You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

332 lines
9.6KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2009 Andrej Stepanchuk
  4. * Copyright (c) 2009-2010 Howard Chu
  5. * Copyright (c) 2012 Samuel Pitoiset
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * RTMP Diffie-Hellmann utilities
  26. */
  27. #include "config.h"
  28. #include "rtmpdh.h"
  29. #define P1024 \
  30. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  31. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  32. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  33. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  34. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  35. "FFFFFFFFFFFFFFFF"
  36. #define Q1024 \
  37. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  38. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  39. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  40. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  41. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  42. "FFFFFFFFFFFFFFFF"
  43. #if CONFIG_NETTLE || CONFIG_GCRYPT
  44. #if CONFIG_NETTLE
  45. #define bn_new(bn) \
  46. do { \
  47. bn = av_malloc(sizeof(*bn)); \
  48. if (bn) \
  49. mpz_init2(bn, 1); \
  50. } while (0)
  51. #define bn_free(bn) \
  52. do { \
  53. mpz_clear(bn); \
  54. av_free(bn); \
  55. } while (0)
  56. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  57. #define bn_cmp(a, b) mpz_cmp(a, b)
  58. #define bn_copy(to, from) mpz_set(to, from)
  59. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  60. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  61. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  62. #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn)
  63. #define bn_bin2bn(bn, buf, len) \
  64. do { \
  65. bn_new(bn); \
  66. if (bn) \
  67. nettle_mpz_set_str_256_u(bn, len, buf); \
  68. } while (0)
  69. #define bn_hex2bn(bn, buf, ret) \
  70. do { \
  71. bn_new(bn); \
  72. if (bn) \
  73. ret = (mpz_set_str(bn, buf, 16) == 0); \
  74. } while (0)
  75. #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p)
  76. #define bn_random(bn, num_bytes) mpz_random(bn, num_bytes);
  77. #elif CONFIG_GCRYPT
  78. #define bn_new(bn) bn = gcry_mpi_new(1)
  79. #define bn_free(bn) gcry_mpi_release(bn)
  80. #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w)
  81. #define bn_cmp(a, b) gcry_mpi_cmp(a, b)
  82. #define bn_copy(to, from) gcry_mpi_set(to, from)
  83. #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w)
  84. #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1)
  85. #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8
  86. #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn)
  87. #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL)
  88. #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0)
  89. #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p)
  90. #define bn_random(bn, num_bytes) gcry_mpi_randomize(bn, num_bytes, GCRY_WEAK_RANDOM)
  91. #endif
  92. #define MAX_BYTES 18000
  93. #define dh_new() av_malloc(sizeof(FF_DH))
  94. static FFBigNum dh_generate_key(FF_DH *dh)
  95. {
  96. int num_bytes;
  97. num_bytes = bn_num_bytes(dh->p) - 1;
  98. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  99. return NULL;
  100. bn_new(dh->priv_key);
  101. if (!dh->priv_key)
  102. return NULL;
  103. bn_random(dh->priv_key, num_bytes);
  104. bn_new(dh->pub_key);
  105. if (!dh->pub_key) {
  106. bn_free(dh->priv_key);
  107. return NULL;
  108. }
  109. bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p);
  110. return dh->pub_key;
  111. }
  112. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  113. uint32_t pub_key_len, uint8_t *secret_key)
  114. {
  115. FFBigNum k;
  116. int num_bytes;
  117. num_bytes = bn_num_bytes(dh->p);
  118. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  119. return -1;
  120. bn_new(k);
  121. if (!k)
  122. return -1;
  123. bn_modexp(k, pub_key_bn, dh->priv_key, dh->p);
  124. bn_bn2bin(k, secret_key, pub_key_len);
  125. bn_free(k);
  126. /* return the length of the shared secret key like DH_compute_key */
  127. return pub_key_len;
  128. }
  129. void ff_dh_free(FF_DH *dh)
  130. {
  131. bn_free(dh->p);
  132. bn_free(dh->g);
  133. bn_free(dh->pub_key);
  134. bn_free(dh->priv_key);
  135. av_free(dh);
  136. }
  137. #elif CONFIG_OPENSSL
  138. #define bn_new(bn) bn = BN_new()
  139. #define bn_free(bn) BN_free(bn)
  140. #define bn_set_word(bn, w) BN_set_word(bn, w)
  141. #define bn_cmp(a, b) BN_cmp(a, b)
  142. #define bn_copy(to, from) BN_copy(to, from)
  143. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  144. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  145. #define bn_num_bytes(bn) BN_num_bytes(bn)
  146. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  147. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  148. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  149. #define bn_modexp(bn, y, q, p) \
  150. do { \
  151. BN_CTX *ctx = BN_CTX_new(); \
  152. if (!ctx) \
  153. return AVERROR(ENOMEM); \
  154. if (!BN_mod_exp(bn, y, q, p, ctx)) { \
  155. BN_CTX_free(ctx); \
  156. return AVERROR(EINVAL); \
  157. } \
  158. BN_CTX_free(ctx); \
  159. } while (0)
  160. #define dh_new() DH_new()
  161. #define dh_generate_key(dh) DH_generate_key(dh)
  162. #define dh_compute_key(dh, pub, len, secret) DH_compute_key(secret, pub, dh)
  163. void ff_dh_free(FF_DH *dh)
  164. {
  165. DH_free(dh);
  166. }
  167. #endif
  168. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  169. {
  170. FFBigNum bn = NULL;
  171. int ret = AVERROR(EINVAL);
  172. bn_new(bn);
  173. if (!bn)
  174. return AVERROR(ENOMEM);
  175. /* y must lie in [2, p - 1] */
  176. bn_set_word(bn, 1);
  177. if (!bn_cmp(y, bn))
  178. goto fail;
  179. /* bn = p - 2 */
  180. bn_copy(bn, p);
  181. bn_sub_word(bn, 1);
  182. if (!bn_cmp(y, bn))
  183. goto fail;
  184. /* Verify with Sophie-Germain prime
  185. *
  186. * This is a nice test to make sure the public key position is calculated
  187. * correctly. This test will fail in about 50% of the cases if applied to
  188. * random data.
  189. */
  190. /* y must fulfill y^q mod p = 1 */
  191. bn_modexp(bn, y, q, p);
  192. if (bn_cmp_1(bn))
  193. goto fail;
  194. ret = 0;
  195. fail:
  196. bn_free(bn);
  197. return ret;
  198. }
  199. av_cold FF_DH *ff_dh_init(int key_len)
  200. {
  201. FF_DH *dh;
  202. int ret;
  203. if (!(dh = dh_new()))
  204. return NULL;
  205. bn_new(dh->g);
  206. if (!dh->g)
  207. goto fail;
  208. bn_hex2bn(dh->p, P1024, ret);
  209. if (!ret)
  210. goto fail;
  211. bn_set_word(dh->g, 2);
  212. dh->length = key_len;
  213. return dh;
  214. fail:
  215. ff_dh_free(dh);
  216. return NULL;
  217. }
  218. int ff_dh_generate_public_key(FF_DH *dh)
  219. {
  220. int ret = 0;
  221. while (!ret) {
  222. FFBigNum q1 = NULL;
  223. if (!dh_generate_key(dh))
  224. return AVERROR(EINVAL);
  225. bn_hex2bn(q1, Q1024, ret);
  226. if (!ret)
  227. return AVERROR(ENOMEM);
  228. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  229. bn_free(q1);
  230. if (!ret) {
  231. /* the public key is valid */
  232. break;
  233. }
  234. }
  235. return ret;
  236. }
  237. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  238. {
  239. int len;
  240. /* compute the length of the public key */
  241. len = bn_num_bytes(dh->pub_key);
  242. if (len <= 0 || len > pub_key_len)
  243. return AVERROR(EINVAL);
  244. /* convert the public key value into big-endian form */
  245. memset(pub_key, 0, pub_key_len);
  246. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  247. return 0;
  248. }
  249. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  250. int pub_key_len, uint8_t *secret_key)
  251. {
  252. FFBigNum q1 = NULL, pub_key_bn = NULL;
  253. int ret;
  254. /* convert the big-endian form of the public key into a bignum */
  255. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  256. if (!pub_key_bn)
  257. return AVERROR(ENOMEM);
  258. /* convert the string containing a hexadecimal number into a bignum */
  259. bn_hex2bn(q1, Q1024, ret);
  260. if (!ret) {
  261. ret = AVERROR(ENOMEM);
  262. goto fail;
  263. }
  264. /* when the public key is valid we have to compute the shared secret key */
  265. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  266. goto fail;
  267. } else if ((ret = dh_compute_key(dh, pub_key_bn, pub_key_len,
  268. secret_key)) < 0) {
  269. ret = AVERROR(EINVAL);
  270. goto fail;
  271. }
  272. fail:
  273. bn_free(pub_key_bn);
  274. bn_free(q1);
  275. return ret;
  276. }