You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

548 lines
20KB

  1. /*
  2. * Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
  3. * Copyright (c) 2013 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <float.h>
  22. #include "libavutil/opt.h"
  23. #include "audio.h"
  24. #include "avfilter.h"
  25. #include "internal.h"
  26. typedef struct ChannelStats {
  27. double last;
  28. double min_non_zero;
  29. double sigma_x, sigma_x2;
  30. double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
  31. double min, max;
  32. double nmin, nmax;
  33. double min_run, max_run;
  34. double min_runs, max_runs;
  35. double min_diff, max_diff;
  36. double diff1_sum;
  37. double diff1_sum_x2;
  38. uint64_t mask, imask;
  39. uint64_t min_count, max_count;
  40. uint64_t nb_samples;
  41. } ChannelStats;
  42. typedef struct AudioStatsContext {
  43. const AVClass *class;
  44. ChannelStats *chstats;
  45. int nb_channels;
  46. uint64_t tc_samples;
  47. double time_constant;
  48. double mult;
  49. int metadata;
  50. int reset_count;
  51. int nb_frames;
  52. int maxbitdepth;
  53. } AudioStatsContext;
  54. #define OFFSET(x) offsetof(AudioStatsContext, x)
  55. #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  56. static const AVOption astats_options[] = {
  57. { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, .01, 10, FLAGS },
  58. { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
  59. { "reset", "recalculate stats after this many frames", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
  60. { NULL }
  61. };
  62. AVFILTER_DEFINE_CLASS(astats);
  63. static int query_formats(AVFilterContext *ctx)
  64. {
  65. AVFilterFormats *formats;
  66. AVFilterChannelLayouts *layouts;
  67. static const enum AVSampleFormat sample_fmts[] = {
  68. AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
  69. AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
  70. AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
  71. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
  72. AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
  73. AV_SAMPLE_FMT_NONE
  74. };
  75. int ret;
  76. layouts = ff_all_channel_counts();
  77. if (!layouts)
  78. return AVERROR(ENOMEM);
  79. ret = ff_set_common_channel_layouts(ctx, layouts);
  80. if (ret < 0)
  81. return ret;
  82. formats = ff_make_format_list(sample_fmts);
  83. if (!formats)
  84. return AVERROR(ENOMEM);
  85. ret = ff_set_common_formats(ctx, formats);
  86. if (ret < 0)
  87. return ret;
  88. formats = ff_all_samplerates();
  89. if (!formats)
  90. return AVERROR(ENOMEM);
  91. return ff_set_common_samplerates(ctx, formats);
  92. }
  93. static void reset_stats(AudioStatsContext *s)
  94. {
  95. int c;
  96. for (c = 0; c < s->nb_channels; c++) {
  97. ChannelStats *p = &s->chstats[c];
  98. p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
  99. p->max = p->nmax = p->max_sigma_x2 = DBL_MIN;
  100. p->min_non_zero = DBL_MAX;
  101. p->min_diff = DBL_MAX;
  102. p->max_diff = DBL_MIN;
  103. p->sigma_x = 0;
  104. p->sigma_x2 = 0;
  105. p->avg_sigma_x2 = 0;
  106. p->min_run = 0;
  107. p->max_run = 0;
  108. p->min_runs = 0;
  109. p->max_runs = 0;
  110. p->diff1_sum = 0;
  111. p->diff1_sum_x2 = 0;
  112. p->mask = 0;
  113. p->imask = 0xFFFFFFFFFFFFFFFF;
  114. p->min_count = 0;
  115. p->max_count = 0;
  116. p->nb_samples = 0;
  117. }
  118. }
  119. static int config_output(AVFilterLink *outlink)
  120. {
  121. AudioStatsContext *s = outlink->src->priv;
  122. s->chstats = av_calloc(sizeof(*s->chstats), outlink->channels);
  123. if (!s->chstats)
  124. return AVERROR(ENOMEM);
  125. s->nb_channels = outlink->channels;
  126. s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
  127. s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5;
  128. s->nb_frames = 0;
  129. s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
  130. reset_stats(s);
  131. return 0;
  132. }
  133. static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
  134. {
  135. unsigned result = s->maxbitdepth;
  136. mask = mask & (~imask);
  137. for (; result && !(mask & 1); --result, mask >>= 1);
  138. depth->den = result;
  139. depth->num = 0;
  140. for (; result; --result, mask >>= 1)
  141. if (mask & 1)
  142. depth->num++;
  143. }
  144. static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
  145. {
  146. if (d < p->min) {
  147. p->min = d;
  148. p->nmin = nd;
  149. p->min_run = 1;
  150. p->min_runs = 0;
  151. p->min_count = 1;
  152. } else if (d == p->min) {
  153. p->min_count++;
  154. p->min_run = d == p->last ? p->min_run + 1 : 1;
  155. } else if (p->last == p->min) {
  156. p->min_runs += p->min_run * p->min_run;
  157. }
  158. if (d != 0 && FFABS(d) < p->min_non_zero)
  159. p->min_non_zero = FFABS(d);
  160. if (d > p->max) {
  161. p->max = d;
  162. p->nmax = nd;
  163. p->max_run = 1;
  164. p->max_runs = 0;
  165. p->max_count = 1;
  166. } else if (d == p->max) {
  167. p->max_count++;
  168. p->max_run = d == p->last ? p->max_run + 1 : 1;
  169. } else if (p->last == p->max) {
  170. p->max_runs += p->max_run * p->max_run;
  171. }
  172. p->sigma_x += nd;
  173. p->sigma_x2 += nd * nd;
  174. p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
  175. p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
  176. p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
  177. p->diff1_sum += fabs(d - p->last);
  178. p->diff1_sum_x2 += (d - p->last) * (d - p->last);
  179. p->last = d;
  180. p->mask |= i;
  181. p->imask &= i;
  182. if (p->nb_samples >= s->tc_samples) {
  183. p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
  184. p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
  185. }
  186. p->nb_samples++;
  187. }
  188. static void set_meta(AVDictionary **metadata, int chan, const char *key,
  189. const char *fmt, double val)
  190. {
  191. uint8_t value[128];
  192. uint8_t key2[128];
  193. snprintf(value, sizeof(value), fmt, val);
  194. if (chan)
  195. snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
  196. else
  197. snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
  198. av_dict_set(metadata, key2, value, 0);
  199. }
  200. #define LINEAR_TO_DB(x) (log10(x) * 20)
  201. static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
  202. {
  203. uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0;
  204. double min_runs = 0, max_runs = 0,
  205. min = DBL_MAX, max = DBL_MIN, min_diff = DBL_MAX, max_diff = 0,
  206. nmin = DBL_MAX, nmax = DBL_MIN,
  207. max_sigma_x = 0,
  208. diff1_sum = 0,
  209. diff1_sum_x2 = 0,
  210. sigma_x = 0,
  211. sigma_x2 = 0,
  212. min_sigma_x2 = DBL_MAX,
  213. max_sigma_x2 = DBL_MIN;
  214. AVRational depth;
  215. int c;
  216. for (c = 0; c < s->nb_channels; c++) {
  217. ChannelStats *p = &s->chstats[c];
  218. if (p->nb_samples < s->tc_samples)
  219. p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
  220. min = FFMIN(min, p->min);
  221. max = FFMAX(max, p->max);
  222. nmin = FFMIN(nmin, p->nmin);
  223. nmax = FFMAX(nmax, p->nmax);
  224. min_diff = FFMIN(min_diff, p->min_diff);
  225. max_diff = FFMAX(max_diff, p->max_diff);
  226. diff1_sum += p->diff1_sum;
  227. diff1_sum_x2 += p->diff1_sum_x2;
  228. min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
  229. max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
  230. sigma_x += p->sigma_x;
  231. sigma_x2 += p->sigma_x2;
  232. min_count += p->min_count;
  233. max_count += p->max_count;
  234. min_runs += p->min_runs;
  235. max_runs += p->max_runs;
  236. mask |= p->mask;
  237. imask &= p->imask;
  238. nb_samples += p->nb_samples;
  239. if (fabs(p->sigma_x) > fabs(max_sigma_x))
  240. max_sigma_x = p->sigma_x;
  241. set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
  242. set_meta(metadata, c + 1, "Min_level", "%f", p->min);
  243. set_meta(metadata, c + 1, "Max_level", "%f", p->max);
  244. set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
  245. set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
  246. set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
  247. set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
  248. set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
  249. set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
  250. set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
  251. set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
  252. set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
  253. set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
  254. set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
  255. bit_depth(s, p->mask, p->imask, &depth);
  256. set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num);
  257. set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den);
  258. set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
  259. }
  260. set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
  261. set_meta(metadata, 0, "Overall.Min_level", "%f", min);
  262. set_meta(metadata, 0, "Overall.Max_level", "%f", max);
  263. set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
  264. set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
  265. set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
  266. set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
  267. set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
  268. set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
  269. set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
  270. set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
  271. set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
  272. set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
  273. bit_depth(s, mask, imask, &depth);
  274. set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num);
  275. set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den);
  276. set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
  277. }
  278. static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
  279. {
  280. AudioStatsContext *s = inlink->dst->priv;
  281. AVDictionary **metadata = &buf->metadata;
  282. const int channels = s->nb_channels;
  283. int i, c;
  284. if (s->reset_count > 0) {
  285. if (s->nb_frames >= s->reset_count) {
  286. reset_stats(s);
  287. s->nb_frames = 0;
  288. }
  289. s->nb_frames++;
  290. }
  291. switch (inlink->format) {
  292. case AV_SAMPLE_FMT_DBLP:
  293. for (c = 0; c < channels; c++) {
  294. ChannelStats *p = &s->chstats[c];
  295. const double *src = (const double *)buf->extended_data[c];
  296. for (i = 0; i < buf->nb_samples; i++, src++)
  297. update_stat(s, p, *src, *src, llrint(*src * (UINT64_C(1) << 63)));
  298. }
  299. break;
  300. case AV_SAMPLE_FMT_DBL: {
  301. const double *src = (const double *)buf->extended_data[0];
  302. for (i = 0; i < buf->nb_samples; i++) {
  303. for (c = 0; c < channels; c++, src++)
  304. update_stat(s, &s->chstats[c], *src, *src, llrint(*src * (UINT64_C(1) << 63)));
  305. }}
  306. break;
  307. case AV_SAMPLE_FMT_FLTP:
  308. for (c = 0; c < channels; c++) {
  309. ChannelStats *p = &s->chstats[c];
  310. const float *src = (const float *)buf->extended_data[c];
  311. for (i = 0; i < buf->nb_samples; i++, src++)
  312. update_stat(s, p, *src, *src, llrint(*src * (UINT64_C(1) << 31)));
  313. }
  314. break;
  315. case AV_SAMPLE_FMT_FLT: {
  316. const float *src = (const float *)buf->extended_data[0];
  317. for (i = 0; i < buf->nb_samples; i++) {
  318. for (c = 0; c < channels; c++, src++)
  319. update_stat(s, &s->chstats[c], *src, *src, llrint(*src * (UINT64_C(1) << 31)));
  320. }}
  321. break;
  322. case AV_SAMPLE_FMT_S64P:
  323. for (c = 0; c < channels; c++) {
  324. ChannelStats *p = &s->chstats[c];
  325. const int64_t *src = (const int64_t *)buf->extended_data[c];
  326. for (i = 0; i < buf->nb_samples; i++, src++)
  327. update_stat(s, p, *src, *src / (double)INT64_MAX, *src);
  328. }
  329. break;
  330. case AV_SAMPLE_FMT_S64: {
  331. const int64_t *src = (const int64_t *)buf->extended_data[0];
  332. for (i = 0; i < buf->nb_samples; i++) {
  333. for (c = 0; c < channels; c++, src++)
  334. update_stat(s, &s->chstats[c], *src, *src / (double)INT64_MAX, *src);
  335. }}
  336. break;
  337. case AV_SAMPLE_FMT_S32P:
  338. for (c = 0; c < channels; c++) {
  339. ChannelStats *p = &s->chstats[c];
  340. const int32_t *src = (const int32_t *)buf->extended_data[c];
  341. for (i = 0; i < buf->nb_samples; i++, src++)
  342. update_stat(s, p, *src, *src / (double)INT32_MAX, *src);
  343. }
  344. break;
  345. case AV_SAMPLE_FMT_S32: {
  346. const int32_t *src = (const int32_t *)buf->extended_data[0];
  347. for (i = 0; i < buf->nb_samples; i++) {
  348. for (c = 0; c < channels; c++, src++)
  349. update_stat(s, &s->chstats[c], *src, *src / (double)INT32_MAX, *src);
  350. }}
  351. break;
  352. case AV_SAMPLE_FMT_S16P:
  353. for (c = 0; c < channels; c++) {
  354. ChannelStats *p = &s->chstats[c];
  355. const int16_t *src = (const int16_t *)buf->extended_data[c];
  356. for (i = 0; i < buf->nb_samples; i++, src++)
  357. update_stat(s, p, *src, *src / (double)INT16_MAX, *src);
  358. }
  359. break;
  360. case AV_SAMPLE_FMT_S16: {
  361. const int16_t *src = (const int16_t *)buf->extended_data[0];
  362. for (i = 0; i < buf->nb_samples; i++) {
  363. for (c = 0; c < channels; c++, src++)
  364. update_stat(s, &s->chstats[c], *src, *src / (double)INT16_MAX, *src);
  365. }}
  366. break;
  367. }
  368. if (s->metadata)
  369. set_metadata(s, metadata);
  370. return ff_filter_frame(inlink->dst->outputs[0], buf);
  371. }
  372. static void print_stats(AVFilterContext *ctx)
  373. {
  374. AudioStatsContext *s = ctx->priv;
  375. uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0;
  376. double min_runs = 0, max_runs = 0,
  377. min = DBL_MAX, max = DBL_MIN, min_diff = DBL_MAX, max_diff = 0,
  378. nmin = DBL_MAX, nmax = DBL_MIN,
  379. max_sigma_x = 0,
  380. diff1_sum_x2 = 0,
  381. diff1_sum = 0,
  382. sigma_x = 0,
  383. sigma_x2 = 0,
  384. min_sigma_x2 = DBL_MAX,
  385. max_sigma_x2 = DBL_MIN;
  386. AVRational depth;
  387. int c;
  388. for (c = 0; c < s->nb_channels; c++) {
  389. ChannelStats *p = &s->chstats[c];
  390. if (p->nb_samples < s->tc_samples)
  391. p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
  392. min = FFMIN(min, p->min);
  393. max = FFMAX(max, p->max);
  394. nmin = FFMIN(nmin, p->nmin);
  395. nmax = FFMAX(nmax, p->nmax);
  396. min_diff = FFMIN(min_diff, p->min_diff);
  397. max_diff = FFMAX(max_diff, p->max_diff);
  398. diff1_sum_x2 += p->diff1_sum_x2;
  399. diff1_sum += p->diff1_sum;
  400. min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
  401. max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
  402. sigma_x += p->sigma_x;
  403. sigma_x2 += p->sigma_x2;
  404. min_count += p->min_count;
  405. max_count += p->max_count;
  406. min_runs += p->min_runs;
  407. max_runs += p->max_runs;
  408. mask |= p->mask;
  409. imask &= p->imask;
  410. nb_samples += p->nb_samples;
  411. if (fabs(p->sigma_x) > fabs(max_sigma_x))
  412. max_sigma_x = p->sigma_x;
  413. av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
  414. av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
  415. av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
  416. av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
  417. av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
  418. av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
  419. av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
  420. av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
  421. av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
  422. av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
  423. av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
  424. if (p->min_sigma_x2 != 1)
  425. av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
  426. av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
  427. av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
  428. av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
  429. bit_depth(s, p->mask, p->imask, &depth);
  430. av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
  431. av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
  432. }
  433. av_log(ctx, AV_LOG_INFO, "Overall\n");
  434. av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
  435. av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
  436. av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
  437. av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
  438. av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
  439. av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
  440. av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
  441. av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
  442. av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
  443. av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
  444. if (min_sigma_x2 != 1)
  445. av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
  446. av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
  447. av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
  448. bit_depth(s, mask, imask, &depth);
  449. av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
  450. av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
  451. }
  452. static av_cold void uninit(AVFilterContext *ctx)
  453. {
  454. AudioStatsContext *s = ctx->priv;
  455. if (s->nb_channels)
  456. print_stats(ctx);
  457. av_freep(&s->chstats);
  458. }
  459. static const AVFilterPad astats_inputs[] = {
  460. {
  461. .name = "default",
  462. .type = AVMEDIA_TYPE_AUDIO,
  463. .filter_frame = filter_frame,
  464. },
  465. { NULL }
  466. };
  467. static const AVFilterPad astats_outputs[] = {
  468. {
  469. .name = "default",
  470. .type = AVMEDIA_TYPE_AUDIO,
  471. .config_props = config_output,
  472. },
  473. { NULL }
  474. };
  475. AVFilter ff_af_astats = {
  476. .name = "astats",
  477. .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
  478. .query_formats = query_formats,
  479. .priv_size = sizeof(AudioStatsContext),
  480. .priv_class = &astats_class,
  481. .uninit = uninit,
  482. .inputs = astats_inputs,
  483. .outputs = astats_outputs,
  484. };