request_frame(AVFilterLink *outlink)
  603. {
  604. AVFilterContext *ctx = outlink->src;
  605. HeadphoneContext *s = ctx->priv;
  606. int i, ret;
  607. for (i = 1; !s->eof_hrirs && i < s->nb_inputs; i++) {
  608. if (!s->in[i].eof) {
  609. ret = ff_request_frame(ctx->inputs[i]);
  610. if (ret == AVERROR_EOF) {
  611. s->in[i].eof = 1;
  612. ret = 0;
  613. }
  614. return ret;
  615. } else {
  616. if (i == s->nb_inputs - 1)
  617. s->eof_hrirs = 1;
  618. }
  619. }
  620. return ff_request_frame(ctx->inputs[0]);
  621. }
  622. static av_cold void uninit(AVFilterContext *ctx)
  623. {
  624. HeadphoneContext *s = ctx->priv;
  625. int i;
  626. av_fft_end(s->ifft[0]);
  627. av_fft_end(s->ifft[1]);
  628. av_fft_end(s->fft[0]);
  629. av_fft_end(s->fft[1]);
  630. av_freep(&s->delay[0]);
  631. av_freep(&s->delay[1]);
  632. av_freep(&s->data_ir[0]);
  633. av_freep(&s->data_ir[1]);
  634. av_freep(&s->ringbuffer[0]);
  635. av_freep(&s->ringbuffer[1]);
  636. av_freep(&s->temp_src[0]);
  637. av_freep(&s->temp_src[1]);
  638. av_freep(&s->temp_fft[0]);
  639. av_freep(&s->temp_fft[1]);
  640. av_freep(&s->data_hrtf[0]);
  641. av_freep(&s->data_hrtf[1]);
  642. av_freep(&s->fdsp);
  643. for (i = 0; i < s->nb_inputs; i++) {
  644. av_frame_free(&s->in[i].frame);
  645. av_audio_fifo_free(s->in[i].fifo);
  646. if (ctx->input_pads && i)
  647. av_freep(&ctx->input_pads[i].name);
  648. }
  649. av_freep(&s->in);
  650. }
  651. #define OFFSET(x) offsetof(HeadphoneContext, x)
  652. #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  653. static const AVOption headphone_options[] = {
  654. { "map", "set channels convolution mappings", OFFSET(map), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
  655. { "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
  656. { "lfe", "set lfe gain in dB", OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
  657. { "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" },
  658. { "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" },
  659. { "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" },
  660. { NULL }
  661. };
  662. AVFILTER_DEFINE_CLASS(headphone);
  663. static const AVFilterPad outputs[] = {
  664. {
  665. .name = "default",
  666. .type = AVMEDIA_TYPE_AUDIO,
  667. .config_props = config_output,
  668. .request_frame = request_frame,
  669. },
  670. { NULL }
  671. };
  672. AVFilter ff_af_headphone = {
  673. .name = "headphone",
  674. .description = NULL_IF_CONFIG_SMALL("Apply headphone binaural spatialization with HRTFs in additional streams."),
  675. .priv_size = sizeof(HeadphoneContext),
  676. .priv_class = &headphone_class,
  677. .init = init,
  678. .uninit = uninit,
  679. .query_formats = query_formats,
  680. .inputs = NULL,
  681. .outputs = outputs,
  682. .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_DYNAMIC_INPUTS,
  683. };