You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

245 lines
7.8KB

  1. ;******************************************************************************
  2. ;* x86-optimized input routines; does shuffling of packed
  3. ;* YUV formats into individual planes, and converts RGB
  4. ;* into YUV planes also.
  5. ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
  6. ;*
  7. ;* This file is part of Libav.
  8. ;*
  9. ;* Libav is free software; you can redistribute it and/or
  10. ;* modify it under the terms of the GNU Lesser General Public
  11. ;* License as published by the Free Software Foundation; either
  12. ;* version 2.1 of the License, or (at your option) any later version.
  13. ;*
  14. ;* Libav is distributed in the hope that it will be useful,
  15. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. ;* Lesser General Public License for more details.
  18. ;*
  19. ;* You should have received a copy of the GNU Lesser General Public
  20. ;* License along with Libav; if not, write to the Free Software
  21. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. ;******************************************************************************
  23. %include "x86inc.asm"
  24. %include "x86util.asm"
  25. SECTION_RODATA
  26. SECTION .text
  27. ;-----------------------------------------------------------------------------
  28. ; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
  29. ;
  30. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  31. ; and
  32. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  33. ; const uint8_t *unused, int w);
  34. ;-----------------------------------------------------------------------------
  35. ; %1 = a (aligned) or u (unaligned)
  36. ; %2 = yuyv or uyvy
  37. %macro LOOP_YUYV_TO_Y 2
  38. .loop_%1:
  39. mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
  40. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  41. %ifidn %2, yuyv
  42. pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
  43. pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
  44. %else ; uyvy
  45. psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
  46. psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
  47. %endif ; yuyv/uyvy
  48. packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
  49. mova [dstq+wq], m0
  50. add wq, mmsize
  51. jl .loop_%1
  52. REP_RET
  53. %endmacro
  54. ; %1 = nr. of XMM registers
  55. ; %2 = yuyv or uyvy
  56. ; %3 = if specified, it means that unaligned and aligned code in loop
  57. ; will be the same (i.e. YUYV+AVX), and thus we don't need to
  58. ; split the loop in an aligned and unaligned case
  59. %macro YUYV_TO_Y_FN 2-3
  60. cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
  61. %ifdef ARCH_X86_64
  62. movsxd wq, wd
  63. %endif
  64. add dstq, wq
  65. %if mmsize == 16
  66. test srcq, 15
  67. %endif
  68. lea srcq, [srcq+wq*2]
  69. %ifidn %2, yuyv
  70. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  71. psrlw m2, 8 ; (word) { 0x00ff } x 8
  72. %endif ; yuyv
  73. %if mmsize == 16
  74. jnz .loop_u_start
  75. neg wq
  76. LOOP_YUYV_TO_Y a, %2
  77. .loop_u_start:
  78. neg wq
  79. LOOP_YUYV_TO_Y u, %2
  80. %else ; mmsize == 8
  81. neg wq
  82. LOOP_YUYV_TO_Y a, %2
  83. %endif ; mmsize == 8/16
  84. %endmacro
  85. ; %1 = a (aligned) or u (unaligned)
  86. ; %2 = yuyv or uyvy
  87. %macro LOOP_YUYV_TO_UV 2
  88. .loop_%1:
  89. %ifidn %2, yuyv
  90. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  91. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  92. psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
  93. psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
  94. %else ; uyvy
  95. %if cpuflag(avx)
  96. vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
  97. vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
  98. %else
  99. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  100. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  101. pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
  102. pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
  103. %endif
  104. %endif ; yuyv/uyvy
  105. packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
  106. pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
  107. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  108. %if mmsize == 16
  109. packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
  110. movh [dstUq+wq], m1
  111. movhps [dstVq+wq], m1
  112. %else ; mmsize == 8
  113. packuswb m1, m1 ; (byte) { U0, ... U3 }
  114. packuswb m0, m0 ; (byte) { V0, ... V3 }
  115. movh [dstUq+wq], m1
  116. movh [dstVq+wq], m0
  117. %endif ; mmsize == 8/16
  118. add wq, mmsize / 2
  119. jl .loop_%1
  120. REP_RET
  121. %endmacro
  122. ; %1 = nr. of XMM registers
  123. ; %2 = yuyv or uyvy
  124. ; %3 = if specified, it means that unaligned and aligned code in loop
  125. ; will be the same (i.e. UYVY+AVX), and thus we don't need to
  126. ; split the loop in an aligned and unaligned case
  127. %macro YUYV_TO_UV_FN 2-3
  128. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  129. %ifdef ARCH_X86_64
  130. movsxd wq, dword r5m
  131. %else ; x86-32
  132. mov wq, r5m
  133. %endif
  134. add dstUq, wq
  135. add dstVq, wq
  136. %if mmsize == 16 && %0 == 2
  137. test srcq, 15
  138. %endif
  139. lea srcq, [srcq+wq*4]
  140. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  141. psrlw m2, 8 ; (word) { 0x00ff } x 8
  142. ; NOTE: if uyvy+avx, u/a are identical
  143. %if mmsize == 16 && %0 == 2
  144. jnz .loop_u_start
  145. neg wq
  146. LOOP_YUYV_TO_UV a, %2
  147. .loop_u_start:
  148. neg wq
  149. LOOP_YUYV_TO_UV u, %2
  150. %else ; mmsize == 8
  151. neg wq
  152. LOOP_YUYV_TO_UV a, %2
  153. %endif ; mmsize == 8/16
  154. %endmacro
  155. ; %1 = a (aligned) or u (unaligned)
  156. ; %2 = nv12 or nv21
  157. %macro LOOP_NVXX_TO_UV 2
  158. .loop_%1:
  159. mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
  160. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
  161. pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
  162. pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
  163. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  164. psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
  165. packuswb m2, m3 ; (byte) { U0, ..., U15 }
  166. packuswb m0, m1 ; (byte) { V0, ..., V15 }
  167. %ifidn %2, nv12
  168. mova [dstUq+wq], m2
  169. mova [dstVq+wq], m0
  170. %else ; nv21
  171. mova [dstVq+wq], m2
  172. mova [dstUq+wq], m0
  173. %endif ; nv12/21
  174. add wq, mmsize
  175. jl .loop_%1
  176. REP_RET
  177. %endmacro
  178. ; %1 = nr. of XMM registers
  179. ; %2 = nv12 or nv21
  180. %macro NVXX_TO_UV_FN 2
  181. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  182. %ifdef ARCH_X86_64
  183. movsxd wq, dword r5m
  184. %else ; x86-32
  185. mov wq, r5m
  186. %endif
  187. add dstUq, wq
  188. add dstVq, wq
  189. %if mmsize == 16
  190. test srcq, 15
  191. %endif
  192. lea srcq, [srcq+wq*2]
  193. pcmpeqb m5, m5 ; (byte) { 0xff } x 16
  194. psrlw m5, 8 ; (word) { 0x00ff } x 8
  195. %if mmsize == 16
  196. jnz .loop_u_start
  197. neg wq
  198. LOOP_NVXX_TO_UV a, %2
  199. .loop_u_start:
  200. neg wq
  201. LOOP_NVXX_TO_UV u, %2
  202. %else ; mmsize == 8
  203. neg wq
  204. LOOP_NVXX_TO_UV a, %2
  205. %endif ; mmsize == 8/16
  206. %endmacro
  207. %ifdef ARCH_X86_32
  208. INIT_MMX mmx
  209. YUYV_TO_Y_FN 0, yuyv
  210. YUYV_TO_Y_FN 0, uyvy
  211. YUYV_TO_UV_FN 0, yuyv
  212. YUYV_TO_UV_FN 0, uyvy
  213. NVXX_TO_UV_FN 0, nv12
  214. NVXX_TO_UV_FN 0, nv21
  215. %endif
  216. INIT_XMM sse2
  217. YUYV_TO_Y_FN 3, yuyv
  218. YUYV_TO_Y_FN 2, uyvy
  219. YUYV_TO_UV_FN 3, yuyv
  220. YUYV_TO_UV_FN 3, uyvy
  221. NVXX_TO_UV_FN 5, nv12
  222. NVXX_TO_UV_FN 5, nv21
  223. %ifdef HAVE_AVX
  224. INIT_XMM avx
  225. ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
  226. ; that's not faster in practice
  227. YUYV_TO_UV_FN 3, yuyv
  228. YUYV_TO_UV_FN 3, uyvy, 1
  229. NVXX_TO_UV_FN 5, nv12
  230. NVXX_TO_UV_FN 5, nv21
  231. %endif