You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

561 lines
21KB

  1. /*
  2. * HEVC video decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/pixdesc.h"
  23. #include "hevc.h"
  24. #include "bit_depth_template.c"
  25. #define POS(x, y) src[(x) + stride * (y)]
  26. static void FUNC(intra_pred)(HEVCContext *s, int x0, int y0, int log2_size, int c_idx)
  27. {
  28. #define PU(x) \
  29. ((x) >> s->sps->log2_min_pu_size)
  30. #define MVF(x, y) \
  31. (s->ref->tab_mvf[(x) + (y) * min_pu_width])
  32. #define MVF_PU(x, y) \
  33. MVF(PU(x0 + ((x) << hshift)), PU(y0 + ((y) << vshift)))
  34. #define IS_INTRA(x, y) \
  35. MVF_PU(x, y).is_intra
  36. #define MIN_TB_ADDR_ZS(x, y) \
  37. s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)]
  38. #define EXTEND_LEFT(ptr, start, length) \
  39. for (i = (start); i > (start) - (length); i--) \
  40. ptr[i - 1] = ptr[i]
  41. #define EXTEND_RIGHT(ptr, start, length) \
  42. for (i = (start); i < (start) + (length); i++) \
  43. ptr[i] = ptr[i - 1]
  44. #define EXTEND_UP(ptr, start, length) EXTEND_LEFT(ptr, start, length)
  45. #define EXTEND_DOWN(ptr, start, length) EXTEND_RIGHT(ptr, start, length)
  46. #define EXTEND_LEFT_CIP(ptr, start, length) \
  47. for (i = (start); i > (start) - (length); i--) \
  48. if (!IS_INTRA(i - 1, -1)) \
  49. ptr[i - 1] = ptr[i]
  50. #define EXTEND_RIGHT_CIP(ptr, start, length) \
  51. for (i = (start); i < (start) + (length); i++) \
  52. if (!IS_INTRA(i, -1)) \
  53. ptr[i] = ptr[i - 1]
  54. #define EXTEND_UP_CIP(ptr, start, length) \
  55. for (i = (start); i > (start) - (length); i--) \
  56. if (!IS_INTRA(-1, i - 1)) \
  57. ptr[i - 1] = ptr[i]
  58. #define EXTEND_UP_CIP_0(ptr, start, length) \
  59. for (i = (start); i > (start) - (length); i--) \
  60. ptr[i - 1] = ptr[i]
  61. #define EXTEND_DOWN_CIP(ptr, start, length) \
  62. for (i = (start); i < (start) + (length); i++) \
  63. if (!IS_INTRA(-1, i)) \
  64. ptr[i] = ptr[i - 1]
  65. HEVCLocalContext *lc = &s->HEVClc;
  66. int i;
  67. int hshift = s->sps->hshift[c_idx];
  68. int vshift = s->sps->vshift[c_idx];
  69. int size = (1 << log2_size);
  70. int size_in_luma = size << hshift;
  71. int size_in_tbs = size_in_luma >> s->sps->log2_min_tb_size;
  72. int x = x0 >> hshift;
  73. int y = y0 >> vshift;
  74. int x_tb = x0 >> s->sps->log2_min_tb_size;
  75. int y_tb = y0 >> s->sps->log2_min_tb_size;
  76. int cur_tb_addr = MIN_TB_ADDR_ZS(x_tb, y_tb);
  77. ptrdiff_t stride = s->frame->linesize[c_idx] / sizeof(pixel);
  78. pixel *src = (pixel*)s->frame->data[c_idx] + x + y * stride;
  79. int min_pu_width = s->sps->min_pu_width;
  80. enum IntraPredMode mode = c_idx ? lc->pu.intra_pred_mode_c :
  81. lc->tu.cur_intra_pred_mode;
  82. pixel left_array[2 * MAX_TB_SIZE + 1];
  83. pixel filtered_left_array[2 * MAX_TB_SIZE + 1];
  84. pixel top_array[2 * MAX_TB_SIZE + 1];
  85. pixel filtered_top_array[2 * MAX_TB_SIZE + 1];
  86. pixel *left = left_array + 1;
  87. pixel *top = top_array + 1;
  88. pixel *filtered_left = filtered_left_array + 1;
  89. pixel *filtered_top = filtered_top_array + 1;
  90. int cand_bottom_left = lc->na.cand_bottom_left && cur_tb_addr > MIN_TB_ADDR_ZS(x_tb - 1, y_tb + size_in_tbs);
  91. int cand_left = lc->na.cand_left;
  92. int cand_up_left = lc->na.cand_up_left;
  93. int cand_up = lc->na.cand_up;
  94. int cand_up_right = lc->na.cand_up_right && cur_tb_addr > MIN_TB_ADDR_ZS(x_tb + size_in_tbs, y_tb - 1);
  95. int bottom_left_size = (FFMIN(y0 + 2 * size_in_luma, s->sps->height) -
  96. (y0 + size_in_luma)) >> vshift;
  97. int top_right_size = (FFMIN(x0 + 2 * size_in_luma, s->sps->width) -
  98. (x0 + size_in_luma)) >> hshift;
  99. if (s->pps->constrained_intra_pred_flag == 1) {
  100. int size_in_luma_pu = PU(size_in_luma);
  101. int on_pu_edge_x = !(x0 & ((1 << s->sps->log2_min_pu_size) - 1));
  102. int on_pu_edge_y = !(y0 & ((1 << s->sps->log2_min_pu_size) - 1));
  103. if (!size_in_luma_pu)
  104. size_in_luma_pu++;
  105. if (cand_bottom_left == 1 && on_pu_edge_x) {
  106. int x_left_pu = PU(x0 - 1);
  107. int y_bottom_pu = PU(y0 + size_in_luma);
  108. int max = FFMIN(size_in_luma_pu, s->sps->min_pu_height - y_bottom_pu);
  109. cand_bottom_left = 0;
  110. for (i = 0; i < max; i++)
  111. cand_bottom_left |= MVF(x_left_pu, y_bottom_pu + i).is_intra;
  112. }
  113. if (cand_left == 1 && on_pu_edge_x) {
  114. int x_left_pu = PU(x0 - 1);
  115. int y_left_pu = PU(y0);
  116. int max = FFMIN(size_in_luma_pu, s->sps->min_pu_height - y_left_pu);
  117. cand_left = 0;
  118. for (i = 0; i < max; i++)
  119. cand_left |= MVF(x_left_pu, y_left_pu + i).is_intra;
  120. }
  121. if (cand_up_left == 1) {
  122. int x_left_pu = PU(x0 - 1);
  123. int y_top_pu = PU(y0 - 1);
  124. cand_up_left = MVF(x_left_pu, y_top_pu).is_intra;
  125. }
  126. if (cand_up == 1 && on_pu_edge_y) {
  127. int x_top_pu = PU(x0);
  128. int y_top_pu = PU(y0 - 1);
  129. int max = FFMIN(size_in_luma_pu, s->sps->min_pu_width - x_top_pu);
  130. cand_up = 0;
  131. for (i = 0; i < max; i++)
  132. cand_up |= MVF(x_top_pu + i, y_top_pu).is_intra;
  133. }
  134. if (cand_up_right == 1 && on_pu_edge_y) {
  135. int y_top_pu = PU(y0 - 1);
  136. int x_right_pu = PU(x0 + size_in_luma);
  137. int max = FFMIN(size_in_luma_pu, s->sps->min_pu_width - x_right_pu);
  138. cand_up_right = 0;
  139. for (i = 0; i < max; i++)
  140. cand_up_right |= MVF(x_right_pu + i, y_top_pu).is_intra;
  141. }
  142. for (i = 0; i < 2 * MAX_TB_SIZE; i++) {
  143. left[i] = 128;
  144. top[i] = 128;
  145. }
  146. }
  147. if (cand_bottom_left) {
  148. for (i = size + bottom_left_size; i < (size << 1); i++)
  149. if (IS_INTRA(-1, size + bottom_left_size - 1) ||
  150. !s->pps->constrained_intra_pred_flag)
  151. left[i] = POS(-1, size + bottom_left_size - 1);
  152. for (i = size + bottom_left_size - 1; i >= size; i--)
  153. if (IS_INTRA(-1, i) || !s->pps->constrained_intra_pred_flag)
  154. left[i] = POS(-1, i);
  155. }
  156. if (cand_left)
  157. for (i = size - 1; i >= 0; i--)
  158. if (IS_INTRA(-1, i) || !s->pps->constrained_intra_pred_flag)
  159. left[i] = POS(-1, i);
  160. if (cand_up_left)
  161. if (IS_INTRA(-1, -1) || !s->pps->constrained_intra_pred_flag) {
  162. left[-1] = POS(-1, -1);
  163. top[-1] = left[-1];
  164. }
  165. if (cand_up)
  166. for (i = size - 1; i >= 0; i--)
  167. if (IS_INTRA(i, -1) || !s->pps->constrained_intra_pred_flag)
  168. top[i] = POS(i, -1);
  169. if (cand_up_right) {
  170. for (i = size + top_right_size; i < (size << 1); i++)
  171. if (IS_INTRA(size + top_right_size - 1, -1) ||
  172. !s->pps->constrained_intra_pred_flag)
  173. top[i] = POS(size + top_right_size - 1, -1);
  174. for (i = size + top_right_size - 1; i >= size; i--)
  175. if (IS_INTRA(i, -1) || !s->pps->constrained_intra_pred_flag)
  176. top[i] = POS(i, -1);
  177. }
  178. if (s->pps->constrained_intra_pred_flag == 1) {
  179. if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) {
  180. int size_max_x = x0 + ((2 * size) << hshift) < s->sps->width ?
  181. 2 * size : (s->sps->width - x0) >> hshift;
  182. int size_max_y = y0 + ((2 * size) << vshift) < s->sps->height ?
  183. 2 * size : (s->sps->height - y0) >> vshift;
  184. int j = size + (cand_bottom_left? bottom_left_size: 0) -1;
  185. if (!cand_up_right) {
  186. size_max_x = x0 + ((size) << hshift) < s->sps->width ?
  187. size : (s->sps->width - x0) >> hshift;
  188. }
  189. if (!cand_bottom_left) {
  190. size_max_y = y0 + (( size) << vshift) < s->sps->height ?
  191. size : (s->sps->height - y0) >> vshift;
  192. }
  193. if (cand_bottom_left || cand_left || cand_up_left) {
  194. while (j > -1 && !IS_INTRA(-1, j))
  195. j--;
  196. if (!IS_INTRA(-1, j)) {
  197. j = 0;
  198. while (j < size_max_x && !IS_INTRA(j, -1))
  199. j++;
  200. EXTEND_LEFT_CIP(top, j, j + 1);
  201. left[-1] = top[-1];
  202. j = 0;
  203. }
  204. } else {
  205. j = 0;
  206. while (j < size_max_x && !IS_INTRA(j, -1))
  207. j++;
  208. if (j > 0)
  209. if (x0 > 0) {
  210. EXTEND_LEFT_CIP(top, j, j + 1);
  211. } else {
  212. EXTEND_LEFT_CIP(top, j, j);
  213. top[-1] = top[0];
  214. }
  215. left[-1] = top[-1];
  216. j = 0;
  217. }
  218. if (cand_bottom_left || cand_left) {
  219. EXTEND_DOWN_CIP(left, j, size_max_y - j);
  220. }
  221. if (!cand_left) {
  222. EXTEND_DOWN(left, 0, size);
  223. }
  224. if (!cand_bottom_left) {
  225. EXTEND_DOWN(left, size, size);
  226. }
  227. if (x0 != 0 && y0 != 0) {
  228. EXTEND_UP_CIP(left, size_max_y - 1, size_max_y);
  229. } else if (x0 == 0) {
  230. EXTEND_UP_CIP_0(left, size_max_y - 1, size_max_y);
  231. } else {
  232. EXTEND_UP_CIP(left, size_max_y - 1, size_max_y - 1);
  233. }
  234. top[-1] = left[-1];
  235. if (y0 != 0) {
  236. EXTEND_RIGHT_CIP(top, 0, size_max_x);
  237. }
  238. }
  239. }
  240. // Infer the unavailable samples
  241. if (!cand_bottom_left) {
  242. if (cand_left) {
  243. EXTEND_DOWN(left, size, size);
  244. } else if (cand_up_left) {
  245. EXTEND_DOWN(left, 0, 2 * size);
  246. cand_left = 1;
  247. } else if (cand_up) {
  248. left[-1] = top[0];
  249. EXTEND_DOWN(left, 0, 2 * size);
  250. cand_up_left = 1;
  251. cand_left = 1;
  252. } else if (cand_up_right) {
  253. EXTEND_LEFT(top, size, size);
  254. left[-1] = top[0];
  255. EXTEND_DOWN(left, 0, 2 * size);
  256. cand_up = 1;
  257. cand_up_left = 1;
  258. cand_left = 1;
  259. } else { // No samples available
  260. top[0] = left[-1] = (1 << (BIT_DEPTH - 1));
  261. EXTEND_RIGHT(top, 1, 2 * size - 1);
  262. EXTEND_DOWN(left, 0, 2 * size);
  263. }
  264. }
  265. if (!cand_left) {
  266. EXTEND_UP(left, size, size);
  267. }
  268. if (!cand_up_left) {
  269. left[-1] = left[0];
  270. }
  271. if (!cand_up) {
  272. top[0] = left[-1];
  273. EXTEND_RIGHT(top, 1, size - 1);
  274. }
  275. if (!cand_up_right) {
  276. EXTEND_RIGHT(top, size, size);
  277. }
  278. top[-1] = left[-1];
  279. // Filtering process
  280. if (c_idx == 0 && mode != INTRA_DC && size != 4) {
  281. int intra_hor_ver_dist_thresh[] = { 7, 1, 0 };
  282. int min_dist_vert_hor = FFMIN(FFABS((int)mode - 26),
  283. FFABS((int)mode - 10));
  284. if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) {
  285. int threshold = 1 << (BIT_DEPTH - 5);
  286. if (s->sps->sps_strong_intra_smoothing_enable_flag &&
  287. log2_size == 5 &&
  288. FFABS(top[-1] + top[63] - 2 * top[31]) < threshold &&
  289. FFABS(left[-1] + left[63] - 2 * left[31]) < threshold) {
  290. // We can't just overwrite values in top because it could be
  291. // a pointer into src
  292. filtered_top[-1] = top[-1];
  293. filtered_top[63] = top[63];
  294. for (i = 0; i < 63; i++)
  295. filtered_top[i] = ((64 - (i + 1)) * top[-1] +
  296. (i + 1) * top[63] + 32) >> 6;
  297. for (i = 0; i < 63; i++)
  298. left[i] = ((64 - (i + 1)) * left[-1] +
  299. (i + 1) * left[63] + 32) >> 6;
  300. top = filtered_top;
  301. } else {
  302. filtered_left[2 * size - 1] = left[2 * size - 1];
  303. filtered_top[2 * size - 1] = top[2 * size - 1];
  304. for (i = 2 * size - 2; i >= 0; i--)
  305. filtered_left[i] = (left[i + 1] + 2 * left[i] +
  306. left[i - 1] + 2) >> 2;
  307. filtered_top[-1] =
  308. filtered_left[-1] = (left[0] + 2 * left[-1] + top[0] + 2) >> 2;
  309. for (i = 2 * size - 2; i >= 0; i--)
  310. filtered_top[i] = (top[i + 1] + 2 * top[i] +
  311. top[i - 1] + 2) >> 2;
  312. left = filtered_left;
  313. top = filtered_top;
  314. }
  315. }
  316. }
  317. switch (mode) {
  318. case INTRA_PLANAR:
  319. s->hpc.pred_planar[log2_size - 2]((uint8_t *)src, (uint8_t *)top,
  320. (uint8_t *)left, stride);
  321. break;
  322. case INTRA_DC:
  323. s->hpc.pred_dc((uint8_t *)src, (uint8_t *)top,
  324. (uint8_t *)left, stride, log2_size, c_idx);
  325. break;
  326. default:
  327. s->hpc.pred_angular[log2_size - 2]((uint8_t *)src, (uint8_t *)top,
  328. (uint8_t *)left, stride, c_idx,
  329. mode);
  330. break;
  331. }
  332. }
  333. static void FUNC(pred_planar_0)(uint8_t *_src, const uint8_t *_top,
  334. const uint8_t *_left,
  335. ptrdiff_t stride)
  336. {
  337. int x, y;
  338. pixel *src = (pixel *)_src;
  339. const pixel *top = (const pixel *)_top;
  340. const pixel *left = (const pixel *)_left;
  341. for (y = 0; y < 4; y++)
  342. for (x = 0; x < 4; x++)
  343. POS(x, y) = ((3 - x) * left[y] + (x + 1) * top[4] +
  344. (3 - y) * top[x] + (y + 1) * left[4] + 4) >> 3;
  345. }
  346. static void FUNC(pred_planar_1)(uint8_t *_src, const uint8_t *_top,
  347. const uint8_t *_left, ptrdiff_t stride)
  348. {
  349. int x, y;
  350. pixel *src = (pixel *)_src;
  351. const pixel *top = (const pixel *)_top;
  352. const pixel *left = (const pixel *)_left;
  353. for (y = 0; y < 8; y++)
  354. for (x = 0; x < 8; x++)
  355. POS(x, y) = ((7 - x) * left[y] + (x + 1) * top[8] +
  356. (7 - y) * top[x] + (y + 1) * left[8] + 8) >> 4;
  357. }
  358. static void FUNC(pred_planar_2)(uint8_t *_src, const uint8_t *_top,
  359. const uint8_t *_left, ptrdiff_t stride)
  360. {
  361. int x, y;
  362. pixel *src = (pixel *)_src;
  363. const pixel *top = (const pixel *)_top;
  364. const pixel *left = (const pixel *)_left;
  365. for (y = 0; y < 16; y++)
  366. for (x = 0; x < 16; x++)
  367. POS(x, y) = ((15 - x) * left[y] + (x + 1) * top[16] +
  368. (15 - y) * top[x] + (y + 1) * left[16] + 16) >> 5;
  369. }
  370. static void FUNC(pred_planar_3)(uint8_t *_src, const uint8_t *_top,
  371. const uint8_t *_left, ptrdiff_t stride)
  372. {
  373. int x, y;
  374. pixel *src = (pixel *)_src;
  375. const pixel *top = (const pixel *)_top;
  376. const pixel *left = (const pixel *)_left;
  377. for (y = 0; y < 32; y++)
  378. for (x = 0; x < 32; x++)
  379. POS(x, y) = ((31 - x) * left[y] + (x + 1) * top[32] +
  380. (31 - y) * top[x] + (y + 1) * left[32] + 32) >> 6;
  381. }
  382. static void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top,
  383. const uint8_t *_left,
  384. ptrdiff_t stride, int log2_size, int c_idx)
  385. {
  386. int i, j, x, y;
  387. int size = (1 << log2_size);
  388. pixel *src = (pixel *)_src;
  389. const pixel *top = (const pixel *)_top;
  390. const pixel *left = (const pixel *)_left;
  391. int dc = size;
  392. pixel4 a;
  393. for (i = 0; i < size; i++)
  394. dc += left[i] + top[i];
  395. dc >>= log2_size + 1;
  396. a = PIXEL_SPLAT_X4(dc);
  397. for (i = 0; i < size; i++)
  398. for (j = 0; j < size / 4; j++)
  399. AV_WN4PA(&POS(j * 4, i), a);
  400. if (c_idx == 0 && size < 32) {
  401. POS(0, 0) = (left[0] + 2 * dc + top[0] + 2) >> 2;
  402. for (x = 1; x < size; x++)
  403. POS(x, 0) = (top[x] + 3 * dc + 2) >> 2;
  404. for (y = 1; y < size; y++)
  405. POS(0, y) = (left[y] + 3 * dc + 2) >> 2;
  406. }
  407. }
  408. static av_always_inline void FUNC(pred_angular)(uint8_t *_src,
  409. const uint8_t *_top,
  410. const uint8_t *_left,
  411. ptrdiff_t stride, int c_idx,
  412. int mode, int size)
  413. {
  414. int x, y;
  415. pixel *src = (pixel *)_src;
  416. const pixel *top = (const pixel *)_top;
  417. const pixel *left = (const pixel *)_left;
  418. static const int intra_pred_angle[] = {
  419. 32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32,
  420. -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32
  421. };
  422. static const int inv_angle[] = {
  423. -4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482,
  424. -630, -910, -1638, -4096
  425. };
  426. int angle = intra_pred_angle[mode - 2];
  427. pixel ref_array[3 * MAX_TB_SIZE + 1];
  428. pixel *ref_tmp = ref_array + size;
  429. const pixel *ref;
  430. int last = (size * angle) >> 5;
  431. if (mode >= 18) {
  432. ref = top - 1;
  433. if (angle < 0 && last < -1) {
  434. for (x = 0; x <= size; x++)
  435. ref_tmp[x] = top[x - 1];
  436. for (x = last; x <= -1; x++)
  437. ref_tmp[x] = left[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
  438. ref = ref_tmp;
  439. }
  440. for (y = 0; y < size; y++) {
  441. int idx = ((y + 1) * angle) >> 5;
  442. int fact = ((y + 1) * angle) & 31;
  443. if (fact) {
  444. for (x = 0; x < size; x++) {
  445. POS(x, y) = ((32 - fact) * ref[x + idx + 1] +
  446. fact * ref[x + idx + 2] + 16) >> 5;
  447. }
  448. } else {
  449. for (x = 0; x < size; x++)
  450. POS(x, y) = ref[x + idx + 1];
  451. }
  452. }
  453. if (mode == 26 && c_idx == 0 && size < 32) {
  454. for (y = 0; y < size; y++)
  455. POS(0, y) = av_clip_pixel(top[0] + ((left[y] - left[-1]) >> 1));
  456. }
  457. } else {
  458. ref = left - 1;
  459. if (angle < 0 && last < -1) {
  460. for (x = 0; x <= size; x++)
  461. ref_tmp[x] = left[x - 1];
  462. for (x = last; x <= -1; x++)
  463. ref_tmp[x] = top[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)];
  464. ref = ref_tmp;
  465. }
  466. for (x = 0; x < size; x++) {
  467. int idx = ((x + 1) * angle) >> 5;
  468. int fact = ((x + 1) * angle) & 31;
  469. if (fact) {
  470. for (y = 0; y < size; y++) {
  471. POS(x, y) = ((32 - fact) * ref[y + idx + 1] +
  472. fact * ref[y + idx + 2] + 16) >> 5;
  473. }
  474. } else {
  475. for (y = 0; y < size; y++)
  476. POS(x, y) = ref[y + idx + 1];
  477. }
  478. }
  479. if (mode == 10 && c_idx == 0 && size < 32) {
  480. for (x = 0; x < size; x++)
  481. POS(x, 0) = av_clip_pixel(left[0] + ((top[x] - top[-1]) >> 1));
  482. }
  483. }
  484. }
  485. static void FUNC(pred_angular_0)(uint8_t *src, const uint8_t *top,
  486. const uint8_t *left,
  487. ptrdiff_t stride, int c_idx, int mode)
  488. {
  489. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 2);
  490. }
  491. static void FUNC(pred_angular_1)(uint8_t *src, const uint8_t *top,
  492. const uint8_t *left,
  493. ptrdiff_t stride, int c_idx, int mode)
  494. {
  495. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 3);
  496. }
  497. static void FUNC(pred_angular_2)(uint8_t *src, const uint8_t *top,
  498. const uint8_t *left,
  499. ptrdiff_t stride, int c_idx, int mode)
  500. {
  501. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 4);
  502. }
  503. static void FUNC(pred_angular_3)(uint8_t *src, const uint8_t *top,
  504. const uint8_t *left,
  505. ptrdiff_t stride, int c_idx, int mode)
  506. {
  507. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 5);
  508. }
  509. #undef EXTEND_LEFT_CIP
  510. #undef EXTEND_RIGHT_CIP
  511. #undef EXTEND_UP_CIP
  512. #undef EXTEND_DOWN_CIP
  513. #undef IS_INTRA
  514. #undef MVF_PU
  515. #undef MVF
  516. #undef PU
  517. #undef EXTEND_LEFT
  518. #undef EXTEND_RIGHT
  519. #undef EXTEND_UP
  520. #undef EXTEND_DOWN
  521. #undef MIN_TB_ADDR_ZS
  522. #undef POS