You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2560 lines
69KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of the two allowed forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain:
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert scale filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Follows a BNF description for the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. The filter accepts the following named parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. The filter accepts the following named parameters:
  127. @table @option
  128. @item inputs
  129. Number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. Duration of longest input. (default)
  135. @item shortest
  136. Duration of shortest input.
  137. @item first
  138. Duration of first input.
  139. @end table
  140. @item dropout_transition
  141. Transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section ashowinfo
  147. Show a line containing various information for each input audio frame.
  148. The input audio is not modified.
  149. The shown line contains a sequence of key/value pairs of the form
  150. @var{key}:@var{value}.
  151. A description of each shown parameter follows:
  152. @table @option
  153. @item n
  154. sequential number of the input frame, starting from 0
  155. @item pts
  156. Presentation timestamp of the input frame, in time base units; the time base
  157. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  158. @item pts_time
  159. presentation timestamp of the input frame in seconds
  160. @item fmt
  161. sample format
  162. @item chlayout
  163. channel layout
  164. @item rate
  165. sample rate for the audio frame
  166. @item nb_samples
  167. number of samples (per channel) in the frame
  168. @item checksum
  169. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  170. the data is treated as if all the planes were concatenated.
  171. @item plane_checksums
  172. A list of Adler-32 checksums for each data plane.
  173. @end table
  174. @section asplit
  175. Split input audio into several identical outputs.
  176. The filter accepts a single parameter which specifies the number of outputs. If
  177. unspecified, it defaults to 2.
  178. For example
  179. @example
  180. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  181. @end example
  182. will create 5 copies of the input audio.
  183. @section asyncts
  184. Synchronize audio data with timestamps by squeezing/stretching it and/or
  185. dropping samples/adding silence when needed.
  186. The filter accepts the following named parameters:
  187. @table @option
  188. @item compensate
  189. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  190. by default. When disabled, time gaps are covered with silence.
  191. @item min_delta
  192. Minimum difference between timestamps and audio data (in seconds) to trigger
  193. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  194. this filter, try setting this parameter to 0.
  195. @item max_comp
  196. Maximum compensation in samples per second. Relevant only with compensate=1.
  197. Default value 500.
  198. @item first_pts
  199. Assume the first pts should be this value. The time base is 1 / sample rate.
  200. This allows for padding/trimming at the start of stream. By default, no
  201. assumption is made about the first frame's expected pts, so no padding or
  202. trimming is done. For example, this could be set to 0 to pad the beginning with
  203. silence if an audio stream starts after the video stream or to trim any samples
  204. with a negative pts due to encoder delay.
  205. @end table
  206. @section channelsplit
  207. Split each channel in input audio stream into a separate output stream.
  208. This filter accepts the following named parameters:
  209. @table @option
  210. @item channel_layout
  211. Channel layout of the input stream. Default is "stereo".
  212. @end table
  213. For example, assuming a stereo input MP3 file
  214. @example
  215. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  216. @end example
  217. will create an output Matroska file with two audio streams, one containing only
  218. the left channel and the other the right channel.
  219. To split a 5.1 WAV file into per-channel files
  220. @example
  221. avconv -i in.wav -filter_complex
  222. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  223. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  224. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  225. side_right.wav
  226. @end example
  227. @section channelmap
  228. Remap input channels to new locations.
  229. This filter accepts the following named parameters:
  230. @table @option
  231. @item channel_layout
  232. Channel layout of the output stream.
  233. @item map
  234. Map channels from input to output. The argument is a '|'-separated list of
  235. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  236. @var{in_channel} form. @var{in_channel} can be either the name of the input
  237. channel (e.g. FL for front left) or its index in the input channel layout.
  238. @var{out_channel} is the name of the output channel or its index in the output
  239. channel layout. If @var{out_channel} is not given then it is implicitly an
  240. index, starting with zero and increasing by one for each mapping.
  241. @end table
  242. If no mapping is present, the filter will implicitly map input channels to
  243. output channels preserving index.
  244. For example, assuming a 5.1+downmix input MOV file
  245. @example
  246. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  247. @end example
  248. will create an output WAV file tagged as stereo from the downmix channels of
  249. the input.
  250. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  251. @example
  252. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:channel_layout=5.1' out.wav
  253. @end example
  254. @section join
  255. Join multiple input streams into one multi-channel stream.
  256. The filter accepts the following named parameters:
  257. @table @option
  258. @item inputs
  259. Number of input streams. Defaults to 2.
  260. @item channel_layout
  261. Desired output channel layout. Defaults to stereo.
  262. @item map
  263. Map channels from inputs to output. The argument is a '|'-separated list of
  264. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  265. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  266. can be either the name of the input channel (e.g. FL for front left) or its
  267. index in the specified input stream. @var{out_channel} is the name of the output
  268. channel.
  269. @end table
  270. The filter will attempt to guess the mappings when those are not specified
  271. explicitly. It does so by first trying to find an unused matching input channel
  272. and if that fails it picks the first unused input channel.
  273. E.g. to join 3 inputs (with properly set channel layouts)
  274. @example
  275. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  276. @end example
  277. To build a 5.1 output from 6 single-channel streams:
  278. @example
  279. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  280. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  281. out
  282. @end example
  283. @section resample
  284. Convert the audio sample format, sample rate and channel layout. This filter is
  285. not meant to be used directly, it is inserted automatically by libavfilter
  286. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  287. conversion.
  288. @section volume
  289. Adjust the input audio volume.
  290. The filter accepts the following named parameters:
  291. @table @option
  292. @item volume
  293. Expresses how the audio volume will be increased or decreased.
  294. Output values are clipped to the maximum value.
  295. The output audio volume is given by the relation:
  296. @example
  297. @var{output_volume} = @var{volume} * @var{input_volume}
  298. @end example
  299. Default value for @var{volume} is 1.0.
  300. @item precision
  301. Mathematical precision.
  302. This determines which input sample formats will be allowed, which affects the
  303. precision of the volume scaling.
  304. @table @option
  305. @item fixed
  306. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  307. @item float
  308. 32-bit floating-point; limits input sample format to FLT. (default)
  309. @item double
  310. 64-bit floating-point; limits input sample format to DBL.
  311. @end table
  312. @end table
  313. @subsection Examples
  314. @itemize
  315. @item
  316. Halve the input audio volume:
  317. @example
  318. volume=volume=0.5
  319. volume=volume=1/2
  320. volume=volume=-6.0206dB
  321. @end example
  322. @item
  323. Increase input audio power by 6 decibels using fixed-point precision:
  324. @example
  325. volume=volume=6dB:precision=fixed
  326. @end example
  327. @end itemize
  328. @c man end AUDIO FILTERS
  329. @chapter Audio Sources
  330. @c man begin AUDIO SOURCES
  331. Below is a description of the currently available audio sources.
  332. @section anullsrc
  333. Null audio source, never return audio frames. It is mainly useful as a
  334. template and to be employed in analysis / debugging tools.
  335. It accepts as optional parameter a string of the form
  336. @var{sample_rate}:@var{channel_layout}.
  337. @var{sample_rate} specify the sample rate, and defaults to 44100.
  338. @var{channel_layout} specify the channel layout, and can be either an
  339. integer or a string representing a channel layout. The default value
  340. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  341. Check the channel_layout_map definition in
  342. @file{libavutil/channel_layout.c} for the mapping between strings and
  343. channel layout values.
  344. Follow some examples:
  345. @example
  346. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  347. anullsrc=48000:4
  348. # same as
  349. anullsrc=48000:mono
  350. @end example
  351. @section abuffer
  352. Buffer audio frames, and make them available to the filter chain.
  353. This source is not intended to be part of user-supplied graph descriptions but
  354. for insertion by calling programs through the interface defined in
  355. @file{libavfilter/buffersrc.h}.
  356. It accepts the following named parameters:
  357. @table @option
  358. @item time_base
  359. Timebase which will be used for timestamps of submitted frames. It must be
  360. either a floating-point number or in @var{numerator}/@var{denominator} form.
  361. @item sample_rate
  362. Audio sample rate.
  363. @item sample_fmt
  364. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  365. @item channel_layout
  366. Channel layout of the audio data, in the form that can be accepted by
  367. @code{av_get_channel_layout()}.
  368. @end table
  369. All the parameters need to be explicitly defined.
  370. @c man end AUDIO SOURCES
  371. @chapter Audio Sinks
  372. @c man begin AUDIO SINKS
  373. Below is a description of the currently available audio sinks.
  374. @section anullsink
  375. Null audio sink, do absolutely nothing with the input audio. It is
  376. mainly useful as a template and to be employed in analysis / debugging
  377. tools.
  378. @section abuffersink
  379. This sink is intended for programmatic use. Frames that arrive on this sink can
  380. be retrieved by the calling program using the interface defined in
  381. @file{libavfilter/buffersink.h}.
  382. This filter accepts no parameters.
  383. @c man end AUDIO SINKS
  384. @chapter Video Filters
  385. @c man begin VIDEO FILTERS
  386. When you configure your Libav build, you can disable any of the
  387. existing filters using --disable-filters.
  388. The configure output will show the video filters included in your
  389. build.
  390. Below is a description of the currently available video filters.
  391. @section blackframe
  392. Detect frames that are (almost) completely black. Can be useful to
  393. detect chapter transitions or commercials. Output lines consist of
  394. the frame number of the detected frame, the percentage of blackness,
  395. the position in the file if known or -1 and the timestamp in seconds.
  396. In order to display the output lines, you need to set the loglevel at
  397. least to the AV_LOG_INFO value.
  398. The filter accepts the following options:
  399. @table @option
  400. @item amount
  401. The percentage of the pixels that have to be below the threshold, defaults to
  402. 98.
  403. @item threshold
  404. Threshold below which a pixel value is considered black, defaults to 32.
  405. @end table
  406. @section boxblur
  407. Apply boxblur algorithm to the input video.
  408. This filter accepts the following options:
  409. @table @option
  410. @item luma_radius
  411. @item luma_power
  412. @item chroma_radius
  413. @item chroma_power
  414. @item alpha_radius
  415. @item alpha_power
  416. @end table
  417. Chroma and alpha parameters are optional, if not specified they default
  418. to the corresponding values set for @var{luma_radius} and
  419. @var{luma_power}.
  420. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  421. the radius in pixels of the box used for blurring the corresponding
  422. input plane. They are expressions, and can contain the following
  423. constants:
  424. @table @option
  425. @item w, h
  426. the input width and height in pixels
  427. @item cw, ch
  428. the input chroma image width and height in pixels
  429. @item hsub, vsub
  430. horizontal and vertical chroma subsample values. For example for the
  431. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  432. @end table
  433. The radius must be a non-negative number, and must not be greater than
  434. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  435. and of @code{min(cw,ch)/2} for the chroma planes.
  436. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  437. how many times the boxblur filter is applied to the corresponding
  438. plane.
  439. Some examples follow:
  440. @itemize
  441. @item
  442. Apply a boxblur filter with luma, chroma, and alpha radius
  443. set to 2:
  444. @example
  445. boxblur=luma_radius=2:luma_power=1
  446. @end example
  447. @item
  448. Set luma radius to 2, alpha and chroma radius to 0
  449. @example
  450. boxblur=2:1:0:0:0:0
  451. @end example
  452. @item
  453. Set luma and chroma radius to a fraction of the video dimension
  454. @example
  455. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  456. @end example
  457. @end itemize
  458. @section copy
  459. Copy the input source unchanged to the output. Mainly useful for
  460. testing purposes.
  461. @section crop
  462. Crop the input video to given dimensions.
  463. This filter accepts the following options:
  464. @table @option
  465. @item out_w
  466. Width of the output video.
  467. @item out_h
  468. Height of the output video.
  469. @item x
  470. Horizontal position, in the input video, of the left edge of the output video.
  471. @item y
  472. Vertical position, in the input video, of the top edge of the output video.
  473. @end table
  474. The parameters are expressions containing the following constants:
  475. @table @option
  476. @item E, PI, PHI
  477. the corresponding mathematical approximated values for e
  478. (euler number), pi (greek PI), PHI (golden ratio)
  479. @item x, y
  480. the computed values for @var{x} and @var{y}. They are evaluated for
  481. each new frame.
  482. @item in_w, in_h
  483. the input width and height
  484. @item iw, ih
  485. same as @var{in_w} and @var{in_h}
  486. @item out_w, out_h
  487. the output (cropped) width and height
  488. @item ow, oh
  489. same as @var{out_w} and @var{out_h}
  490. @item n
  491. the number of input frame, starting from 0
  492. @item t
  493. timestamp expressed in seconds, NAN if the input timestamp is unknown
  494. @end table
  495. The @var{out_w} and @var{out_h} parameters specify the expressions for
  496. the width and height of the output (cropped) video. They are
  497. evaluated just at the configuration of the filter.
  498. The default value of @var{out_w} is "in_w", and the default value of
  499. @var{out_h} is "in_h".
  500. The expression for @var{out_w} may depend on the value of @var{out_h},
  501. and the expression for @var{out_h} may depend on @var{out_w}, but they
  502. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  503. evaluated after @var{out_w} and @var{out_h}.
  504. The @var{x} and @var{y} parameters specify the expressions for the
  505. position of the top-left corner of the output (non-cropped) area. They
  506. are evaluated for each frame. If the evaluated value is not valid, it
  507. is approximated to the nearest valid value.
  508. The default value of @var{x} is "(in_w-out_w)/2", and the default
  509. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  510. the center of the input image.
  511. The expression for @var{x} may depend on @var{y}, and the expression
  512. for @var{y} may depend on @var{x}.
  513. Follow some examples:
  514. @example
  515. # crop the central input area with size 100x100
  516. crop=out_w=100:out_h=100
  517. # crop the central input area with size 2/3 of the input video
  518. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  519. # crop the input video central square
  520. crop=out_w=in_h
  521. # delimit the rectangle with the top-left corner placed at position
  522. # 100:100 and the right-bottom corner corresponding to the right-bottom
  523. # corner of the input image.
  524. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  525. # crop 10 pixels from the left and right borders, and 20 pixels from
  526. # the top and bottom borders
  527. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  528. # keep only the bottom right quarter of the input image
  529. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  530. # crop height for getting Greek harmony
  531. "crop=out_w=in_w:out_h=1/PHI*in_w"
  532. # trembling effect
  533. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  534. # erratic camera effect depending on timestamp
  535. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  536. # set x depending on the value of y
  537. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  538. @end example
  539. @section cropdetect
  540. Auto-detect crop size.
  541. Calculate necessary cropping parameters and prints the recommended
  542. parameters through the logging system. The detected dimensions
  543. correspond to the non-black area of the input video.
  544. This filter accepts the following options:
  545. @table @option
  546. @item limit
  547. Threshold, which can be optionally specified from nothing (0) to
  548. everything (255), defaults to 24.
  549. @item round
  550. Value which the width/height should be divisible by, defaults to
  551. 16. The offset is automatically adjusted to center the video. Use 2 to
  552. get only even dimensions (needed for 4:2:2 video). 16 is best when
  553. encoding to most video codecs.
  554. @item reset
  555. Counter that determines after how many frames cropdetect will reset
  556. the previously detected largest video area and start over to detect
  557. the current optimal crop area. Defaults to 0.
  558. This can be useful when channel logos distort the video area. 0
  559. indicates never reset and return the largest area encountered during
  560. playback.
  561. @end table
  562. @section delogo
  563. Suppress a TV station logo by a simple interpolation of the surrounding
  564. pixels. Just set a rectangle covering the logo and watch it disappear
  565. (and sometimes something even uglier appear - your mileage may vary).
  566. This filter accepts the following options:
  567. @table @option
  568. @item x, y
  569. Specify the top left corner coordinates of the logo. They must be
  570. specified.
  571. @item w, h
  572. Specify the width and height of the logo to clear. They must be
  573. specified.
  574. @item band, t
  575. Specify the thickness of the fuzzy edge of the rectangle (added to
  576. @var{w} and @var{h}). The default value is 4.
  577. @item show
  578. When set to 1, a green rectangle is drawn on the screen to simplify
  579. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  580. @var{band} is set to 4. The default value is 0.
  581. @end table
  582. Some examples follow.
  583. @itemize
  584. @item
  585. Set a rectangle covering the area with top left corner coordinates 0,0
  586. and size 100x77, setting a band of size 10:
  587. @example
  588. delogo=x=0:y=0:w=100:h=77:band=10
  589. @end example
  590. @end itemize
  591. @section drawbox
  592. Draw a colored box on the input image.
  593. This filter accepts the following options:
  594. @table @option
  595. @item x, y
  596. Specify the top left corner coordinates of the box. Default to 0.
  597. @item width, height
  598. Specify the width and height of the box, if 0 they are interpreted as
  599. the input width and height. Default to 0.
  600. @item color
  601. Specify the color of the box to write, it can be the name of a color
  602. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  603. @end table
  604. Follow some examples:
  605. @example
  606. # draw a black box around the edge of the input image
  607. drawbox
  608. # draw a box with color red and an opacity of 50%
  609. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  610. @end example
  611. @section drawtext
  612. Draw text string or text from specified file on top of video using the
  613. libfreetype library.
  614. To enable compilation of this filter you need to configure Libav with
  615. @code{--enable-libfreetype}.
  616. The filter also recognizes strftime() sequences in the provided text
  617. and expands them accordingly. Check the documentation of strftime().
  618. The description of the accepted parameters follows.
  619. @table @option
  620. @item fontfile
  621. The font file to be used for drawing text. Path must be included.
  622. This parameter is mandatory.
  623. @item text
  624. The text string to be drawn. The text must be a sequence of UTF-8
  625. encoded characters.
  626. This parameter is mandatory if no file is specified with the parameter
  627. @var{textfile}.
  628. @item textfile
  629. A text file containing text to be drawn. The text must be a sequence
  630. of UTF-8 encoded characters.
  631. This parameter is mandatory if no text string is specified with the
  632. parameter @var{text}.
  633. If both text and textfile are specified, an error is thrown.
  634. @item x, y
  635. The offsets where text will be drawn within the video frame.
  636. Relative to the top/left border of the output image.
  637. They accept expressions similar to the @ref{overlay} filter:
  638. @table @option
  639. @item x, y
  640. the computed values for @var{x} and @var{y}. They are evaluated for
  641. each new frame.
  642. @item main_w, main_h
  643. main input width and height
  644. @item W, H
  645. same as @var{main_w} and @var{main_h}
  646. @item text_w, text_h
  647. rendered text width and height
  648. @item w, h
  649. same as @var{text_w} and @var{text_h}
  650. @item n
  651. the number of frames processed, starting from 0
  652. @item t
  653. timestamp expressed in seconds, NAN if the input timestamp is unknown
  654. @end table
  655. The default value of @var{x} and @var{y} is 0.
  656. @item fontsize
  657. The font size to be used for drawing text.
  658. The default value of @var{fontsize} is 16.
  659. @item fontcolor
  660. The color to be used for drawing fonts.
  661. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  662. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  663. The default value of @var{fontcolor} is "black".
  664. @item boxcolor
  665. The color to be used for drawing box around text.
  666. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  667. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  668. The default value of @var{boxcolor} is "white".
  669. @item box
  670. Used to draw a box around text using background color.
  671. Value should be either 1 (enable) or 0 (disable).
  672. The default value of @var{box} is 0.
  673. @item shadowx, shadowy
  674. The x and y offsets for the text shadow position with respect to the
  675. position of the text. They can be either positive or negative
  676. values. Default value for both is "0".
  677. @item shadowcolor
  678. The color to be used for drawing a shadow behind the drawn text. It
  679. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  680. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  681. The default value of @var{shadowcolor} is "black".
  682. @item ft_load_flags
  683. Flags to be used for loading the fonts.
  684. The flags map the corresponding flags supported by libfreetype, and are
  685. a combination of the following values:
  686. @table @var
  687. @item default
  688. @item no_scale
  689. @item no_hinting
  690. @item render
  691. @item no_bitmap
  692. @item vertical_layout
  693. @item force_autohint
  694. @item crop_bitmap
  695. @item pedantic
  696. @item ignore_global_advance_width
  697. @item no_recurse
  698. @item ignore_transform
  699. @item monochrome
  700. @item linear_design
  701. @item no_autohint
  702. @item end table
  703. @end table
  704. Default value is "render".
  705. For more information consult the documentation for the FT_LOAD_*
  706. libfreetype flags.
  707. @item tabsize
  708. The size in number of spaces to use for rendering the tab.
  709. Default value is 4.
  710. @item fix_bounds
  711. If true, check and fix text coords to avoid clipping.
  712. @end table
  713. For example the command:
  714. @example
  715. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  716. @end example
  717. will draw "Test Text" with font FreeSerif, using the default values
  718. for the optional parameters.
  719. The command:
  720. @example
  721. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  722. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  723. @end example
  724. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  725. and y=50 (counting from the top-left corner of the screen), text is
  726. yellow with a red box around it. Both the text and the box have an
  727. opacity of 20%.
  728. Note that the double quotes are not necessary if spaces are not used
  729. within the parameter list.
  730. For more information about libfreetype, check:
  731. @url{http://www.freetype.org/}.
  732. @section fade
  733. Apply fade-in/out effect to input video.
  734. This filter accepts the following options:
  735. @table @option
  736. @item type
  737. The effect type -- can be either "in" for fade-in, or "out" for a fade-out
  738. effect.
  739. @item start_frame
  740. The number of the start frame for starting to apply the fade effect.
  741. @item nb_frames
  742. The number of frames for which the fade effect has to last. At the end of the
  743. fade-in effect the output video will have the same intensity as the input video,
  744. at the end of the fade-out transition the output video will be completely black.
  745. @end table
  746. A few usage examples follow, usable too as test scenarios.
  747. @example
  748. # fade in first 30 frames of video
  749. fade=type=in:nb_frames=30
  750. # fade out last 45 frames of a 200-frame video
  751. fade=type=out:start_frame=155:nb_frames=45
  752. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  753. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  754. # make first 5 frames black, then fade in from frame 5-24
  755. fade=type=in:start_frame=5:nb_frames=20
  756. @end example
  757. @section fieldorder
  758. Transform the field order of the input video.
  759. This filter accepts the following options:
  760. @table @option
  761. @item order
  762. Output field order. Valid values are @var{tff} for top field first or @var{bff}
  763. for bottom field first.
  764. @end table
  765. Default value is "tff".
  766. Transformation is achieved by shifting the picture content up or down
  767. by one line, and filling the remaining line with appropriate picture content.
  768. This method is consistent with most broadcast field order converters.
  769. If the input video is not flagged as being interlaced, or it is already
  770. flagged as being of the required output field order then this filter does
  771. not alter the incoming video.
  772. This filter is very useful when converting to or from PAL DV material,
  773. which is bottom field first.
  774. For example:
  775. @example
  776. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  777. @end example
  778. @section fifo
  779. Buffer input images and send them when they are requested.
  780. This filter is mainly useful when auto-inserted by the libavfilter
  781. framework.
  782. The filter does not take parameters.
  783. @section format
  784. Convert the input video to one of the specified pixel formats.
  785. Libavfilter will try to pick one that is supported for the input to
  786. the next filter.
  787. This filter accepts the following parameters:
  788. @table @option
  789. @item pix_fmts
  790. A '|'-separated list of pixel format names, for example
  791. "pix_fmts=yuv420p|monow|rgb24".
  792. @end table
  793. Some examples follow:
  794. @example
  795. # convert the input video to the format "yuv420p"
  796. format=pix_fmts=yuv420p
  797. # convert the input video to any of the formats in the list
  798. format=pix_fmts=yuv420p|yuv444p|yuv410p
  799. @end example
  800. @section fps
  801. Convert the video to specified constant framerate by duplicating or dropping
  802. frames as necessary.
  803. This filter accepts the following named parameters:
  804. @table @option
  805. @item fps
  806. Desired output framerate.
  807. @end table
  808. @anchor{frei0r}
  809. @section frei0r
  810. Apply a frei0r effect to the input video.
  811. To enable compilation of this filter you need to install the frei0r
  812. header and configure Libav with --enable-frei0r.
  813. This filter accepts the following options:
  814. @table @option
  815. @item filter_name
  816. The name to the frei0r effect to load. If the environment variable
  817. @env{FREI0R_PATH} is defined, the frei0r effect is searched in each one of the
  818. directories specified by the colon separated list in @env{FREIOR_PATH},
  819. otherwise in the standard frei0r paths, which are in this order:
  820. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  821. @file{/usr/lib/frei0r-1/}.
  822. @item filter_params
  823. A '|'-separated list of parameters to pass to the frei0r effect.
  824. @end table
  825. A frei0r effect parameter can be a boolean (whose values are specified
  826. with "y" and "n"), a double, a color (specified by the syntax
  827. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  828. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  829. description), a position (specified by the syntax @var{X}/@var{Y},
  830. @var{X} and @var{Y} being float numbers) and a string.
  831. The number and kind of parameters depend on the loaded effect. If an
  832. effect parameter is not specified the default value is set.
  833. Some examples follow:
  834. @example
  835. # apply the distort0r effect, set the first two double parameters
  836. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  837. # apply the colordistance effect, takes a color as first parameter
  838. frei0r=colordistance:0.2/0.3/0.4
  839. frei0r=colordistance:violet
  840. frei0r=colordistance:0x112233
  841. # apply the perspective effect, specify the top left and top right
  842. # image positions
  843. frei0r=perspective:0.2/0.2|0.8/0.2
  844. @end example
  845. For more information see:
  846. @url{http://piksel.org/frei0r}
  847. @section gradfun
  848. Fix the banding artifacts that are sometimes introduced into nearly flat
  849. regions by truncation to 8bit colordepth.
  850. Interpolate the gradients that should go where the bands are, and
  851. dither them.
  852. This filter is designed for playback only. Do not use it prior to
  853. lossy compression, because compression tends to lose the dither and
  854. bring back the bands.
  855. This filter accepts the following options:
  856. @table @option
  857. @item strength
  858. The maximum amount by which the filter will change any one pixel. Also the
  859. threshold for detecting nearly flat regions. Acceptable values range from .51 to
  860. 64, default value is 1.2, out-of-range values will be clipped to the valid
  861. range.
  862. @item radius
  863. The neighborhood to fit the gradient to. A larger radius makes for smoother
  864. gradients, but also prevents the filter from modifying the pixels near detailed
  865. regions. Acceptable values are 8-32, default value is 16, out-of-range values
  866. will be clipped to the valid range.
  867. @end table
  868. @example
  869. # default parameters
  870. gradfun=strength=1.2:radius=16
  871. # omitting radius
  872. gradfun=1.2
  873. @end example
  874. @section hflip
  875. Flip the input video horizontally.
  876. For example to horizontally flip the input video with @command{avconv}:
  877. @example
  878. avconv -i in.avi -vf "hflip" out.avi
  879. @end example
  880. @section hqdn3d
  881. High precision/quality 3d denoise filter. This filter aims to reduce
  882. image noise producing smooth images and making still images really
  883. still. It should enhance compressibility.
  884. It accepts the following optional parameters:
  885. @table @option
  886. @item luma_spatial
  887. a non-negative float number which specifies spatial luma strength,
  888. defaults to 4.0
  889. @item chroma_spatial
  890. a non-negative float number which specifies spatial chroma strength,
  891. defaults to 3.0*@var{luma_spatial}/4.0
  892. @item luma_tmp
  893. a float number which specifies luma temporal strength, defaults to
  894. 6.0*@var{luma_spatial}/4.0
  895. @item chroma_tmp
  896. a float number which specifies chroma temporal strength, defaults to
  897. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  898. @end table
  899. @section interlace
  900. Simple interlacing filter from progressive contents. This interleaves upper (or
  901. lower) lines from odd frames with lower (or upper) lines from even frames,
  902. halving the frame rate and preserving image height.
  903. @example
  904. Original Original New Frame
  905. Frame 'j' Frame 'j+1' (tff)
  906. ========== =========== ==================
  907. Line 0 --------------------> Frame 'j' Line 0
  908. Line 1 Line 1 ----> Frame 'j+1' Line 1
  909. Line 2 ---------------------> Frame 'j' Line 2
  910. Line 3 Line 3 ----> Frame 'j+1' Line 3
  911. ... ... ...
  912. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  913. @end example
  914. It accepts the following optional parameters:
  915. @table @option
  916. @item scan
  917. determines whether the interlaced frame is taken from the even (tff - default)
  918. or odd (bff) lines of the progressive frame.
  919. @item lowpass
  920. Enable (default) or disable the vertical lowpass filter to avoid twitter
  921. interlacing and reduce moire patterns.
  922. @end table
  923. @section lut, lutrgb, lutyuv
  924. Compute a look-up table for binding each pixel component input value
  925. to an output value, and apply it to input video.
  926. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  927. to an RGB input video.
  928. These filters accept the following options:
  929. @table @option
  930. @item @var{c0} (first pixel component)
  931. @item @var{c1} (second pixel component)
  932. @item @var{c2} (third pixel component)
  933. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  934. @item @var{r} (red component)
  935. @item @var{g} (green component)
  936. @item @var{b} (blue component)
  937. @item @var{a} (alpha component)
  938. @item @var{y} (Y/luminance component)
  939. @item @var{u} (U/Cb component)
  940. @item @var{v} (V/Cr component)
  941. @end table
  942. Each of them specifies the expression to use for computing the lookup table for
  943. the corresponding pixel component values.
  944. The exact component associated to each of the @var{c*} options depends on the
  945. format in input.
  946. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  947. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  948. The expressions can contain the following constants and functions:
  949. @table @option
  950. @item E, PI, PHI
  951. the corresponding mathematical approximated values for e
  952. (euler number), pi (greek PI), PHI (golden ratio)
  953. @item w, h
  954. the input width and height
  955. @item val
  956. input value for the pixel component
  957. @item clipval
  958. the input value clipped in the @var{minval}-@var{maxval} range
  959. @item maxval
  960. maximum value for the pixel component
  961. @item minval
  962. minimum value for the pixel component
  963. @item negval
  964. the negated value for the pixel component value clipped in the
  965. @var{minval}-@var{maxval} range , it corresponds to the expression
  966. "maxval-clipval+minval"
  967. @item clip(val)
  968. the computed value in @var{val} clipped in the
  969. @var{minval}-@var{maxval} range
  970. @item gammaval(gamma)
  971. the computed gamma correction value of the pixel component value
  972. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  973. expression
  974. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  975. @end table
  976. All expressions default to "val".
  977. Some examples follow:
  978. @example
  979. # negate input video
  980. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  981. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  982. # the above is the same as
  983. lutrgb="r=negval:g=negval:b=negval"
  984. lutyuv="y=negval:u=negval:v=negval"
  985. # negate luminance
  986. lutyuv=negval
  987. # remove chroma components, turns the video into a graytone image
  988. lutyuv="u=128:v=128"
  989. # apply a luma burning effect
  990. lutyuv="y=2*val"
  991. # remove green and blue components
  992. lutrgb="g=0:b=0"
  993. # set a constant alpha channel value on input
  994. format=rgba,lutrgb=a="maxval-minval/2"
  995. # correct luminance gamma by a 0.5 factor
  996. lutyuv=y=gammaval(0.5)
  997. @end example
  998. @section negate
  999. Negate input video.
  1000. This filter accepts an integer in input, if non-zero it negates the
  1001. alpha component (if available). The default value in input is 0.
  1002. @section noformat
  1003. Force libavfilter not to use any of the specified pixel formats for the
  1004. input to the next filter.
  1005. This filter accepts the following parameters:
  1006. @table @option
  1007. @item pix_fmts
  1008. A '|'-separated list of pixel format names, for example
  1009. "pix_fmts=yuv420p|monow|rgb24".
  1010. @end table
  1011. Some examples follow:
  1012. @example
  1013. # force libavfilter to use a format different from "yuv420p" for the
  1014. # input to the vflip filter
  1015. noformat=pix_fmts=yuv420p,vflip
  1016. # convert the input video to any of the formats not contained in the list
  1017. noformat=yuv420p|yuv444p|yuv410p
  1018. @end example
  1019. @section null
  1020. Pass the video source unchanged to the output.
  1021. @section ocv
  1022. Apply video transform using libopencv.
  1023. To enable this filter install libopencv library and headers and
  1024. configure Libav with --enable-libopencv.
  1025. This filter accepts the following parameters:
  1026. @table @option
  1027. @item filter_name
  1028. The name of the libopencv filter to apply.
  1029. @item filter_params
  1030. The parameters to pass to the libopencv filter. If not specified the default
  1031. values are assumed.
  1032. @end table
  1033. Refer to the official libopencv documentation for more precise
  1034. information:
  1035. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1036. Follows the list of supported libopencv filters.
  1037. @anchor{dilate}
  1038. @subsection dilate
  1039. Dilate an image by using a specific structuring element.
  1040. This filter corresponds to the libopencv function @code{cvDilate}.
  1041. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1042. @var{struct_el} represents a structuring element, and has the syntax:
  1043. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1044. @var{cols} and @var{rows} represent the number of columns and rows of
  1045. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1046. point, and @var{shape} the shape for the structuring element, and
  1047. can be one of the values "rect", "cross", "ellipse", "custom".
  1048. If the value for @var{shape} is "custom", it must be followed by a
  1049. string of the form "=@var{filename}". The file with name
  1050. @var{filename} is assumed to represent a binary image, with each
  1051. printable character corresponding to a bright pixel. When a custom
  1052. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1053. or columns and rows of the read file are assumed instead.
  1054. The default value for @var{struct_el} is "3x3+0x0/rect".
  1055. @var{nb_iterations} specifies the number of times the transform is
  1056. applied to the image, and defaults to 1.
  1057. Follow some example:
  1058. @example
  1059. # use the default values
  1060. ocv=dilate
  1061. # dilate using a structuring element with a 5x5 cross, iterate two times
  1062. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1063. # read the shape from the file diamond.shape, iterate two times
  1064. # the file diamond.shape may contain a pattern of characters like this:
  1065. # *
  1066. # ***
  1067. # *****
  1068. # ***
  1069. # *
  1070. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1071. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1072. @end example
  1073. @subsection erode
  1074. Erode an image by using a specific structuring element.
  1075. This filter corresponds to the libopencv function @code{cvErode}.
  1076. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1077. with the same syntax and semantics as the @ref{dilate} filter.
  1078. @subsection smooth
  1079. Smooth the input video.
  1080. The filter takes the following parameters:
  1081. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1082. @var{type} is the type of smooth filter to apply, and can be one of
  1083. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1084. "bilateral". The default value is "gaussian".
  1085. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1086. parameters whose meanings depend on smooth type. @var{param1} and
  1087. @var{param2} accept integer positive values or 0, @var{param3} and
  1088. @var{param4} accept float values.
  1089. The default value for @var{param1} is 3, the default value for the
  1090. other parameters is 0.
  1091. These parameters correspond to the parameters assigned to the
  1092. libopencv function @code{cvSmooth}.
  1093. @anchor{overlay}
  1094. @section overlay
  1095. Overlay one video on top of another.
  1096. It takes two inputs and one output, the first input is the "main"
  1097. video on which the second input is overlayed.
  1098. This filter accepts the following parameters:
  1099. @table @option
  1100. @item x
  1101. The horizontal position of the left edge of the overlaid video on the main video.
  1102. @item y
  1103. The vertical position of the top edge of the overlaid video on the main video.
  1104. @end table
  1105. The parameters are expressions containing the following parameters:
  1106. @table @option
  1107. @item main_w, main_h
  1108. main input width and height
  1109. @item W, H
  1110. same as @var{main_w} and @var{main_h}
  1111. @item overlay_w, overlay_h
  1112. overlay input width and height
  1113. @item w, h
  1114. same as @var{overlay_w} and @var{overlay_h}
  1115. @end table
  1116. Be aware that frames are taken from each input video in timestamp
  1117. order, hence, if their initial timestamps differ, it is a a good idea
  1118. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1119. have them begin in the same zero timestamp, as it does the example for
  1120. the @var{movie} filter.
  1121. Follow some examples:
  1122. @example
  1123. # draw the overlay at 10 pixels from the bottom right
  1124. # corner of the main video.
  1125. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1126. # insert a transparent PNG logo in the bottom left corner of the input
  1127. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1128. # insert 2 different transparent PNG logos (second logo on bottom
  1129. # right corner):
  1130. avconv -i input -i logo1 -i logo2 -filter_complex
  1131. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1132. # add a transparent color layer on top of the main video,
  1133. # WxH specifies the size of the main input to the overlay filter
  1134. color=red@.3:WxH [over]; [in][over] overlay [out]
  1135. @end example
  1136. You can chain together more overlays but the efficiency of such
  1137. approach is yet to be tested.
  1138. @section pad
  1139. Add paddings to the input image, and places the original input at the
  1140. given coordinates @var{x}, @var{y}.
  1141. This filter accepts the following parameters:
  1142. @table @option
  1143. @item width, height
  1144. Specify the size of the output image with the paddings added. If the
  1145. value for @var{width} or @var{height} is 0, the corresponding input size
  1146. is used for the output.
  1147. The @var{width} expression can reference the value set by the
  1148. @var{height} expression, and vice versa.
  1149. The default value of @var{width} and @var{height} is 0.
  1150. @item x, y
  1151. Specify the offsets where to place the input image in the padded area
  1152. with respect to the top/left border of the output image.
  1153. The @var{x} expression can reference the value set by the @var{y}
  1154. expression, and vice versa.
  1155. The default value of @var{x} and @var{y} is 0.
  1156. @item color
  1157. Specify the color of the padded area, it can be the name of a color
  1158. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1159. The default value of @var{color} is "black".
  1160. @end table
  1161. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1162. expressions containing the following constants:
  1163. @table @option
  1164. @item E, PI, PHI
  1165. the corresponding mathematical approximated values for e
  1166. (euler number), pi (greek PI), phi (golden ratio)
  1167. @item in_w, in_h
  1168. the input video width and height
  1169. @item iw, ih
  1170. same as @var{in_w} and @var{in_h}
  1171. @item out_w, out_h
  1172. the output width and height, that is the size of the padded area as
  1173. specified by the @var{width} and @var{height} expressions
  1174. @item ow, oh
  1175. same as @var{out_w} and @var{out_h}
  1176. @item x, y
  1177. x and y offsets as specified by the @var{x} and @var{y}
  1178. expressions, or NAN if not yet specified
  1179. @item a
  1180. input display aspect ratio, same as @var{iw} / @var{ih}
  1181. @item hsub, vsub
  1182. horizontal and vertical chroma subsample values. For example for the
  1183. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1184. @end table
  1185. Some examples follow:
  1186. @example
  1187. # Add paddings with color "violet" to the input video. Output video
  1188. # size is 640x480, the top-left corner of the input video is placed at
  1189. # column 0, row 40.
  1190. pad=width=640:height=480:x=0:y=40:color=violet
  1191. # pad the input to get an output with dimensions increased bt 3/2,
  1192. # and put the input video at the center of the padded area
  1193. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1194. # pad the input to get a squared output with size equal to the maximum
  1195. # value between the input width and height, and put the input video at
  1196. # the center of the padded area
  1197. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1198. # pad the input to get a final w/h ratio of 16:9
  1199. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1200. # double output size and put the input video in the bottom-right
  1201. # corner of the output padded area
  1202. pad="2*iw:2*ih:ow-iw:oh-ih"
  1203. @end example
  1204. @section pixdesctest
  1205. Pixel format descriptor test filter, mainly useful for internal
  1206. testing. The output video should be equal to the input video.
  1207. For example:
  1208. @example
  1209. format=monow, pixdesctest
  1210. @end example
  1211. can be used to test the monowhite pixel format descriptor definition.
  1212. @section scale
  1213. Scale the input video and/or convert the image format.
  1214. This filter accepts the following options:
  1215. @table @option
  1216. @item w
  1217. Output video width.
  1218. @item h
  1219. Output video height.
  1220. @end table
  1221. The parameters @var{w} and @var{h} are expressions containing
  1222. the following constants:
  1223. @table @option
  1224. @item E, PI, PHI
  1225. the corresponding mathematical approximated values for e
  1226. (euler number), pi (greek PI), phi (golden ratio)
  1227. @item in_w, in_h
  1228. the input width and height
  1229. @item iw, ih
  1230. same as @var{in_w} and @var{in_h}
  1231. @item out_w, out_h
  1232. the output (cropped) width and height
  1233. @item ow, oh
  1234. same as @var{out_w} and @var{out_h}
  1235. @item dar, a
  1236. input display aspect ratio, same as @var{iw} / @var{ih}
  1237. @item sar
  1238. input sample aspect ratio
  1239. @item hsub, vsub
  1240. horizontal and vertical chroma subsample values. For example for the
  1241. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1242. @end table
  1243. If the input image format is different from the format requested by
  1244. the next filter, the scale filter will convert the input to the
  1245. requested format.
  1246. If the value for @var{w} or @var{h} is 0, the respective input
  1247. size is used for the output.
  1248. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1249. respective output size, a value that maintains the aspect ratio of the input
  1250. image.
  1251. The default value of @var{w} and @var{h} is 0.
  1252. Some examples follow:
  1253. @example
  1254. # scale the input video to a size of 200x100.
  1255. scale=w=200:h=100
  1256. # scale the input to 2x
  1257. scale=w=2*iw:h=2*ih
  1258. # the above is the same as
  1259. scale=2*in_w:2*in_h
  1260. # scale the input to half size
  1261. scale=w=iw/2:h=ih/2
  1262. # increase the width, and set the height to the same size
  1263. scale=3/2*iw:ow
  1264. # seek for Greek harmony
  1265. scale=iw:1/PHI*iw
  1266. scale=ih*PHI:ih
  1267. # increase the height, and set the width to 3/2 of the height
  1268. scale=w=3/2*oh:h=3/5*ih
  1269. # increase the size, but make the size a multiple of the chroma
  1270. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1271. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1272. scale=w='min(500\, iw*3/2):h=-1'
  1273. @end example
  1274. @section select
  1275. Select frames to pass in output.
  1276. This filter accepts the following options:
  1277. @table @option
  1278. @item expr
  1279. An expression, which is evaluated for each input frame. If the expression is
  1280. evaluated to a non-zero value, the frame is selected and passed to the output,
  1281. otherwise it is discarded.
  1282. @end table
  1283. The expression can contain the following constants:
  1284. @table @option
  1285. @item PI
  1286. Greek PI
  1287. @item PHI
  1288. golden ratio
  1289. @item E
  1290. Euler number
  1291. @item n
  1292. the sequential number of the filtered frame, starting from 0
  1293. @item selected_n
  1294. the sequential number of the selected frame, starting from 0
  1295. @item prev_selected_n
  1296. the sequential number of the last selected frame, NAN if undefined
  1297. @item TB
  1298. timebase of the input timestamps
  1299. @item pts
  1300. the PTS (Presentation TimeStamp) of the filtered video frame,
  1301. expressed in @var{TB} units, NAN if undefined
  1302. @item t
  1303. the PTS (Presentation TimeStamp) of the filtered video frame,
  1304. expressed in seconds, NAN if undefined
  1305. @item prev_pts
  1306. the PTS of the previously filtered video frame, NAN if undefined
  1307. @item prev_selected_pts
  1308. the PTS of the last previously filtered video frame, NAN if undefined
  1309. @item prev_selected_t
  1310. the PTS of the last previously selected video frame, NAN if undefined
  1311. @item start_pts
  1312. the PTS of the first video frame in the video, NAN if undefined
  1313. @item start_t
  1314. the time of the first video frame in the video, NAN if undefined
  1315. @item pict_type
  1316. the type of the filtered frame, can assume one of the following
  1317. values:
  1318. @table @option
  1319. @item I
  1320. @item P
  1321. @item B
  1322. @item S
  1323. @item SI
  1324. @item SP
  1325. @item BI
  1326. @end table
  1327. @item interlace_type
  1328. the frame interlace type, can assume one of the following values:
  1329. @table @option
  1330. @item PROGRESSIVE
  1331. the frame is progressive (not interlaced)
  1332. @item TOPFIRST
  1333. the frame is top-field-first
  1334. @item BOTTOMFIRST
  1335. the frame is bottom-field-first
  1336. @end table
  1337. @item key
  1338. 1 if the filtered frame is a key-frame, 0 otherwise
  1339. @end table
  1340. The default value of the select expression is "1".
  1341. Some examples follow:
  1342. @example
  1343. # select all frames in input
  1344. select
  1345. # the above is the same as:
  1346. select=expr=1
  1347. # skip all frames:
  1348. select=expr=0
  1349. # select only I-frames
  1350. select='expr=eq(pict_type\,I)'
  1351. # select one frame every 100
  1352. select='not(mod(n\,100))'
  1353. # select only frames contained in the 10-20 time interval
  1354. select='gte(t\,10)*lte(t\,20)'
  1355. # select only I frames contained in the 10-20 time interval
  1356. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1357. # select frames with a minimum distance of 10 seconds
  1358. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1359. @end example
  1360. @anchor{setdar}
  1361. @section setdar
  1362. Set the Display Aspect Ratio for the filter output video.
  1363. This is done by changing the specified Sample (aka Pixel) Aspect
  1364. Ratio, according to the following equation:
  1365. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1366. Keep in mind that this filter does not modify the pixel dimensions of
  1367. the video frame. Also the display aspect ratio set by this filter may
  1368. be changed by later filters in the filterchain, e.g. in case of
  1369. scaling or if another "setdar" or a "setsar" filter is applied.
  1370. This filter accepts the following options:
  1371. @table @option
  1372. @item dar
  1373. Output display aspect ratio, as a rational or a decimal number.
  1374. @end table
  1375. For example to change the display aspect ratio to 16:9, specify:
  1376. @example
  1377. setdar=dar=16/9
  1378. # the above is equivalent to
  1379. setdar=dar=1.77777
  1380. @end example
  1381. See also the @ref{setsar} filter documentation.
  1382. @section setpts
  1383. Change the PTS (presentation timestamp) of the input video frames.
  1384. This filter accepts the following options:
  1385. @table @option
  1386. @item expr
  1387. The expression which is evaluated for each frame to construct its timestamp.
  1388. @end table
  1389. The expression is evaluated through the eval API and can contain the following
  1390. constants:
  1391. @table @option
  1392. @item PTS
  1393. the presentation timestamp in input
  1394. @item PI
  1395. Greek PI
  1396. @item PHI
  1397. golden ratio
  1398. @item E
  1399. Euler number
  1400. @item N
  1401. the count of the input frame, starting from 0.
  1402. @item STARTPTS
  1403. the PTS of the first video frame
  1404. @item INTERLACED
  1405. tell if the current frame is interlaced
  1406. @item PREV_INPTS
  1407. previous input PTS
  1408. @item PREV_OUTPTS
  1409. previous output PTS
  1410. @item RTCTIME
  1411. wallclock (RTC) time in microseconds
  1412. @item RTCSTART
  1413. wallclock (RTC) time at the start of the movie in microseconds
  1414. @end table
  1415. Some examples follow:
  1416. @example
  1417. # start counting PTS from zero
  1418. setpts=expr=PTS-STARTPTS
  1419. # fast motion
  1420. setpts=expr=0.5*PTS
  1421. # slow motion
  1422. setpts=2.0*PTS
  1423. # fixed rate 25 fps
  1424. setpts=N/(25*TB)
  1425. # fixed rate 25 fps with some jitter
  1426. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1427. # generate timestamps from a "live source" and rebase onto the current timebase
  1428. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1429. @end example
  1430. @anchor{setsar}
  1431. @section setsar
  1432. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1433. Note that as a consequence of the application of this filter, the
  1434. output display aspect ratio will change according to the following
  1435. equation:
  1436. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1437. Keep in mind that the sample aspect ratio set by this filter may be
  1438. changed by later filters in the filterchain, e.g. if another "setsar"
  1439. or a "setdar" filter is applied.
  1440. This filter accepts the following options:
  1441. @table @option
  1442. @item sar
  1443. Output sample aspect ratio, as a rational or decimal number.
  1444. @end table
  1445. For example to change the sample aspect ratio to 10:11, specify:
  1446. @example
  1447. setsar=sar=10/11
  1448. @end example
  1449. @section settb
  1450. Set the timebase to use for the output frames timestamps.
  1451. It is mainly useful for testing timebase configuration.
  1452. This filter accepts the following options:
  1453. @table @option
  1454. @item expr
  1455. The expression which is evaluated into the output timebase.
  1456. @end table
  1457. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1458. default timebase), and "intb" (the input timebase).
  1459. The default value for the input is "intb".
  1460. Follow some examples.
  1461. @example
  1462. # set the timebase to 1/25
  1463. settb=expr=1/25
  1464. # set the timebase to 1/10
  1465. settb=expr=0.1
  1466. #set the timebase to 1001/1000
  1467. settb=1+0.001
  1468. #set the timebase to 2*intb
  1469. settb=2*intb
  1470. #set the default timebase value
  1471. settb=AVTB
  1472. @end example
  1473. @section showinfo
  1474. Show a line containing various information for each input video frame.
  1475. The input video is not modified.
  1476. The shown line contains a sequence of key/value pairs of the form
  1477. @var{key}:@var{value}.
  1478. A description of each shown parameter follows:
  1479. @table @option
  1480. @item n
  1481. sequential number of the input frame, starting from 0
  1482. @item pts
  1483. Presentation TimeStamp of the input frame, expressed as a number of
  1484. time base units. The time base unit depends on the filter input pad.
  1485. @item pts_time
  1486. Presentation TimeStamp of the input frame, expressed as a number of
  1487. seconds
  1488. @item pos
  1489. position of the frame in the input stream, -1 if this information in
  1490. unavailable and/or meaningless (for example in case of synthetic video)
  1491. @item fmt
  1492. pixel format name
  1493. @item sar
  1494. sample aspect ratio of the input frame, expressed in the form
  1495. @var{num}/@var{den}
  1496. @item s
  1497. size of the input frame, expressed in the form
  1498. @var{width}x@var{height}
  1499. @item i
  1500. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1501. for bottom field first)
  1502. @item iskey
  1503. 1 if the frame is a key frame, 0 otherwise
  1504. @item type
  1505. picture type of the input frame ("I" for an I-frame, "P" for a
  1506. P-frame, "B" for a B-frame, "?" for unknown type).
  1507. Check also the documentation of the @code{AVPictureType} enum and of
  1508. the @code{av_get_picture_type_char} function defined in
  1509. @file{libavutil/avutil.h}.
  1510. @item checksum
  1511. Adler-32 checksum of all the planes of the input frame
  1512. @item plane_checksum
  1513. Adler-32 checksum of each plane of the input frame, expressed in the form
  1514. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1515. @end table
  1516. @section split
  1517. Split input video into several identical outputs.
  1518. The filter accepts a single parameter which specifies the number of outputs. If
  1519. unspecified, it defaults to 2.
  1520. For example
  1521. @example
  1522. avconv -i INPUT -filter_complex split=5 OUTPUT
  1523. @end example
  1524. will create 5 copies of the input video.
  1525. @section transpose
  1526. Transpose rows with columns in the input video and optionally flip it.
  1527. This filter accepts the following options:
  1528. @table @option
  1529. @item dir
  1530. The direction of the transpose.
  1531. @end table
  1532. The direction can assume the following values:
  1533. @table @samp
  1534. @item cclock_flip
  1535. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1536. @example
  1537. L.R L.l
  1538. . . -> . .
  1539. l.r R.r
  1540. @end example
  1541. @item clock
  1542. Rotate by 90 degrees clockwise, that is:
  1543. @example
  1544. L.R l.L
  1545. . . -> . .
  1546. l.r r.R
  1547. @end example
  1548. @item cclock
  1549. Rotate by 90 degrees counterclockwise, that is:
  1550. @example
  1551. L.R R.r
  1552. . . -> . .
  1553. l.r L.l
  1554. @end example
  1555. @item clock_flip
  1556. Rotate by 90 degrees clockwise and vertically flip, that is:
  1557. @example
  1558. L.R r.R
  1559. . . -> . .
  1560. l.r l.L
  1561. @end example
  1562. @end table
  1563. @section unsharp
  1564. Sharpen or blur the input video.
  1565. It accepts the following parameters:
  1566. @table @option
  1567. @item luma_msize_x
  1568. Set the luma matrix horizontal size. It can be an integer between 3
  1569. and 13, default value is 5.
  1570. @item luma_msize_y
  1571. Set the luma matrix vertical size. It can be an integer between 3
  1572. and 13, default value is 5.
  1573. @item luma_amount
  1574. Set the luma effect strength. It can be a float number between -2.0
  1575. and 5.0, default value is 1.0.
  1576. @item chroma_msize_x
  1577. Set the chroma matrix horizontal size. It can be an integer between 3
  1578. and 13, default value is 5.
  1579. @item chroma_msize_y
  1580. Set the chroma matrix vertical size. It can be an integer between 3
  1581. and 13, default value is 5.
  1582. @item luma_amount
  1583. Set the chroma effect strength. It can be a float number between -2.0
  1584. and 5.0, default value is 0.0.
  1585. @end table
  1586. Negative values for the amount will blur the input video, while positive
  1587. values will sharpen. All parameters are optional and default to the
  1588. equivalent of the string '5:5:1.0:5:5:0.0'.
  1589. @example
  1590. # Strong luma sharpen effect parameters
  1591. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  1592. # Strong blur of both luma and chroma parameters
  1593. unsharp=7:7:-2:7:7:-2
  1594. # Use the default values with @command{avconv}
  1595. ./avconv -i in.avi -vf "unsharp" out.mp4
  1596. @end example
  1597. @section vflip
  1598. Flip the input video vertically.
  1599. @example
  1600. ./avconv -i in.avi -vf "vflip" out.avi
  1601. @end example
  1602. @section yadif
  1603. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1604. filter").
  1605. This filter accepts the following options:
  1606. @table @option
  1607. @item mode
  1608. The interlacing mode to adopt, accepts one of the following values:
  1609. @table @option
  1610. @item 0
  1611. output 1 frame for each frame
  1612. @item 1
  1613. output 1 frame for each field
  1614. @item 2
  1615. like 0 but skips spatial interlacing check
  1616. @item 3
  1617. like 1 but skips spatial interlacing check
  1618. @end table
  1619. Default value is 0.
  1620. @item parity
  1621. The picture field parity assumed for the input interlaced video, accepts one of
  1622. the following values:
  1623. @table @option
  1624. @item 0
  1625. assume top field first
  1626. @item 1
  1627. assume bottom field first
  1628. @item -1
  1629. enable automatic detection
  1630. @end table
  1631. Default value is -1.
  1632. If interlacing is unknown or decoder does not export this information,
  1633. top field first will be assumed.
  1634. @item auto
  1635. Whether deinterlacer should trust the interlaced flag and only deinterlace
  1636. frames marked as interlaced
  1637. @table @option
  1638. @item 0
  1639. deinterlace all frames
  1640. @item 1
  1641. only deinterlace frames marked as interlaced
  1642. @end table
  1643. Default value is 0.
  1644. @end table
  1645. @c man end VIDEO FILTERS
  1646. @chapter Video Sources
  1647. @c man begin VIDEO SOURCES
  1648. Below is a description of the currently available video sources.
  1649. @section buffer
  1650. Buffer video frames, and make them available to the filter chain.
  1651. This source is mainly intended for a programmatic use, in particular
  1652. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1653. This filter accepts the following parameters:
  1654. @table @option
  1655. @item width
  1656. Input video width.
  1657. @item height
  1658. Input video height.
  1659. @item pix_fmt
  1660. Name of the input video pixel format.
  1661. @item time_base
  1662. The time base used for input timestamps.
  1663. @item sar
  1664. Sample (pixel) aspect ratio of the input video.
  1665. @end table
  1666. For example:
  1667. @example
  1668. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  1669. @end example
  1670. will instruct the source to accept video frames with size 320x240 and
  1671. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1672. square pixels (1:1 sample aspect ratio).
  1673. @section color
  1674. Provide an uniformly colored input.
  1675. It accepts the following parameters:
  1676. @table @option
  1677. @item color
  1678. Specify the color of the source. It can be the name of a color (case
  1679. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1680. alpha specifier. The default value is "black".
  1681. @item size
  1682. Specify the size of the sourced video, it may be a string of the form
  1683. @var{width}x@var{height}, or the name of a size abbreviation. The
  1684. default value is "320x240".
  1685. @item framerate
  1686. Specify the frame rate of the sourced video, as the number of frames
  1687. generated per second. It has to be a string in the format
  1688. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1689. number or a valid video frame rate abbreviation. The default value is
  1690. "25".
  1691. @end table
  1692. For example the following graph description will generate a red source
  1693. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1694. frames per second, which will be overlayed over the source connected
  1695. to the pad with identifier "in".
  1696. @example
  1697. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1698. @end example
  1699. @section movie
  1700. Read a video stream from a movie container.
  1701. Note that this source is a hack that bypasses the standard input path. It can be
  1702. useful in applications that do not support arbitrary filter graphs, but its use
  1703. is discouraged in those that do. Specifically in @command{avconv} this filter
  1704. should never be used, the @option{-filter_complex} option fully replaces it.
  1705. This filter accepts the following options:
  1706. @table @option
  1707. @item filename
  1708. The name of the resource to read (not necessarily a file but also a device or a
  1709. stream accessed through some protocol).
  1710. @item format_name, f
  1711. Specifies the format assumed for the movie to read, and can be either
  1712. the name of a container or an input device. If not specified the
  1713. format is guessed from @var{movie_name} or by probing.
  1714. @item seek_point, sp
  1715. Specifies the seek point in seconds, the frames will be output
  1716. starting from this seek point, the parameter is evaluated with
  1717. @code{av_strtod} so the numerical value may be suffixed by an IS
  1718. postfix. Default value is "0".
  1719. @item stream_index, si
  1720. Specifies the index of the video stream to read. If the value is -1,
  1721. the best suited video stream will be automatically selected. Default
  1722. value is "-1".
  1723. @end table
  1724. This filter allows to overlay a second video on top of main input of
  1725. a filtergraph as shown in this graph:
  1726. @example
  1727. input -----------> deltapts0 --> overlay --> output
  1728. ^
  1729. |
  1730. movie --> scale--> deltapts1 -------+
  1731. @end example
  1732. Some examples follow:
  1733. @example
  1734. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1735. # on top of the input labelled as "in".
  1736. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1737. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1738. # read from a video4linux2 device, and overlay it on top of the input
  1739. # labelled as "in"
  1740. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1741. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1742. @end example
  1743. @section nullsrc
  1744. Null video source, never return images. It is mainly useful as a
  1745. template and to be employed in analysis / debugging tools.
  1746. It accepts as optional parameter a string of the form
  1747. @var{width}:@var{height}:@var{timebase}.
  1748. @var{width} and @var{height} specify the size of the configured
  1749. source. The default values of @var{width} and @var{height} are
  1750. respectively 352 and 288 (corresponding to the CIF size format).
  1751. @var{timebase} specifies an arithmetic expression representing a
  1752. timebase. The expression can contain the constants "PI", "E", "PHI",
  1753. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1754. @section frei0r_src
  1755. Provide a frei0r source.
  1756. To enable compilation of this filter you need to install the frei0r
  1757. header and configure Libav with --enable-frei0r.
  1758. This source accepts the following options:
  1759. @table @option
  1760. @item size
  1761. The size of the video to generate, may be a string of the form
  1762. @var{width}x@var{height} or a frame size abbreviation.
  1763. @item framerate
  1764. Framerate of the generated video, may be a string of the form
  1765. @var{num}/@var{den} or a frame rate abbreviation.
  1766. @item filter_name
  1767. The name to the frei0r source to load. For more information regarding frei0r and
  1768. how to set the parameters read the section @ref{frei0r} in the description of
  1769. the video filters.
  1770. @item filter_params
  1771. A '|'-separated list of parameters to pass to the frei0r source.
  1772. @end table
  1773. Some examples follow:
  1774. @example
  1775. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1776. # which is overlayed on the overlay filter main input
  1777. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  1778. @end example
  1779. @section rgbtestsrc, testsrc
  1780. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1781. detecting RGB vs BGR issues. You should see a red, green and blue
  1782. stripe from top to bottom.
  1783. The @code{testsrc} source generates a test video pattern, showing a
  1784. color pattern, a scrolling gradient and a timestamp. This is mainly
  1785. intended for testing purposes.
  1786. The sources accept the following options:
  1787. @table @option
  1788. @item size, s
  1789. Specify the size of the sourced video, it may be a string of the form
  1790. @var{width}x@var{height}, or the name of a size abbreviation. The
  1791. default value is "320x240".
  1792. @item rate, r
  1793. Specify the frame rate of the sourced video, as the number of frames
  1794. generated per second. It has to be a string in the format
  1795. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1796. number or a valid video frame rate abbreviation. The default value is
  1797. "25".
  1798. @item sar
  1799. Set the sample aspect ratio of the sourced video.
  1800. @item duration
  1801. Set the video duration of the sourced video. The accepted syntax is:
  1802. @example
  1803. [-]HH[:MM[:SS[.m...]]]
  1804. [-]S+[.m...]
  1805. @end example
  1806. See also the function @code{av_parse_time()}.
  1807. If not specified, or the expressed duration is negative, the video is
  1808. supposed to be generated forever.
  1809. @end table
  1810. For example the following:
  1811. @example
  1812. testsrc=duration=5.3:size=qcif:rate=10
  1813. @end example
  1814. will generate a video with a duration of 5.3 seconds, with size
  1815. 176x144 and a framerate of 10 frames per second.
  1816. @c man end VIDEO SOURCES
  1817. @chapter Video Sinks
  1818. @c man begin VIDEO SINKS
  1819. Below is a description of the currently available video sinks.
  1820. @section buffersink
  1821. Buffer video frames, and make them available to the end of the filter
  1822. graph.
  1823. This sink is intended for a programmatic use through the interface defined in
  1824. @file{libavfilter/buffersink.h}.
  1825. @section nullsink
  1826. Null video sink, do absolutely nothing with the input video. It is
  1827. mainly useful as a template and to be employed in analysis / debugging
  1828. tools.
  1829. @c man end VIDEO SINKS