You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1663 lines
61KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "dca.h"
  37. #include "dcadata.h"
  38. #include "dcadsp.h"
  39. #include "dcahuff.h"
  40. #include "dca_exss.h"
  41. #include "fft.h"
  42. #include "fmtconvert.h"
  43. #include "get_bits.h"
  44. #include "internal.h"
  45. #include "mathops.h"
  46. #include "put_bits.h"
  47. #include "synth_filter.h"
  48. #if ARCH_ARM
  49. # include "arm/dca.h"
  50. #endif
  51. //#define TRACE
  52. enum DCAMode {
  53. DCA_MONO = 0,
  54. DCA_CHANNEL,
  55. DCA_STEREO,
  56. DCA_STEREO_SUMDIFF,
  57. DCA_STEREO_TOTAL,
  58. DCA_3F,
  59. DCA_2F1R,
  60. DCA_3F1R,
  61. DCA_2F2R,
  62. DCA_3F2R,
  63. DCA_4F2R
  64. };
  65. /* -1 are reserved or unknown */
  66. static const int dca_ext_audio_descr_mask[] = {
  67. DCA_EXT_XCH,
  68. -1,
  69. DCA_EXT_X96,
  70. DCA_EXT_XCH | DCA_EXT_X96,
  71. -1,
  72. -1,
  73. DCA_EXT_XXCH,
  74. -1,
  75. };
  76. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  77. * Some compromises have been made for special configurations. Most configurations
  78. * are never used so complete accuracy is not needed.
  79. *
  80. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  81. * S -> side, when both rear and back are configured move one of them to the side channel
  82. * OV -> center back
  83. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  84. */
  85. static const uint64_t dca_core_channel_layout[] = {
  86. AV_CH_FRONT_CENTER, ///< 1, A
  87. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  88. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  89. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  90. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  91. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  92. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  93. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  94. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  95. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  96. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  97. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  98. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  99. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  100. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  101. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  102. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  103. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  104. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  105. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  106. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  107. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  108. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  109. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  110. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  111. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  112. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  113. };
  114. static const int8_t dca_lfe_index[] = {
  115. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  116. };
  117. static const int8_t dca_channel_reorder_lfe[][9] = {
  118. { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
  119. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  120. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  121. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  122. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  123. { 2, 0, 1, -1, -1, -1, -1, -1, -1 },
  124. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  125. { 2, 0, 1, 4, -1, -1, -1, -1, -1 },
  126. { 0, 1, 3, 4, -1, -1, -1, -1, -1 },
  127. { 2, 0, 1, 4, 5, -1, -1, -1, -1 },
  128. { 3, 4, 0, 1, 5, 6, -1, -1, -1 },
  129. { 2, 0, 1, 4, 5, 6, -1, -1, -1 },
  130. { 0, 6, 4, 5, 2, 3, -1, -1, -1 },
  131. { 4, 2, 5, 0, 1, 6, 7, -1, -1 },
  132. { 5, 6, 0, 1, 7, 3, 8, 4, -1 },
  133. { 4, 2, 5, 0, 1, 6, 8, 7, -1 },
  134. };
  135. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  136. { 0, 2, -1, -1, -1, -1, -1, -1, -1 },
  137. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  138. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  139. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  140. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  141. { 2, 0, 1, 4, -1, -1, -1, -1, -1 },
  142. { 0, 1, 3, 4, -1, -1, -1, -1, -1 },
  143. { 2, 0, 1, 4, 5, -1, -1, -1, -1 },
  144. { 0, 1, 4, 5, 3, -1, -1, -1, -1 },
  145. { 2, 0, 1, 5, 6, 4, -1, -1, -1 },
  146. { 3, 4, 0, 1, 6, 7, 5, -1, -1 },
  147. { 2, 0, 1, 4, 5, 6, 7, -1, -1 },
  148. { 0, 6, 4, 5, 2, 3, 7, -1, -1 },
  149. { 4, 2, 5, 0, 1, 7, 8, 6, -1 },
  150. { 5, 6, 0, 1, 8, 3, 9, 4, 7 },
  151. { 4, 2, 5, 0, 1, 6, 9, 8, 7 },
  152. };
  153. static const int8_t dca_channel_reorder_nolfe[][9] = {
  154. { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
  155. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  156. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  157. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  158. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  159. { 2, 0, 1, -1, -1, -1, -1, -1, -1 },
  160. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  161. { 2, 0, 1, 3, -1, -1, -1, -1, -1 },
  162. { 0, 1, 2, 3, -1, -1, -1, -1, -1 },
  163. { 2, 0, 1, 3, 4, -1, -1, -1, -1 },
  164. { 2, 3, 0, 1, 4, 5, -1, -1, -1 },
  165. { 2, 0, 1, 3, 4, 5, -1, -1, -1 },
  166. { 0, 5, 3, 4, 1, 2, -1, -1, -1 },
  167. { 3, 2, 4, 0, 1, 5, 6, -1, -1 },
  168. { 4, 5, 0, 1, 6, 2, 7, 3, -1 },
  169. { 3, 2, 4, 0, 1, 5, 7, 6, -1 },
  170. };
  171. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  172. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  173. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  174. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  175. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  176. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  177. { 2, 0, 1, 3, -1, -1, -1, -1, -1 },
  178. { 0, 1, 2, 3, -1, -1, -1, -1, -1 },
  179. { 2, 0, 1, 3, 4, -1, -1, -1, -1 },
  180. { 0, 1, 3, 4, 2, -1, -1, -1, -1 },
  181. { 2, 0, 1, 4, 5, 3, -1, -1, -1 },
  182. { 2, 3, 0, 1, 5, 6, 4, -1, -1 },
  183. { 2, 0, 1, 3, 4, 5, 6, -1, -1 },
  184. { 0, 5, 3, 4, 1, 2, 6, -1, -1 },
  185. { 3, 2, 4, 0, 1, 6, 7, 5, -1 },
  186. { 4, 5, 0, 1, 7, 2, 8, 3, 6 },
  187. { 3, 2, 4, 0, 1, 5, 8, 7, 6 },
  188. };
  189. #define DCA_DOLBY 101 /* FIXME */
  190. #define DCA_CHANNEL_BITS 6
  191. #define DCA_CHANNEL_MASK 0x3F
  192. #define DCA_LFE 0x80
  193. #define HEADER_SIZE 14
  194. #define DCA_NSYNCAUX 0x9A1105A0
  195. /** Bit allocation */
  196. typedef struct BitAlloc {
  197. int offset; ///< code values offset
  198. int maxbits[8]; ///< max bits in VLC
  199. int wrap; ///< wrap for get_vlc2()
  200. VLC vlc[8]; ///< actual codes
  201. } BitAlloc;
  202. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  203. static BitAlloc dca_tmode; ///< transition mode VLCs
  204. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  205. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  206. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  207. int idx)
  208. {
  209. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  210. ba->offset;
  211. }
  212. static const uint16_t dca_vlc_offs[] = {
  213. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  214. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  215. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  216. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  217. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  218. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  219. };
  220. static av_cold void dca_init_vlcs(void)
  221. {
  222. static int vlcs_initialized = 0;
  223. int i, j, c = 14;
  224. static VLC_TYPE dca_table[23622][2];
  225. if (vlcs_initialized)
  226. return;
  227. dca_bitalloc_index.offset = 1;
  228. dca_bitalloc_index.wrap = 2;
  229. for (i = 0; i < 5; i++) {
  230. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  231. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  232. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  233. bitalloc_12_bits[i], 1, 1,
  234. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  235. }
  236. dca_scalefactor.offset = -64;
  237. dca_scalefactor.wrap = 2;
  238. for (i = 0; i < 5; i++) {
  239. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  240. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  241. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  242. scales_bits[i], 1, 1,
  243. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  244. }
  245. dca_tmode.offset = 0;
  246. dca_tmode.wrap = 1;
  247. for (i = 0; i < 4; i++) {
  248. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  249. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  250. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  251. tmode_bits[i], 1, 1,
  252. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  253. }
  254. for (i = 0; i < 10; i++)
  255. for (j = 0; j < 7; j++) {
  256. if (!bitalloc_codes[i][j])
  257. break;
  258. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  259. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  260. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  261. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  262. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  263. bitalloc_sizes[i],
  264. bitalloc_bits[i][j], 1, 1,
  265. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  266. c++;
  267. }
  268. vlcs_initialized = 1;
  269. }
  270. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  271. {
  272. while (len--)
  273. *dst++ = get_bits(gb, bits);
  274. }
  275. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
  276. {
  277. int i, j;
  278. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  279. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  280. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  281. s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
  282. s->prim_channels = s->total_channels;
  283. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  284. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  285. for (i = base_channel; i < s->prim_channels; i++) {
  286. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  287. if (s->subband_activity[i] > DCA_SUBBANDS)
  288. s->subband_activity[i] = DCA_SUBBANDS;
  289. }
  290. for (i = base_channel; i < s->prim_channels; i++) {
  291. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  292. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  293. s->vq_start_subband[i] = DCA_SUBBANDS;
  294. }
  295. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  296. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  297. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  298. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  299. /* Get codebooks quantization indexes */
  300. if (!base_channel)
  301. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  302. for (j = 1; j < 11; j++)
  303. for (i = base_channel; i < s->prim_channels; i++)
  304. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  305. /* Get scale factor adjustment */
  306. for (j = 0; j < 11; j++)
  307. for (i = base_channel; i < s->prim_channels; i++)
  308. s->scalefactor_adj[i][j] = 1;
  309. for (j = 1; j < 11; j++)
  310. for (i = base_channel; i < s->prim_channels; i++)
  311. if (s->quant_index_huffman[i][j] < thr[j])
  312. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  313. if (s->crc_present) {
  314. /* Audio header CRC check */
  315. get_bits(&s->gb, 16);
  316. }
  317. s->current_subframe = 0;
  318. s->current_subsubframe = 0;
  319. #ifdef TRACE
  320. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  321. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  322. for (i = base_channel; i < s->prim_channels; i++) {
  323. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  324. s->subband_activity[i]);
  325. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  326. s->vq_start_subband[i]);
  327. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  328. s->joint_intensity[i]);
  329. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  330. s->transient_huffman[i]);
  331. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  332. s->scalefactor_huffman[i]);
  333. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  334. s->bitalloc_huffman[i]);
  335. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  336. for (j = 0; j < 11; j++)
  337. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  338. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  339. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  340. for (j = 0; j < 11; j++)
  341. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  342. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  343. }
  344. #endif
  345. return 0;
  346. }
  347. static int dca_parse_frame_header(DCAContext *s)
  348. {
  349. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  350. /* Sync code */
  351. skip_bits_long(&s->gb, 32);
  352. /* Frame header */
  353. s->frame_type = get_bits(&s->gb, 1);
  354. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  355. s->crc_present = get_bits(&s->gb, 1);
  356. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  357. s->frame_size = get_bits(&s->gb, 14) + 1;
  358. if (s->frame_size < 95)
  359. return AVERROR_INVALIDDATA;
  360. s->amode = get_bits(&s->gb, 6);
  361. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  362. if (!s->sample_rate)
  363. return AVERROR_INVALIDDATA;
  364. s->bit_rate_index = get_bits(&s->gb, 5);
  365. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  366. if (!s->bit_rate)
  367. return AVERROR_INVALIDDATA;
  368. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  369. s->dynrange = get_bits(&s->gb, 1);
  370. s->timestamp = get_bits(&s->gb, 1);
  371. s->aux_data = get_bits(&s->gb, 1);
  372. s->hdcd = get_bits(&s->gb, 1);
  373. s->ext_descr = get_bits(&s->gb, 3);
  374. s->ext_coding = get_bits(&s->gb, 1);
  375. s->aspf = get_bits(&s->gb, 1);
  376. s->lfe = get_bits(&s->gb, 2);
  377. s->predictor_history = get_bits(&s->gb, 1);
  378. if (s->lfe > 2) {
  379. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  380. return AVERROR_INVALIDDATA;
  381. }
  382. /* TODO: check CRC */
  383. if (s->crc_present)
  384. s->header_crc = get_bits(&s->gb, 16);
  385. s->multirate_inter = get_bits(&s->gb, 1);
  386. s->version = get_bits(&s->gb, 4);
  387. s->copy_history = get_bits(&s->gb, 2);
  388. s->source_pcm_res = get_bits(&s->gb, 3);
  389. s->front_sum = get_bits(&s->gb, 1);
  390. s->surround_sum = get_bits(&s->gb, 1);
  391. s->dialog_norm = get_bits(&s->gb, 4);
  392. /* FIXME: channels mixing levels */
  393. s->output = s->amode;
  394. if (s->lfe)
  395. s->output |= DCA_LFE;
  396. #ifdef TRACE
  397. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  398. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  399. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  400. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  401. s->sample_blocks, s->sample_blocks * 32);
  402. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  403. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  404. s->amode, dca_channels[s->amode]);
  405. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  406. s->sample_rate);
  407. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  408. s->bit_rate);
  409. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  410. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  411. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  412. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  413. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  414. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  415. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  416. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  417. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  418. s->predictor_history);
  419. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  420. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  421. s->multirate_inter);
  422. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  423. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  424. av_log(s->avctx, AV_LOG_DEBUG,
  425. "source pcm resolution: %i (%i bits/sample)\n",
  426. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  427. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  428. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  429. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  430. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  431. #endif
  432. /* Primary audio coding header */
  433. s->subframes = get_bits(&s->gb, 4) + 1;
  434. return dca_parse_audio_coding_header(s, 0);
  435. }
  436. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  437. {
  438. if (level < 5) {
  439. /* huffman encoded */
  440. value += get_bitalloc(gb, &dca_scalefactor, level);
  441. value = av_clip(value, 0, (1 << log2range) - 1);
  442. } else if (level < 8) {
  443. if (level + 1 > log2range) {
  444. skip_bits(gb, level + 1 - log2range);
  445. value = get_bits(gb, log2range);
  446. } else {
  447. value = get_bits(gb, level + 1);
  448. }
  449. }
  450. return value;
  451. }
  452. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  453. {
  454. /* Primary audio coding side information */
  455. int j, k;
  456. if (get_bits_left(&s->gb) < 0)
  457. return AVERROR_INVALIDDATA;
  458. if (!base_channel) {
  459. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  460. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  461. }
  462. for (j = base_channel; j < s->prim_channels; j++) {
  463. for (k = 0; k < s->subband_activity[j]; k++)
  464. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  465. }
  466. /* Get prediction codebook */
  467. for (j = base_channel; j < s->prim_channels; j++) {
  468. for (k = 0; k < s->subband_activity[j]; k++) {
  469. if (s->prediction_mode[j][k] > 0) {
  470. /* (Prediction coefficient VQ address) */
  471. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  472. }
  473. }
  474. }
  475. /* Bit allocation index */
  476. for (j = base_channel; j < s->prim_channels; j++) {
  477. for (k = 0; k < s->vq_start_subband[j]; k++) {
  478. if (s->bitalloc_huffman[j] == 6)
  479. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  480. else if (s->bitalloc_huffman[j] == 5)
  481. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  482. else if (s->bitalloc_huffman[j] == 7) {
  483. av_log(s->avctx, AV_LOG_ERROR,
  484. "Invalid bit allocation index\n");
  485. return AVERROR_INVALIDDATA;
  486. } else {
  487. s->bitalloc[j][k] =
  488. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  489. }
  490. if (s->bitalloc[j][k] > 26) {
  491. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  492. j, k, s->bitalloc[j][k]);
  493. return AVERROR_INVALIDDATA;
  494. }
  495. }
  496. }
  497. /* Transition mode */
  498. for (j = base_channel; j < s->prim_channels; j++) {
  499. for (k = 0; k < s->subband_activity[j]; k++) {
  500. s->transition_mode[j][k] = 0;
  501. if (s->subsubframes[s->current_subframe] > 1 &&
  502. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  503. s->transition_mode[j][k] =
  504. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  505. }
  506. }
  507. }
  508. if (get_bits_left(&s->gb) < 0)
  509. return AVERROR_INVALIDDATA;
  510. for (j = base_channel; j < s->prim_channels; j++) {
  511. const uint32_t *scale_table;
  512. int scale_sum, log_size;
  513. memset(s->scale_factor[j], 0,
  514. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  515. if (s->scalefactor_huffman[j] == 6) {
  516. scale_table = scale_factor_quant7;
  517. log_size = 7;
  518. } else {
  519. scale_table = scale_factor_quant6;
  520. log_size = 6;
  521. }
  522. /* When huffman coded, only the difference is encoded */
  523. scale_sum = 0;
  524. for (k = 0; k < s->subband_activity[j]; k++) {
  525. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  526. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  527. s->scale_factor[j][k][0] = scale_table[scale_sum];
  528. }
  529. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  530. /* Get second scale factor */
  531. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  532. s->scale_factor[j][k][1] = scale_table[scale_sum];
  533. }
  534. }
  535. }
  536. /* Joint subband scale factor codebook select */
  537. for (j = base_channel; j < s->prim_channels; j++) {
  538. /* Transmitted only if joint subband coding enabled */
  539. if (s->joint_intensity[j] > 0)
  540. s->joint_huff[j] = get_bits(&s->gb, 3);
  541. }
  542. if (get_bits_left(&s->gb) < 0)
  543. return AVERROR_INVALIDDATA;
  544. /* Scale factors for joint subband coding */
  545. for (j = base_channel; j < s->prim_channels; j++) {
  546. int source_channel;
  547. /* Transmitted only if joint subband coding enabled */
  548. if (s->joint_intensity[j] > 0) {
  549. int scale = 0;
  550. source_channel = s->joint_intensity[j] - 1;
  551. /* When huffman coded, only the difference is encoded
  552. * (is this valid as well for joint scales ???) */
  553. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  554. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  555. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  556. }
  557. if (!(s->debug_flag & 0x02)) {
  558. av_log(s->avctx, AV_LOG_DEBUG,
  559. "Joint stereo coding not supported\n");
  560. s->debug_flag |= 0x02;
  561. }
  562. }
  563. }
  564. /* Dynamic range coefficient */
  565. if (!base_channel && s->dynrange)
  566. s->dynrange_coef = get_bits(&s->gb, 8);
  567. /* Side information CRC check word */
  568. if (s->crc_present) {
  569. get_bits(&s->gb, 16);
  570. }
  571. /*
  572. * Primary audio data arrays
  573. */
  574. /* VQ encoded high frequency subbands */
  575. for (j = base_channel; j < s->prim_channels; j++)
  576. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  577. /* 1 vector -> 32 samples */
  578. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  579. /* Low frequency effect data */
  580. if (!base_channel && s->lfe) {
  581. /* LFE samples */
  582. int lfe_samples = 2 * s->lfe * (4 + block_index);
  583. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  584. float lfe_scale;
  585. for (j = lfe_samples; j < lfe_end_sample; j++) {
  586. /* Signed 8 bits int */
  587. s->lfe_data[j] = get_sbits(&s->gb, 8);
  588. }
  589. /* Scale factor index */
  590. skip_bits(&s->gb, 1);
  591. s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 7)];
  592. /* Quantization step size * scale factor */
  593. lfe_scale = 0.035 * s->lfe_scale_factor;
  594. for (j = lfe_samples; j < lfe_end_sample; j++)
  595. s->lfe_data[j] *= lfe_scale;
  596. }
  597. #ifdef TRACE
  598. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  599. s->subsubframes[s->current_subframe]);
  600. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  601. s->partial_samples[s->current_subframe]);
  602. for (j = base_channel; j < s->prim_channels; j++) {
  603. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  604. for (k = 0; k < s->subband_activity[j]; k++)
  605. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  606. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  607. }
  608. for (j = base_channel; j < s->prim_channels; j++) {
  609. for (k = 0; k < s->subband_activity[j]; k++)
  610. av_log(s->avctx, AV_LOG_DEBUG,
  611. "prediction coefs: %f, %f, %f, %f\n",
  612. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  613. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  614. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  615. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  616. }
  617. for (j = base_channel; j < s->prim_channels; j++) {
  618. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  619. for (k = 0; k < s->vq_start_subband[j]; k++)
  620. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  621. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  622. }
  623. for (j = base_channel; j < s->prim_channels; j++) {
  624. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  625. for (k = 0; k < s->subband_activity[j]; k++)
  626. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  627. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  628. }
  629. for (j = base_channel; j < s->prim_channels; j++) {
  630. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  631. for (k = 0; k < s->subband_activity[j]; k++) {
  632. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  633. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  634. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  635. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  636. }
  637. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  638. }
  639. for (j = base_channel; j < s->prim_channels; j++) {
  640. if (s->joint_intensity[j] > 0) {
  641. int source_channel = s->joint_intensity[j] - 1;
  642. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  643. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  644. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  645. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  646. }
  647. }
  648. for (j = base_channel; j < s->prim_channels; j++)
  649. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  650. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  651. if (!base_channel && s->lfe) {
  652. int lfe_samples = 2 * s->lfe * (4 + block_index);
  653. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  654. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  655. for (j = lfe_samples; j < lfe_end_sample; j++)
  656. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  657. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  658. }
  659. #endif
  660. return 0;
  661. }
  662. static void qmf_32_subbands(DCAContext *s, int chans,
  663. float samples_in[32][8], float *samples_out,
  664. float scale)
  665. {
  666. const float *prCoeff;
  667. int sb_act = s->subband_activity[chans];
  668. scale *= sqrt(1 / 8.0);
  669. /* Select filter */
  670. if (!s->multirate_inter) /* Non-perfect reconstruction */
  671. prCoeff = fir_32bands_nonperfect;
  672. else /* Perfect reconstruction */
  673. prCoeff = fir_32bands_perfect;
  674. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  675. s->subband_fir_hist[chans],
  676. &s->hist_index[chans],
  677. s->subband_fir_noidea[chans], prCoeff,
  678. samples_out, s->raXin, scale);
  679. }
  680. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  681. int num_deci_sample, float *samples_in,
  682. float *samples_out)
  683. {
  684. /* samples_in: An array holding decimated samples.
  685. * Samples in current subframe starts from samples_in[0],
  686. * while samples_in[-1], samples_in[-2], ..., stores samples
  687. * from last subframe as history.
  688. *
  689. * samples_out: An array holding interpolated samples
  690. */
  691. int idx;
  692. const float *prCoeff;
  693. int deciindex;
  694. /* Select decimation filter */
  695. if (decimation_select == 1) {
  696. idx = 1;
  697. prCoeff = lfe_fir_128;
  698. } else {
  699. idx = 0;
  700. prCoeff = lfe_fir_64;
  701. }
  702. /* Interpolation */
  703. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  704. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  705. samples_in++;
  706. samples_out += 2 * 32 * (1 + idx);
  707. }
  708. }
  709. /* downmixing routines */
  710. #define MIX_REAR1(samples, s1, rs, coef) \
  711. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  712. samples[1][i] += samples[s1][i] * coef[rs][1];
  713. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  714. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  715. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  716. #define MIX_FRONT3(samples, coef) \
  717. t = samples[c][i]; \
  718. u = samples[l][i]; \
  719. v = samples[r][i]; \
  720. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  721. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  722. #define DOWNMIX_TO_STEREO(op1, op2) \
  723. for (i = 0; i < 256; i++) { \
  724. op1 \
  725. op2 \
  726. }
  727. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  728. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  729. const int8_t *channel_mapping)
  730. {
  731. int c, l, r, sl, sr, s;
  732. int i;
  733. float t, u, v;
  734. switch (srcfmt) {
  735. case DCA_MONO:
  736. case DCA_4F2R:
  737. av_log(NULL, 0, "Not implemented!\n");
  738. break;
  739. case DCA_CHANNEL:
  740. case DCA_STEREO:
  741. case DCA_STEREO_TOTAL:
  742. case DCA_STEREO_SUMDIFF:
  743. break;
  744. case DCA_3F:
  745. c = channel_mapping[0];
  746. l = channel_mapping[1];
  747. r = channel_mapping[2];
  748. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  749. break;
  750. case DCA_2F1R:
  751. s = channel_mapping[2];
  752. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  753. break;
  754. case DCA_3F1R:
  755. c = channel_mapping[0];
  756. l = channel_mapping[1];
  757. r = channel_mapping[2];
  758. s = channel_mapping[3];
  759. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  760. MIX_REAR1(samples, s, 3, coef));
  761. break;
  762. case DCA_2F2R:
  763. sl = channel_mapping[2];
  764. sr = channel_mapping[3];
  765. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  766. break;
  767. case DCA_3F2R:
  768. c = channel_mapping[0];
  769. l = channel_mapping[1];
  770. r = channel_mapping[2];
  771. sl = channel_mapping[3];
  772. sr = channel_mapping[4];
  773. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  774. MIX_REAR2(samples, sl, sr, 3, coef));
  775. break;
  776. }
  777. if (lfe_present) {
  778. int lf_buf = dca_lfe_index[srcfmt];
  779. int lf_idx = dca_channels[srcfmt];
  780. for (i = 0; i < 256; i++) {
  781. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  782. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  783. }
  784. }
  785. }
  786. #ifndef decode_blockcodes
  787. /* Very compact version of the block code decoder that does not use table
  788. * look-up but is slightly slower */
  789. static int decode_blockcode(int code, int levels, int32_t *values)
  790. {
  791. int i;
  792. int offset = (levels - 1) >> 1;
  793. for (i = 0; i < 4; i++) {
  794. int div = FASTDIV(code, levels);
  795. values[i] = code - offset - div * levels;
  796. code = div;
  797. }
  798. return code;
  799. }
  800. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  801. {
  802. return decode_blockcode(code1, levels, values) |
  803. decode_blockcode(code2, levels, values + 4);
  804. }
  805. #endif
  806. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  807. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  808. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  809. {
  810. int k, l;
  811. int subsubframe = s->current_subsubframe;
  812. const float *quant_step_table;
  813. /* FIXME */
  814. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  815. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  816. /*
  817. * Audio data
  818. */
  819. /* Select quantization step size table */
  820. if (s->bit_rate_index == 0x1f)
  821. quant_step_table = lossless_quant_d;
  822. else
  823. quant_step_table = lossy_quant_d;
  824. for (k = base_channel; k < s->prim_channels; k++) {
  825. float rscale[DCA_SUBBANDS];
  826. if (get_bits_left(&s->gb) < 0)
  827. return AVERROR_INVALIDDATA;
  828. for (l = 0; l < s->vq_start_subband[k]; l++) {
  829. int m;
  830. /* Select the mid-tread linear quantizer */
  831. int abits = s->bitalloc[k][l];
  832. float quant_step_size = quant_step_table[abits];
  833. /*
  834. * Determine quantization index code book and its type
  835. */
  836. /* Select quantization index code book */
  837. int sel = s->quant_index_huffman[k][abits];
  838. /*
  839. * Extract bits from the bit stream
  840. */
  841. if (!abits) {
  842. rscale[l] = 0;
  843. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  844. } else {
  845. /* Deal with transients */
  846. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  847. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  848. s->scalefactor_adj[k][sel];
  849. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  850. if (abits <= 7) {
  851. /* Block code */
  852. int block_code1, block_code2, size, levels, err;
  853. size = abits_sizes[abits - 1];
  854. levels = abits_levels[abits - 1];
  855. block_code1 = get_bits(&s->gb, size);
  856. block_code2 = get_bits(&s->gb, size);
  857. err = decode_blockcodes(block_code1, block_code2,
  858. levels, block + 8 * l);
  859. if (err) {
  860. av_log(s->avctx, AV_LOG_ERROR,
  861. "ERROR: block code look-up failed\n");
  862. return AVERROR_INVALIDDATA;
  863. }
  864. } else {
  865. /* no coding */
  866. for (m = 0; m < 8; m++)
  867. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  868. }
  869. } else {
  870. /* Huffman coded */
  871. for (m = 0; m < 8; m++)
  872. block[8 * l + m] = get_bitalloc(&s->gb,
  873. &dca_smpl_bitalloc[abits], sel);
  874. }
  875. }
  876. }
  877. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  878. block, rscale, 8 * s->vq_start_subband[k]);
  879. for (l = 0; l < s->vq_start_subband[k]; l++) {
  880. int m;
  881. /*
  882. * Inverse ADPCM if in prediction mode
  883. */
  884. if (s->prediction_mode[k][l]) {
  885. int n;
  886. if (s->predictor_history)
  887. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  888. s->subband_samples_hist[k][l][3] +
  889. adpcm_vb[s->prediction_vq[k][l]][1] *
  890. s->subband_samples_hist[k][l][2] +
  891. adpcm_vb[s->prediction_vq[k][l]][2] *
  892. s->subband_samples_hist[k][l][1] +
  893. adpcm_vb[s->prediction_vq[k][l]][3] *
  894. s->subband_samples_hist[k][l][0]) *
  895. (1.0f / 8192);
  896. for (m = 1; m < 8; m++) {
  897. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  898. subband_samples[k][l][m - 1];
  899. for (n = 2; n <= 4; n++)
  900. if (m >= n)
  901. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  902. subband_samples[k][l][m - n];
  903. else if (s->predictor_history)
  904. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  905. s->subband_samples_hist[k][l][m - n + 4];
  906. subband_samples[k][l][m] += sum * 1.0f / 8192;
  907. }
  908. }
  909. }
  910. /*
  911. * Decode VQ encoded high frequencies
  912. */
  913. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  914. if (!s->debug_flag & 0x01) {
  915. av_log(s->avctx, AV_LOG_DEBUG,
  916. "Stream with high frequencies VQ coding\n");
  917. s->debug_flag |= 0x01;
  918. }
  919. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  920. high_freq_vq, subsubframe * 8,
  921. s->scale_factor[k], s->vq_start_subband[k],
  922. s->subband_activity[k]);
  923. }
  924. }
  925. /* Check for DSYNC after subsubframe */
  926. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  927. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  928. #ifdef TRACE
  929. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  930. #endif
  931. } else {
  932. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  933. return AVERROR_INVALIDDATA;
  934. }
  935. }
  936. /* Backup predictor history for adpcm */
  937. for (k = base_channel; k < s->prim_channels; k++)
  938. for (l = 0; l < s->vq_start_subband[k]; l++)
  939. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  940. return 0;
  941. }
  942. static int dca_filter_channels(DCAContext *s, int block_index)
  943. {
  944. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  945. int k;
  946. /* 32 subbands QMF */
  947. for (k = 0; k < s->prim_channels; k++) {
  948. if (s->channel_order_tab[k] >= 0)
  949. qmf_32_subbands(s, k, subband_samples[k],
  950. s->samples_chanptr[s->channel_order_tab[k]],
  951. M_SQRT1_2 / 32768.0);
  952. }
  953. /* Generate LFE samples for this subsubframe FIXME!!! */
  954. if (s->lfe) {
  955. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  956. s->lfe_data + 2 * s->lfe * (block_index + 4),
  957. s->samples_chanptr[dca_lfe_index[s->amode]]);
  958. /* Outputs 20bits pcm samples */
  959. }
  960. /* Downmixing to Stereo */
  961. if (s->prim_channels + !!s->lfe > 2 &&
  962. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  963. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  964. s->channel_order_tab);
  965. }
  966. return 0;
  967. }
  968. static int dca_subframe_footer(DCAContext *s, int base_channel)
  969. {
  970. int in, out, aux_data_count, aux_data_end, reserved;
  971. uint32_t nsyncaux;
  972. /*
  973. * Unpack optional information
  974. */
  975. /* presumably optional information only appears in the core? */
  976. if (!base_channel) {
  977. if (s->timestamp)
  978. skip_bits_long(&s->gb, 32);
  979. if (s->aux_data) {
  980. aux_data_count = get_bits(&s->gb, 6);
  981. // align (32-bit)
  982. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  983. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  984. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  985. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  986. nsyncaux);
  987. return AVERROR_INVALIDDATA;
  988. }
  989. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  990. avpriv_request_sample(s->avctx,
  991. "Auxiliary Decode Time Stamp Flag");
  992. // align (4-bit)
  993. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  994. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  995. skip_bits_long(&s->gb, 44);
  996. }
  997. if ((s->core_downmix = get_bits1(&s->gb))) {
  998. int am = get_bits(&s->gb, 3);
  999. switch (am) {
  1000. case 0:
  1001. s->core_downmix_amode = DCA_MONO;
  1002. break;
  1003. case 1:
  1004. s->core_downmix_amode = DCA_STEREO;
  1005. break;
  1006. case 2:
  1007. s->core_downmix_amode = DCA_STEREO_TOTAL;
  1008. break;
  1009. case 3:
  1010. s->core_downmix_amode = DCA_3F;
  1011. break;
  1012. case 4:
  1013. s->core_downmix_amode = DCA_2F1R;
  1014. break;
  1015. case 5:
  1016. s->core_downmix_amode = DCA_2F2R;
  1017. break;
  1018. case 6:
  1019. s->core_downmix_amode = DCA_3F1R;
  1020. break;
  1021. default:
  1022. av_log(s->avctx, AV_LOG_ERROR,
  1023. "Invalid mode %d for embedded downmix coefficients\n",
  1024. am);
  1025. return AVERROR_INVALIDDATA;
  1026. }
  1027. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  1028. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  1029. uint16_t tmp = get_bits(&s->gb, 9);
  1030. if ((tmp & 0xFF) > 241) {
  1031. av_log(s->avctx, AV_LOG_ERROR,
  1032. "Invalid downmix coefficient code %"PRIu16"\n",
  1033. tmp);
  1034. return AVERROR_INVALIDDATA;
  1035. }
  1036. s->core_downmix_codes[in][out] = tmp;
  1037. }
  1038. }
  1039. }
  1040. align_get_bits(&s->gb); // byte align
  1041. skip_bits(&s->gb, 16); // nAUXCRC16
  1042. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  1043. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  1044. av_log(s->avctx, AV_LOG_ERROR,
  1045. "Overread auxiliary data by %d bits\n", -reserved);
  1046. return AVERROR_INVALIDDATA;
  1047. } else if (reserved) {
  1048. avpriv_request_sample(s->avctx,
  1049. "Core auxiliary data reserved content");
  1050. skip_bits_long(&s->gb, reserved);
  1051. }
  1052. }
  1053. if (s->crc_present && s->dynrange)
  1054. get_bits(&s->gb, 16);
  1055. }
  1056. return 0;
  1057. }
  1058. /**
  1059. * Decode a dca frame block
  1060. *
  1061. * @param s pointer to the DCAContext
  1062. */
  1063. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1064. {
  1065. int ret;
  1066. /* Sanity check */
  1067. if (s->current_subframe >= s->subframes) {
  1068. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1069. s->current_subframe, s->subframes);
  1070. return AVERROR_INVALIDDATA;
  1071. }
  1072. if (!s->current_subsubframe) {
  1073. #ifdef TRACE
  1074. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1075. #endif
  1076. /* Read subframe header */
  1077. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1078. return ret;
  1079. }
  1080. /* Read subsubframe */
  1081. #ifdef TRACE
  1082. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1083. #endif
  1084. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1085. return ret;
  1086. /* Update state */
  1087. s->current_subsubframe++;
  1088. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1089. s->current_subsubframe = 0;
  1090. s->current_subframe++;
  1091. }
  1092. if (s->current_subframe >= s->subframes) {
  1093. #ifdef TRACE
  1094. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1095. #endif
  1096. /* Read subframe footer */
  1097. if ((ret = dca_subframe_footer(s, base_channel)))
  1098. return ret;
  1099. }
  1100. return 0;
  1101. }
  1102. static float dca_dmix_code(unsigned code)
  1103. {
  1104. int sign = (code >> 8) - 1;
  1105. code &= 0xff;
  1106. return ((dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1U << 15));
  1107. }
  1108. /**
  1109. * Main frame decoding function
  1110. * FIXME add arguments
  1111. */
  1112. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1113. int *got_frame_ptr, AVPacket *avpkt)
  1114. {
  1115. AVFrame *frame = data;
  1116. const uint8_t *buf = avpkt->data;
  1117. int buf_size = avpkt->size;
  1118. int lfe_samples;
  1119. int num_core_channels = 0;
  1120. int i, ret;
  1121. float **samples_flt;
  1122. DCAContext *s = avctx->priv_data;
  1123. int channels, full_channels;
  1124. int core_ss_end;
  1125. s->xch_present = 0;
  1126. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1127. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1128. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1129. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1130. return AVERROR_INVALIDDATA;
  1131. }
  1132. if ((ret = dca_parse_frame_header(s)) < 0) {
  1133. // seems like the frame is corrupt, try with the next one
  1134. return ret;
  1135. }
  1136. // set AVCodec values with parsed data
  1137. avctx->sample_rate = s->sample_rate;
  1138. avctx->bit_rate = s->bit_rate;
  1139. s->profile = FF_PROFILE_DTS;
  1140. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1141. if ((ret = dca_decode_block(s, 0, i))) {
  1142. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1143. return ret;
  1144. }
  1145. }
  1146. /* record number of core channels incase less than max channels are requested */
  1147. num_core_channels = s->prim_channels;
  1148. if (s->ext_coding)
  1149. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1150. else
  1151. s->core_ext_mask = 0;
  1152. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1153. /* only scan for extensions if ext_descr was unknown or indicated a
  1154. * supported XCh extension */
  1155. if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
  1156. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1157. * extensions scan can fill it up */
  1158. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1159. /* extensions start at 32-bit boundaries into bitstream */
  1160. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1161. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1162. uint32_t bits = get_bits_long(&s->gb, 32);
  1163. switch (bits) {
  1164. case 0x5a5a5a5a: {
  1165. int ext_amode, xch_fsize;
  1166. s->xch_base_channel = s->prim_channels;
  1167. /* validate sync word using XCHFSIZE field */
  1168. xch_fsize = show_bits(&s->gb, 10);
  1169. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1170. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1171. continue;
  1172. /* skip length-to-end-of-frame field for the moment */
  1173. skip_bits(&s->gb, 10);
  1174. s->core_ext_mask |= DCA_EXT_XCH;
  1175. /* extension amode(number of channels in extension) should be 1 */
  1176. /* AFAIK XCh is not used for more channels */
  1177. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1178. av_log(avctx, AV_LOG_ERROR,
  1179. "XCh extension amode %d not supported!\n",
  1180. ext_amode);
  1181. continue;
  1182. }
  1183. /* much like core primary audio coding header */
  1184. dca_parse_audio_coding_header(s, s->xch_base_channel);
  1185. for (i = 0; i < (s->sample_blocks / 8); i++)
  1186. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1187. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1188. continue;
  1189. }
  1190. s->xch_present = 1;
  1191. break;
  1192. }
  1193. case 0x47004a03:
  1194. /* XXCh: extended channels */
  1195. /* usually found either in core or HD part in DTS-HD HRA streams,
  1196. * but not in DTS-ES which contains XCh extensions instead */
  1197. s->core_ext_mask |= DCA_EXT_XXCH;
  1198. break;
  1199. case 0x1d95f262: {
  1200. int fsize96 = show_bits(&s->gb, 12) + 1;
  1201. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1202. continue;
  1203. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1204. get_bits_count(&s->gb));
  1205. skip_bits(&s->gb, 12);
  1206. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1207. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1208. s->core_ext_mask |= DCA_EXT_X96;
  1209. break;
  1210. }
  1211. }
  1212. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1213. }
  1214. } else {
  1215. /* no supported extensions, skip the rest of the core substream */
  1216. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1217. }
  1218. if (s->core_ext_mask & DCA_EXT_X96)
  1219. s->profile = FF_PROFILE_DTS_96_24;
  1220. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1221. s->profile = FF_PROFILE_DTS_ES;
  1222. /* check for ExSS (HD part) */
  1223. if (s->dca_buffer_size - s->frame_size > 32 &&
  1224. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1225. ff_dca_exss_parse_header(s);
  1226. avctx->profile = s->profile;
  1227. full_channels = channels = s->prim_channels + !!s->lfe;
  1228. if (s->amode < 16) {
  1229. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1230. if (s->prim_channels + !!s->lfe > 2 &&
  1231. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1232. /*
  1233. * Neither the core's auxiliary data nor our default tables contain
  1234. * downmix coefficients for the additional channel coded in the XCh
  1235. * extension, so when we're doing a Stereo downmix, don't decode it.
  1236. */
  1237. s->xch_disable = 1;
  1238. }
  1239. #if FF_API_REQUEST_CHANNELS
  1240. FF_DISABLE_DEPRECATION_WARNINGS
  1241. if (s->xch_present && !s->xch_disable &&
  1242. (!avctx->request_channels ||
  1243. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1244. FF_ENABLE_DEPRECATION_WARNINGS
  1245. #else
  1246. if (s->xch_present && !s->xch_disable) {
  1247. #endif
  1248. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1249. if (s->lfe) {
  1250. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1251. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1252. } else {
  1253. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1254. }
  1255. } else {
  1256. channels = num_core_channels + !!s->lfe;
  1257. s->xch_present = 0; /* disable further xch processing */
  1258. if (s->lfe) {
  1259. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1260. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1261. } else
  1262. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1263. }
  1264. if (channels > !!s->lfe &&
  1265. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1266. return AVERROR_INVALIDDATA;
  1267. if (num_core_channels + !!s->lfe > 2 &&
  1268. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1269. channels = 2;
  1270. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  1271. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1272. /* Stereo downmix coefficients
  1273. *
  1274. * The decoder can only downmix to 2-channel, so we need to ensure
  1275. * embedded downmix coefficients are actually targeting 2-channel.
  1276. */
  1277. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1278. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1279. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1280. /* Range checked earlier */
  1281. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1282. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1283. }
  1284. s->output = s->core_downmix_amode;
  1285. } else {
  1286. int am = s->amode & DCA_CHANNEL_MASK;
  1287. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1288. av_log(s->avctx, AV_LOG_ERROR,
  1289. "Invalid channel mode %d\n", am);
  1290. return AVERROR_INVALIDDATA;
  1291. }
  1292. if (num_core_channels + !!s->lfe >
  1293. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1294. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1295. s->prim_channels + !!s->lfe);
  1296. return AVERROR_PATCHWELCOME;
  1297. }
  1298. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1299. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1300. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1301. }
  1302. }
  1303. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1304. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1305. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1306. s->downmix_coef[i][0]);
  1307. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1308. s->downmix_coef[i][1]);
  1309. }
  1310. av_dlog(s->avctx, "\n");
  1311. }
  1312. } else {
  1313. av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
  1314. return AVERROR_INVALIDDATA;
  1315. }
  1316. avctx->channels = channels;
  1317. /* get output buffer */
  1318. frame->nb_samples = 256 * (s->sample_blocks / 8);
  1319. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1320. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1321. return ret;
  1322. }
  1323. samples_flt = (float **) frame->extended_data;
  1324. /* allocate buffer for extra channels if downmixing */
  1325. if (avctx->channels < full_channels) {
  1326. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  1327. frame->nb_samples,
  1328. avctx->sample_fmt, 0);
  1329. if (ret < 0)
  1330. return ret;
  1331. av_fast_malloc(&s->extra_channels_buffer,
  1332. &s->extra_channels_buffer_size, ret);
  1333. if (!s->extra_channels_buffer)
  1334. return AVERROR(ENOMEM);
  1335. ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
  1336. s->extra_channels_buffer,
  1337. full_channels - channels,
  1338. frame->nb_samples, avctx->sample_fmt, 0);
  1339. if (ret < 0)
  1340. return ret;
  1341. }
  1342. /* filter to get final output */
  1343. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1344. int ch;
  1345. for (ch = 0; ch < channels; ch++)
  1346. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  1347. for (; ch < full_channels; ch++)
  1348. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  1349. dca_filter_channels(s, i);
  1350. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1351. /* channel from SL & SR to remove matrixed back-channel signal */
  1352. if ((s->source_pcm_res & 1) && s->xch_present) {
  1353. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  1354. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  1355. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  1356. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1357. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1358. }
  1359. }
  1360. /* update lfe history */
  1361. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1362. for (i = 0; i < 2 * s->lfe * 4; i++)
  1363. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1364. /* AVMatrixEncoding
  1365. *
  1366. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  1367. ret = ff_side_data_update_matrix_encoding(frame,
  1368. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  1369. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  1370. if (ret < 0)
  1371. return ret;
  1372. *got_frame_ptr = 1;
  1373. return buf_size;
  1374. }
  1375. /**
  1376. * DCA initialization
  1377. *
  1378. * @param avctx pointer to the AVCodecContext
  1379. */
  1380. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1381. {
  1382. DCAContext *s = avctx->priv_data;
  1383. s->avctx = avctx;
  1384. dca_init_vlcs();
  1385. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  1386. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1387. ff_synth_filter_init(&s->synth);
  1388. ff_dcadsp_init(&s->dcadsp);
  1389. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1390. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1391. /* allow downmixing to stereo */
  1392. #if FF_API_REQUEST_CHANNELS
  1393. FF_DISABLE_DEPRECATION_WARNINGS
  1394. if (avctx->request_channels == 2)
  1395. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  1396. FF_ENABLE_DEPRECATION_WARNINGS
  1397. #endif
  1398. if (avctx->channels > 2 &&
  1399. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  1400. avctx->channels = 2;
  1401. return 0;
  1402. }
  1403. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1404. {
  1405. DCAContext *s = avctx->priv_data;
  1406. ff_mdct_end(&s->imdct);
  1407. av_freep(&s->extra_channels_buffer);
  1408. return 0;
  1409. }
  1410. static const AVProfile profiles[] = {
  1411. { FF_PROFILE_DTS, "DTS" },
  1412. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1413. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1414. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1415. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1416. { FF_PROFILE_UNKNOWN },
  1417. };
  1418. static const AVOption options[] = {
  1419. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1420. { NULL },
  1421. };
  1422. static const AVClass dca_decoder_class = {
  1423. .class_name = "DCA decoder",
  1424. .item_name = av_default_item_name,
  1425. .option = options,
  1426. .version = LIBAVUTIL_VERSION_INT,
  1427. };
  1428. AVCodec ff_dca_decoder = {
  1429. .name = "dca",
  1430. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1431. .type = AVMEDIA_TYPE_AUDIO,
  1432. .id = AV_CODEC_ID_DTS,
  1433. .priv_data_size = sizeof(DCAContext),
  1434. .init = dca_decode_init,
  1435. .decode = dca_decode_frame,
  1436. .close = dca_decode_end,
  1437. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1438. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1439. AV_SAMPLE_FMT_NONE },
  1440. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1441. .priv_class = &dca_decoder_class,
  1442. };