You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1108 lines
39KB

  1. /*
  2. * Copyright (c) 2003 The Libav Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" //FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file
  57. * svq3 decoder.
  58. */
  59. typedef struct {
  60. H264Context h;
  61. int halfpel_flag;
  62. int thirdpel_flag;
  63. int unknown_flag;
  64. int next_slice_index;
  65. uint32_t watermark_key;
  66. } SVQ3Context;
  67. #define FULLPEL_MODE 1
  68. #define HALFPEL_MODE 2
  69. #define THIRDPEL_MODE 3
  70. #define PREDICT_MODE 4
  71. /* dual scan (from some older h264 draft)
  72. o-->o-->o o
  73. | /|
  74. o o o / o
  75. | / | |/ |
  76. o o o o
  77. /
  78. o-->o-->o-->o
  79. */
  80. static const uint8_t svq3_scan[16] = {
  81. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  82. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  83. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  84. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  85. };
  86. static const uint8_t svq3_pred_0[25][2] = {
  87. { 0, 0 },
  88. { 1, 0 }, { 0, 1 },
  89. { 0, 2 }, { 1, 1 }, { 2, 0 },
  90. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  91. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  92. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  93. { 2, 4 }, { 3, 3 }, { 4, 2 },
  94. { 4, 3 }, { 3, 4 },
  95. { 4, 4 }
  96. };
  97. static const int8_t svq3_pred_1[6][6][5] = {
  98. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  99. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  100. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  101. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  102. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  103. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  104. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  105. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  106. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  107. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  108. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  109. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  110. };
  111. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  112. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  113. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  114. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  115. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  116. };
  117. static const uint32_t svq3_dequant_coeff[32] = {
  118. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  119. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  120. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  121. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  122. };
  123. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp){
  124. const int qmul = svq3_dequant_coeff[qp];
  125. #define stride 16
  126. int i;
  127. int temp[16];
  128. static const uint8_t x_offset[4]={0, 1*stride, 4*stride, 5*stride};
  129. for(i=0; i<4; i++){
  130. const int z0 = 13*(input[4*i+0] + input[4*i+2]);
  131. const int z1 = 13*(input[4*i+0] - input[4*i+2]);
  132. const int z2 = 7* input[4*i+1] - 17*input[4*i+3];
  133. const int z3 = 17* input[4*i+1] + 7*input[4*i+3];
  134. temp[4*i+0] = z0+z3;
  135. temp[4*i+1] = z1+z2;
  136. temp[4*i+2] = z1-z2;
  137. temp[4*i+3] = z0-z3;
  138. }
  139. for(i=0; i<4; i++){
  140. const int offset= x_offset[i];
  141. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  142. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  143. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  144. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  145. output[stride* 0+offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
  146. output[stride* 2+offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
  147. output[stride* 8+offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
  148. output[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
  149. }
  150. }
  151. #undef stride
  152. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
  153. int dc)
  154. {
  155. const int qmul = svq3_dequant_coeff[qp];
  156. int i;
  157. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  158. if (dc) {
  159. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  160. block[0] = 0;
  161. }
  162. for (i = 0; i < 4; i++) {
  163. const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
  164. const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
  165. const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
  166. const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
  167. block[0 + 4*i] = z0 + z3;
  168. block[1 + 4*i] = z1 + z2;
  169. block[2 + 4*i] = z1 - z2;
  170. block[3 + 4*i] = z0 - z3;
  171. }
  172. for (i = 0; i < 4; i++) {
  173. const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
  174. const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
  175. const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
  176. const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
  177. const int rr = (dc + 0x80000);
  178. dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  179. dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  180. dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  181. dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  182. }
  183. }
  184. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  185. int index, const int type)
  186. {
  187. static const uint8_t *const scan_patterns[4] =
  188. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  189. int run, level, sign, vlc, limit;
  190. const int intra = (3 * type) >> 2;
  191. const uint8_t *const scan = scan_patterns[type];
  192. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  193. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  194. if (vlc == INVALID_VLC)
  195. return -1;
  196. sign = (vlc & 0x1) - 1;
  197. vlc = (vlc + 1) >> 1;
  198. if (type == 3) {
  199. if (vlc < 3) {
  200. run = 0;
  201. level = vlc;
  202. } else if (vlc < 4) {
  203. run = 1;
  204. level = 1;
  205. } else {
  206. run = (vlc & 0x3);
  207. level = ((vlc + 9) >> 2) - run;
  208. }
  209. } else {
  210. if (vlc < 16) {
  211. run = svq3_dct_tables[intra][vlc].run;
  212. level = svq3_dct_tables[intra][vlc].level;
  213. } else if (intra) {
  214. run = (vlc & 0x7);
  215. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  216. } else {
  217. run = (vlc & 0xF);
  218. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  219. }
  220. }
  221. if ((index += run) >= limit)
  222. return -1;
  223. block[scan[index]] = (level ^ sign) - sign;
  224. }
  225. if (type != 2) {
  226. break;
  227. }
  228. }
  229. return 0;
  230. }
  231. static inline void svq3_mc_dir_part(MpegEncContext *s,
  232. int x, int y, int width, int height,
  233. int mx, int my, int dxy,
  234. int thirdpel, int dir, int avg)
  235. {
  236. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  237. uint8_t *src, *dest;
  238. int i, emu = 0;
  239. int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
  240. mx += x;
  241. my += y;
  242. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  243. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  244. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  245. emu = 1;
  246. }
  247. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  248. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  249. }
  250. /* form component predictions */
  251. dest = s->current_picture.f.data[0] + x + y*s->linesize;
  252. src = pic->f.data[0] + mx + my*s->linesize;
  253. if (emu) {
  254. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  255. mx, my, s->h_edge_pos, s->v_edge_pos);
  256. src = s->edge_emu_buffer;
  257. }
  258. if (thirdpel)
  259. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  260. else
  261. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  262. if (!(s->flags & CODEC_FLAG_GRAY)) {
  263. mx = (mx + (mx < (int) x)) >> 1;
  264. my = (my + (my < (int) y)) >> 1;
  265. width = (width >> 1);
  266. height = (height >> 1);
  267. blocksize++;
  268. for (i = 1; i < 3; i++) {
  269. dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize;
  270. src = pic->f.data[i] + mx + my * s->uvlinesize;
  271. if (emu) {
  272. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  273. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  274. src = s->edge_emu_buffer;
  275. }
  276. if (thirdpel)
  277. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  278. else
  279. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  280. }
  281. }
  282. }
  283. static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
  284. int avg)
  285. {
  286. int i, j, k, mx, my, dx, dy, x, y;
  287. MpegEncContext *const s = (MpegEncContext *) h;
  288. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  289. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  290. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  291. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  292. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  293. for (i = 0; i < 16; i += part_height) {
  294. for (j = 0; j < 16; j += part_width) {
  295. const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
  296. int dxy;
  297. x = 16*s->mb_x + j;
  298. y = 16*s->mb_y + i;
  299. k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
  300. if (mode != PREDICT_MODE) {
  301. pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
  302. } else {
  303. mx = s->next_picture.f.motion_val[0][b_xy][0] << 1;
  304. my = s->next_picture.f.motion_val[0][b_xy][1] << 1;
  305. if (dir == 0) {
  306. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  307. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  308. } else {
  309. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  310. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  311. }
  312. }
  313. /* clip motion vector prediction to frame border */
  314. mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
  315. my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
  316. /* get (optional) motion vector differential */
  317. if (mode == PREDICT_MODE) {
  318. dx = dy = 0;
  319. } else {
  320. dy = svq3_get_se_golomb(&s->gb);
  321. dx = svq3_get_se_golomb(&s->gb);
  322. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  323. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  324. return -1;
  325. }
  326. }
  327. /* compute motion vector */
  328. if (mode == THIRDPEL_MODE) {
  329. int fx, fy;
  330. mx = ((mx + 1)>>1) + dx;
  331. my = ((my + 1)>>1) + dy;
  332. fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
  333. fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
  334. dxy = (mx - 3*fx) + 4*(my - 3*fy);
  335. svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  336. mx += mx;
  337. my += my;
  338. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  339. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  340. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  341. dxy = (mx&1) + 2*(my&1);
  342. svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  343. mx *= 3;
  344. my *= 3;
  345. } else {
  346. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  347. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  348. svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  349. mx *= 6;
  350. my *= 6;
  351. }
  352. /* update mv_cache */
  353. if (mode != PREDICT_MODE) {
  354. int32_t mv = pack16to32(mx,my);
  355. if (part_height == 8 && i < 8) {
  356. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  357. if (part_width == 8 && j < 8) {
  358. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  359. }
  360. }
  361. if (part_width == 8 && j < 8) {
  362. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  363. }
  364. if (part_width == 4 || part_height == 4) {
  365. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  366. }
  367. }
  368. /* write back motion vectors */
  369. fill_rectangle(s->current_picture.f.motion_val[dir][b_xy],
  370. part_width >> 2, part_height >> 2, h->b_stride,
  371. pack16to32(mx, my), 4);
  372. }
  373. }
  374. return 0;
  375. }
  376. static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type)
  377. {
  378. H264Context *h = &svq3->h;
  379. int i, j, k, m, dir, mode;
  380. int cbp = 0;
  381. uint32_t vlc;
  382. int8_t *top, *left;
  383. MpegEncContext *const s = (MpegEncContext *) h;
  384. const int mb_xy = h->mb_xy;
  385. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  386. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  387. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  388. h->topright_samples_available = 0xFFFF;
  389. if (mb_type == 0) { /* SKIP */
  390. if (s->pict_type == AV_PICTURE_TYPE_P || s->next_picture.f.mb_type[mb_xy] == -1) {
  391. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  392. if (s->pict_type == AV_PICTURE_TYPE_B) {
  393. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  394. }
  395. mb_type = MB_TYPE_SKIP;
  396. } else {
  397. mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6);
  398. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  399. return -1;
  400. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  401. return -1;
  402. mb_type = MB_TYPE_16x16;
  403. }
  404. } else if (mb_type < 8) { /* INTER */
  405. if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1 (&s->gb)) {
  406. mode = THIRDPEL_MODE;
  407. } else if (svq3->halfpel_flag && svq3->thirdpel_flag == !get_bits1 (&s->gb)) {
  408. mode = HALFPEL_MODE;
  409. } else {
  410. mode = FULLPEL_MODE;
  411. }
  412. /* fill caches */
  413. /* note ref_cache should contain here:
  414. ????????
  415. ???11111
  416. N??11111
  417. N??11111
  418. N??11111
  419. */
  420. for (m = 0; m < 2; m++) {
  421. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6] != -1) {
  422. for (i = 0; i < 4; i++) {
  423. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - 1 + i*h->b_stride];
  424. }
  425. } else {
  426. for (i = 0; i < 4; i++) {
  427. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  428. }
  429. }
  430. if (s->mb_y > 0) {
  431. memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.f.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  432. memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  433. if (s->mb_x < (s->mb_width - 1)) {
  434. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4];
  435. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  436. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1]+6] == -1 ||
  437. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride ] ] == -1) ? PART_NOT_AVAILABLE : 1;
  438. }else
  439. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  440. if (s->mb_x > 0) {
  441. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1];
  442. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] == -1) ? PART_NOT_AVAILABLE : 1;
  443. }else
  444. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  445. }else
  446. memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  447. if (s->pict_type != AV_PICTURE_TYPE_B)
  448. break;
  449. }
  450. /* decode motion vector(s) and form prediction(s) */
  451. if (s->pict_type == AV_PICTURE_TYPE_P) {
  452. if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
  453. return -1;
  454. } else { /* AV_PICTURE_TYPE_B */
  455. if (mb_type != 2) {
  456. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  457. return -1;
  458. } else {
  459. for (i = 0; i < 4; i++) {
  460. memset(s->current_picture.f.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  461. }
  462. }
  463. if (mb_type != 1) {
  464. if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
  465. return -1;
  466. } else {
  467. for (i = 0; i < 4; i++) {
  468. memset(s->current_picture.f.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  469. }
  470. }
  471. }
  472. mb_type = MB_TYPE_16x16;
  473. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  474. memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  475. if (mb_type == 8) {
  476. if (s->mb_x > 0) {
  477. for (i = 0; i < 4; i++) {
  478. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6-i];
  479. }
  480. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  481. h->left_samples_available = 0x5F5F;
  482. }
  483. }
  484. if (s->mb_y > 0) {
  485. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+0];
  486. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+1];
  487. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+2];
  488. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+3];
  489. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  490. h->top_samples_available = 0x33FF;
  491. }
  492. }
  493. /* decode prediction codes for luma blocks */
  494. for (i = 0; i < 16; i+=2) {
  495. vlc = svq3_get_ue_golomb(&s->gb);
  496. if (vlc >= 25){
  497. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  498. return -1;
  499. }
  500. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  501. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  502. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  503. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  504. if (left[1] == -1 || left[2] == -1){
  505. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  506. return -1;
  507. }
  508. }
  509. } else { /* mb_type == 33, DC_128_PRED block type */
  510. for (i = 0; i < 4; i++) {
  511. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  512. }
  513. }
  514. write_back_intra_pred_mode(h);
  515. if (mb_type == 8) {
  516. ff_h264_check_intra4x4_pred_mode(h);
  517. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  518. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  519. } else {
  520. for (i = 0; i < 4; i++) {
  521. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  522. }
  523. h->top_samples_available = 0x33FF;
  524. h->left_samples_available = 0x5F5F;
  525. }
  526. mb_type = MB_TYPE_INTRA4x4;
  527. } else { /* INTRA16x16 */
  528. dir = i_mb_type_info[mb_type - 8].pred_mode;
  529. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  530. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir)) == -1){
  531. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  532. return -1;
  533. }
  534. cbp = i_mb_type_info[mb_type - 8].cbp;
  535. mb_type = MB_TYPE_INTRA16x16;
  536. }
  537. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  538. for (i = 0; i < 4; i++) {
  539. memset(s->current_picture.f.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  540. }
  541. if (s->pict_type == AV_PICTURE_TYPE_B) {
  542. for (i = 0; i < 4; i++) {
  543. memset(s->current_picture.f.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  544. }
  545. }
  546. }
  547. if (!IS_INTRA4x4(mb_type)) {
  548. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy], DC_PRED, 8);
  549. }
  550. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  551. memset(h->non_zero_count_cache + 8, 0, 14*8*sizeof(uint8_t));
  552. s->dsp.clear_blocks(h->mb+ 0);
  553. s->dsp.clear_blocks(h->mb+384);
  554. }
  555. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  556. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48){
  557. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  558. return -1;
  559. }
  560. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  561. }
  562. if (IS_INTRA16x16(mb_type) || (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  563. s->qscale += svq3_get_se_golomb(&s->gb);
  564. if (s->qscale > 31){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  566. return -1;
  567. }
  568. }
  569. if (IS_INTRA16x16(mb_type)) {
  570. AV_ZERO128(h->mb_luma_dc[0]+0);
  571. AV_ZERO128(h->mb_luma_dc[0]+8);
  572. if (svq3_decode_block(&s->gb, h->mb_luma_dc, 0, 1)){
  573. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  574. return -1;
  575. }
  576. }
  577. if (cbp) {
  578. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  579. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  580. for (i = 0; i < 4; i++) {
  581. if ((cbp & (1 << i))) {
  582. for (j = 0; j < 4; j++) {
  583. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  584. h->non_zero_count_cache[ scan8[k] ] = 1;
  585. if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
  586. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  587. return -1;
  588. }
  589. }
  590. }
  591. }
  592. if ((cbp & 0x30)) {
  593. for (i = 1; i < 3; ++i) {
  594. if (svq3_decode_block(&s->gb, &h->mb[16*16*i], 0, 3)){
  595. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  596. return -1;
  597. }
  598. }
  599. if ((cbp & 0x20)) {
  600. for (i = 1; i < 3; i++) {
  601. for (j = 0; j < 4; j++) {
  602. k = 16*i + j;
  603. h->non_zero_count_cache[ scan8[k] ] = 1;
  604. if (svq3_decode_block(&s->gb, &h->mb[16*k], 1, 1)){
  605. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  606. return -1;
  607. }
  608. }
  609. }
  610. }
  611. }
  612. }
  613. h->cbp= cbp;
  614. s->current_picture.f.mb_type[mb_xy] = mb_type;
  615. if (IS_INTRA(mb_type)) {
  616. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8);
  617. }
  618. return 0;
  619. }
  620. static int svq3_decode_slice_header(AVCodecContext *avctx)
  621. {
  622. SVQ3Context *svq3 = avctx->priv_data;
  623. H264Context *h = &svq3->h;
  624. MpegEncContext *s = &h->s;
  625. const int mb_xy = h->mb_xy;
  626. int i, header;
  627. header = get_bits(&s->gb, 8);
  628. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  629. /* TODO: what? */
  630. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  631. return -1;
  632. } else {
  633. int length = (header >> 5) & 3;
  634. svq3->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
  635. if (svq3->next_slice_index > s->gb.size_in_bits) {
  636. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  637. return -1;
  638. }
  639. s->gb.size_in_bits = svq3->next_slice_index - 8*(length - 1);
  640. skip_bits(&s->gb, 8);
  641. if (svq3->watermark_key) {
  642. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  643. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ svq3->watermark_key);
  644. }
  645. if (length > 0) {
  646. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  647. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  648. }
  649. skip_bits_long(&s->gb, 0);
  650. }
  651. if ((i = svq3_get_ue_golomb(&s->gb)) == INVALID_VLC || i >= 3){
  652. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  653. return -1;
  654. }
  655. h->slice_type = golomb_to_pict_type[i];
  656. if ((header & 0x9F) == 2) {
  657. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  658. s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  659. } else {
  660. skip_bits1(&s->gb);
  661. s->mb_skip_run = 0;
  662. }
  663. h->slice_num = get_bits(&s->gb, 8);
  664. s->qscale = get_bits(&s->gb, 5);
  665. s->adaptive_quant = get_bits1(&s->gb);
  666. /* unknown fields */
  667. skip_bits1(&s->gb);
  668. if (svq3->unknown_flag) {
  669. skip_bits1(&s->gb);
  670. }
  671. skip_bits1(&s->gb);
  672. skip_bits(&s->gb, 2);
  673. while (get_bits1(&s->gb)) {
  674. skip_bits(&s->gb, 8);
  675. }
  676. /* reset intra predictors and invalidate motion vector references */
  677. if (s->mb_x > 0) {
  678. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - 1 ]+3, -1, 4*sizeof(int8_t));
  679. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_x] , -1, 8*sizeof(int8_t)*s->mb_x);
  680. }
  681. if (s->mb_y > 0) {
  682. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  683. if (s->mb_x > 0) {
  684. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] = -1;
  685. }
  686. }
  687. return 0;
  688. }
  689. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  690. {
  691. SVQ3Context *svq3 = avctx->priv_data;
  692. H264Context *h = &svq3->h;
  693. MpegEncContext *s = &h->s;
  694. int m;
  695. unsigned char *extradata;
  696. unsigned int size;
  697. if (ff_h264_decode_init(avctx) < 0)
  698. return -1;
  699. s->flags = avctx->flags;
  700. s->flags2 = avctx->flags2;
  701. s->unrestricted_mv = 1;
  702. h->is_complex=1;
  703. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  704. if (!s->context_initialized) {
  705. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  706. svq3->halfpel_flag = 1;
  707. svq3->thirdpel_flag = 1;
  708. svq3->unknown_flag = 0;
  709. /* prowl for the "SEQH" marker in the extradata */
  710. extradata = (unsigned char *)avctx->extradata;
  711. for (m = 0; m < avctx->extradata_size; m++) {
  712. if (!memcmp(extradata, "SEQH", 4))
  713. break;
  714. extradata++;
  715. }
  716. /* if a match was found, parse the extra data */
  717. if (extradata && !memcmp(extradata, "SEQH", 4)) {
  718. GetBitContext gb;
  719. int frame_size_code;
  720. size = AV_RB32(&extradata[4]);
  721. init_get_bits(&gb, extradata + 8, size*8);
  722. /* 'frame size code' and optional 'width, height' */
  723. frame_size_code = get_bits(&gb, 3);
  724. switch (frame_size_code) {
  725. case 0: avctx->width = 160; avctx->height = 120; break;
  726. case 1: avctx->width = 128; avctx->height = 96; break;
  727. case 2: avctx->width = 176; avctx->height = 144; break;
  728. case 3: avctx->width = 352; avctx->height = 288; break;
  729. case 4: avctx->width = 704; avctx->height = 576; break;
  730. case 5: avctx->width = 240; avctx->height = 180; break;
  731. case 6: avctx->width = 320; avctx->height = 240; break;
  732. case 7:
  733. avctx->width = get_bits(&gb, 12);
  734. avctx->height = get_bits(&gb, 12);
  735. break;
  736. }
  737. svq3->halfpel_flag = get_bits1(&gb);
  738. svq3->thirdpel_flag = get_bits1(&gb);
  739. /* unknown fields */
  740. skip_bits1(&gb);
  741. skip_bits1(&gb);
  742. skip_bits1(&gb);
  743. skip_bits1(&gb);
  744. s->low_delay = get_bits1(&gb);
  745. /* unknown field */
  746. skip_bits1(&gb);
  747. while (get_bits1(&gb)) {
  748. skip_bits(&gb, 8);
  749. }
  750. svq3->unknown_flag = get_bits1(&gb);
  751. avctx->has_b_frames = !s->low_delay;
  752. if (svq3->unknown_flag) {
  753. #if CONFIG_ZLIB
  754. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  755. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  756. int u1 = svq3_get_ue_golomb(&gb);
  757. int u2 = get_bits(&gb, 8);
  758. int u3 = get_bits(&gb, 2);
  759. int u4 = svq3_get_ue_golomb(&gb);
  760. unsigned long buf_len = watermark_width*watermark_height*4;
  761. int offset = (get_bits_count(&gb)+7)>>3;
  762. uint8_t *buf;
  763. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  764. return -1;
  765. buf = av_malloc(buf_len);
  766. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  767. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  768. if (uncompress(buf, &buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  769. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  770. av_free(buf);
  771. return -1;
  772. }
  773. svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  774. svq3->watermark_key = svq3->watermark_key << 16 | svq3->watermark_key;
  775. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", svq3->watermark_key);
  776. av_free(buf);
  777. #else
  778. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  779. return -1;
  780. #endif
  781. }
  782. }
  783. s->width = avctx->width;
  784. s->height = avctx->height;
  785. if (MPV_common_init(s) < 0)
  786. return -1;
  787. h->b_stride = 4*s->mb_width;
  788. if (ff_h264_alloc_tables(h) < 0) {
  789. av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
  790. return AVERROR(ENOMEM);
  791. }
  792. }
  793. return 0;
  794. }
  795. static int svq3_decode_frame(AVCodecContext *avctx,
  796. void *data, int *data_size,
  797. AVPacket *avpkt)
  798. {
  799. const uint8_t *buf = avpkt->data;
  800. SVQ3Context *svq3 = avctx->priv_data;
  801. H264Context *h = &svq3->h;
  802. MpegEncContext *s = &h->s;
  803. int buf_size = avpkt->size;
  804. int m, mb_type;
  805. /* special case for last picture */
  806. if (buf_size == 0) {
  807. if (s->next_picture_ptr && !s->low_delay) {
  808. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  809. s->next_picture_ptr = NULL;
  810. *data_size = sizeof(AVFrame);
  811. }
  812. return 0;
  813. }
  814. init_get_bits (&s->gb, buf, 8*buf_size);
  815. s->mb_x = s->mb_y = h->mb_xy = 0;
  816. if (svq3_decode_slice_header(avctx))
  817. return -1;
  818. s->pict_type = h->slice_type;
  819. s->picture_number = h->slice_num;
  820. if (avctx->debug&FF_DEBUG_PICT_INFO){
  821. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  822. av_get_picture_type_char(s->pict_type), svq3->halfpel_flag, svq3->thirdpel_flag,
  823. s->adaptive_quant, s->qscale, h->slice_num);
  824. }
  825. /* for skipping the frame */
  826. s->current_picture.f.pict_type = s->pict_type;
  827. s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  828. /* Skip B-frames if we do not have reference frames. */
  829. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  830. return 0;
  831. if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B)
  832. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I)
  833. || avctx->skip_frame >= AVDISCARD_ALL)
  834. return 0;
  835. if (s->next_p_frame_damaged) {
  836. if (s->pict_type == AV_PICTURE_TYPE_B)
  837. return 0;
  838. else
  839. s->next_p_frame_damaged = 0;
  840. }
  841. if (ff_h264_frame_start(h) < 0)
  842. return -1;
  843. if (s->pict_type == AV_PICTURE_TYPE_B) {
  844. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  845. if (h->frame_num_offset < 0) {
  846. h->frame_num_offset += 256;
  847. }
  848. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  849. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  850. return -1;
  851. }
  852. } else {
  853. h->prev_frame_num = h->frame_num;
  854. h->frame_num = h->slice_num;
  855. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  856. if (h->prev_frame_num_offset < 0) {
  857. h->prev_frame_num_offset += 256;
  858. }
  859. }
  860. for (m = 0; m < 2; m++){
  861. int i;
  862. for (i = 0; i < 4; i++){
  863. int j;
  864. for (j = -1; j < 4; j++)
  865. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  866. if (i < 3)
  867. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  868. }
  869. }
  870. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  871. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  872. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  873. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  874. ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  875. skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb));
  876. s->gb.size_in_bits = 8*buf_size;
  877. if (svq3_decode_slice_header(avctx))
  878. return -1;
  879. /* TODO: support s->mb_skip_run */
  880. }
  881. mb_type = svq3_get_ue_golomb(&s->gb);
  882. if (s->pict_type == AV_PICTURE_TYPE_I) {
  883. mb_type += 8;
  884. } else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4) {
  885. mb_type += 4;
  886. }
  887. if ((unsigned)mb_type > 33 || svq3_decode_mb(svq3, mb_type)) {
  888. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  889. return -1;
  890. }
  891. if (mb_type != 0) {
  892. ff_h264_hl_decode_mb (h);
  893. }
  894. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay) {
  895. s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  896. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  897. }
  898. }
  899. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  900. }
  901. MPV_frame_end(s);
  902. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  903. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  904. } else {
  905. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  906. }
  907. /* Do not output the last pic after seeking. */
  908. if (s->last_picture_ptr || s->low_delay) {
  909. *data_size = sizeof(AVFrame);
  910. }
  911. return buf_size;
  912. }
  913. static int svq3_decode_end(AVCodecContext *avctx)
  914. {
  915. SVQ3Context *svq3 = avctx->priv_data;
  916. H264Context *h = &svq3->h;
  917. MpegEncContext *s = &h->s;
  918. ff_h264_free_context(h);
  919. MPV_common_end(s);
  920. return 0;
  921. }
  922. AVCodec ff_svq3_decoder = {
  923. .name = "svq3",
  924. .type = AVMEDIA_TYPE_VIDEO,
  925. .id = CODEC_ID_SVQ3,
  926. .priv_data_size = sizeof(SVQ3Context),
  927. .init = svq3_decode_init,
  928. .close = svq3_decode_end,
  929. .decode = svq3_decode_frame,
  930. .capabilities = CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  931. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  932. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE},
  933. };