You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

745 lines
34KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/avutil.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/log.h"
  30. #include "libavutil/pixfmt.h"
  31. #include "libavutil/pixdesc.h"
  32. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  33. #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
  34. #define MAX_FILTER_SIZE 256
  35. #if HAVE_BIGENDIAN
  36. #define ALT32_CORR (-1)
  37. #else
  38. #define ALT32_CORR 1
  39. #endif
  40. #if ARCH_X86_64
  41. # define APCK_PTR2 8
  42. # define APCK_COEF 16
  43. # define APCK_SIZE 24
  44. #else
  45. # define APCK_PTR2 4
  46. # define APCK_COEF 8
  47. # define APCK_SIZE 16
  48. #endif
  49. struct SwsContext;
  50. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  51. int srcStride[], int srcSliceY, int srcSliceH,
  52. uint8_t *dst[], int dstStride[]);
  53. /**
  54. * Write one line of horizontally scaled data to planar output
  55. * without any additional vertical scaling (or point-scaling).
  56. *
  57. * @param src scaled source data, 15bit for 8-10bit output,
  58. * 19-bit for 16bit output (in int32_t)
  59. * @param dest pointer to the output plane. For >8bit
  60. * output, this is in uint16_t
  61. * @param dstW width of destination in pixels
  62. * @param dither ordered dither array of type int16_t and size 8
  63. * @param offset Dither offset
  64. */
  65. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  66. const uint8_t *dither, int offset);
  67. /**
  68. * Write one line of horizontally scaled data to planar output
  69. * with multi-point vertical scaling between input pixels.
  70. *
  71. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  72. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  73. * 19-bit for 16bit output (in int32_t)
  74. * @param filterSize number of vertical input lines to scale
  75. * @param dest pointer to output plane. For >8bit
  76. * output, this is in uint16_t
  77. * @param dstW width of destination pixels
  78. * @param offset Dither offset
  79. */
  80. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  81. const int16_t **src, uint8_t *dest, int dstW,
  82. const uint8_t *dither, int offset);
  83. /**
  84. * Write one line of horizontally scaled chroma to interleaved output
  85. * with multi-point vertical scaling between input pixels.
  86. *
  87. * @param c SWS scaling context
  88. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  89. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  90. * 19-bit for 16bit output (in int32_t)
  91. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  92. * 19-bit for 16bit output (in int32_t)
  93. * @param chrFilterSize number of vertical chroma input lines to scale
  94. * @param dest pointer to the output plane. For >8bit
  95. * output, this is in uint16_t
  96. * @param dstW width of chroma planes
  97. */
  98. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  99. const int16_t *chrFilter,
  100. int chrFilterSize,
  101. const int16_t **chrUSrc,
  102. const int16_t **chrVSrc,
  103. uint8_t *dest, int dstW);
  104. /**
  105. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  106. * output without any additional vertical scaling (or point-scaling). Note
  107. * that this function may do chroma scaling, see the "uvalpha" argument.
  108. *
  109. * @param c SWS scaling context
  110. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  111. * 19-bit for 16bit output (in int32_t)
  112. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  113. * 19-bit for 16bit output (in int32_t)
  114. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  115. * 19-bit for 16bit output (in int32_t)
  116. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  117. * 19-bit for 16bit output (in int32_t)
  118. * @param dest pointer to the output plane. For 16bit output, this is
  119. * uint16_t
  120. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  121. * to write into dest[]
  122. * @param uvalpha chroma scaling coefficient for the second line of chroma
  123. * pixels, either 2048 or 0. If 0, one chroma input is used
  124. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  125. * is set, it generates 1 output pixel). If 2048, two chroma
  126. * input pixels should be averaged for 2 output pixels (this
  127. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  128. * @param y vertical line number for this output. This does not need
  129. * to be used to calculate the offset in the destination,
  130. * but can be used to generate comfort noise using dithering
  131. * for some output formats.
  132. */
  133. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  134. const int16_t *chrUSrc[2],
  135. const int16_t *chrVSrc[2],
  136. const int16_t *alpSrc, uint8_t *dest,
  137. int dstW, int uvalpha, int y);
  138. /**
  139. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  140. * output by doing bilinear scaling between two input lines.
  141. *
  142. * @param c SWS scaling context
  143. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  144. * 19-bit for 16bit output (in int32_t)
  145. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  146. * 19-bit for 16bit output (in int32_t)
  147. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  148. * 19-bit for 16bit output (in int32_t)
  149. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  150. * 19-bit for 16bit output (in int32_t)
  151. * @param dest pointer to the output plane. For 16bit output, this is
  152. * uint16_t
  153. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  154. * to write into dest[]
  155. * @param yalpha luma/alpha scaling coefficients for the second input line.
  156. * The first line's coefficients can be calculated by using
  157. * 4096 - yalpha
  158. * @param uvalpha chroma scaling coefficient for the second input line. The
  159. * first line's coefficients can be calculated by using
  160. * 4096 - uvalpha
  161. * @param y vertical line number for this output. This does not need
  162. * to be used to calculate the offset in the destination,
  163. * but can be used to generate comfort noise using dithering
  164. * for some output formats.
  165. */
  166. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  167. const int16_t *chrUSrc[2],
  168. const int16_t *chrVSrc[2],
  169. const int16_t *alpSrc[2],
  170. uint8_t *dest,
  171. int dstW, int yalpha, int uvalpha, int y);
  172. /**
  173. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  174. * output by doing multi-point vertical scaling between input pixels.
  175. *
  176. * @param c SWS scaling context
  177. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  178. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  179. * 19-bit for 16bit output (in int32_t)
  180. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  181. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  182. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  183. * 19-bit for 16bit output (in int32_t)
  184. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  185. * 19-bit for 16bit output (in int32_t)
  186. * @param chrFilterSize number of vertical chroma input lines to scale
  187. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  188. * 19-bit for 16bit output (in int32_t)
  189. * @param dest pointer to the output plane. For 16bit output, this is
  190. * uint16_t
  191. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  192. * to write into dest[]
  193. * @param y vertical line number for this output. This does not need
  194. * to be used to calculate the offset in the destination,
  195. * but can be used to generate comfort noise using dithering
  196. * or some output formats.
  197. */
  198. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  199. const int16_t **lumSrc, int lumFilterSize,
  200. const int16_t *chrFilter,
  201. const int16_t **chrUSrc,
  202. const int16_t **chrVSrc, int chrFilterSize,
  203. const int16_t **alpSrc, uint8_t *dest,
  204. int dstW, int y);
  205. /**
  206. * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
  207. * output by doing multi-point vertical scaling between input pixels.
  208. *
  209. * @param c SWS scaling context
  210. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  211. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  212. * 19-bit for 16bit output (in int32_t)
  213. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  214. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  215. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  216. * 19-bit for 16bit output (in int32_t)
  217. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  218. * 19-bit for 16bit output (in int32_t)
  219. * @param chrFilterSize number of vertical chroma input lines to scale
  220. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  221. * 19-bit for 16bit output (in int32_t)
  222. * @param dest pointer to the output planes. For 16bit output, this is
  223. * uint16_t
  224. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  225. * to write into dest[]
  226. * @param y vertical line number for this output. This does not need
  227. * to be used to calculate the offset in the destination,
  228. * but can be used to generate comfort noise using dithering
  229. * or some output formats.
  230. */
  231. typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  232. const int16_t **lumSrc, int lumFilterSize,
  233. const int16_t *chrFilter,
  234. const int16_t **chrUSrc,
  235. const int16_t **chrVSrc, int chrFilterSize,
  236. const int16_t **alpSrc, uint8_t **dest,
  237. int dstW, int y);
  238. /* This struct should be aligned on at least a 32-byte boundary. */
  239. typedef struct SwsContext {
  240. /**
  241. * info on struct for av_log
  242. */
  243. const AVClass *av_class;
  244. /**
  245. * Note that src, dst, srcStride, dstStride will be copied in the
  246. * sws_scale() wrapper so they can be freely modified here.
  247. */
  248. SwsFunc swscale;
  249. int srcW; ///< Width of source luma/alpha planes.
  250. int srcH; ///< Height of source luma/alpha planes.
  251. int dstH; ///< Height of destination luma/alpha planes.
  252. int chrSrcW; ///< Width of source chroma planes.
  253. int chrSrcH; ///< Height of source chroma planes.
  254. int chrDstW; ///< Width of destination chroma planes.
  255. int chrDstH; ///< Height of destination chroma planes.
  256. int lumXInc, chrXInc;
  257. int lumYInc, chrYInc;
  258. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  259. enum AVPixelFormat srcFormat; ///< Source pixel format.
  260. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  261. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  262. int dstBpc, srcBpc;
  263. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  264. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  265. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  266. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  267. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  268. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  269. double param[2]; ///< Input parameters for scaling algorithms that need them.
  270. uint32_t pal_yuv[256];
  271. uint32_t pal_rgb[256];
  272. /**
  273. * @name Scaled horizontal lines ring buffer.
  274. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  275. * so they may be passed to the vertical scaler. The pointers to the
  276. * allocated buffers for each line are duplicated in sequence in the ring
  277. * buffer to simplify indexing and avoid wrapping around between lines
  278. * inside the vertical scaler code. The wrapping is done before the
  279. * vertical scaler is called.
  280. */
  281. //@{
  282. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  283. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  284. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  285. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  286. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  287. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  288. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  289. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  290. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  291. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  292. //@}
  293. uint8_t *formatConvBuffer;
  294. /**
  295. * @name Horizontal and vertical filters.
  296. * To better understand the following fields, here is a pseudo-code of
  297. * their usage in filtering a horizontal line:
  298. * @code
  299. * for (i = 0; i < width; i++) {
  300. * dst[i] = 0;
  301. * for (j = 0; j < filterSize; j++)
  302. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  303. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  304. * }
  305. * @endcode
  306. */
  307. //@{
  308. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  309. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  310. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  311. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  312. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  313. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  314. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  315. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  316. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  317. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  318. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  319. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  320. //@}
  321. int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
  322. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
  323. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
  324. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
  325. int canMMXEXTBeUsed;
  326. int dstY; ///< Last destination vertical line output from last slice.
  327. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  328. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  329. uint8_t *table_rV[256];
  330. uint8_t *table_gU[256];
  331. int table_gV[256];
  332. uint8_t *table_bU[256];
  333. //Colorspace stuff
  334. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  335. int srcColorspaceTable[4];
  336. int dstColorspaceTable[4];
  337. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  338. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  339. int yuv2rgb_y_offset;
  340. int yuv2rgb_y_coeff;
  341. int yuv2rgb_v2r_coeff;
  342. int yuv2rgb_v2g_coeff;
  343. int yuv2rgb_u2g_coeff;
  344. int yuv2rgb_u2b_coeff;
  345. #define RED_DITHER "0*8"
  346. #define GREEN_DITHER "1*8"
  347. #define BLUE_DITHER "2*8"
  348. #define Y_COEFF "3*8"
  349. #define VR_COEFF "4*8"
  350. #define UB_COEFF "5*8"
  351. #define VG_COEFF "6*8"
  352. #define UG_COEFF "7*8"
  353. #define Y_OFFSET "8*8"
  354. #define U_OFFSET "9*8"
  355. #define V_OFFSET "10*8"
  356. #define LUM_MMX_FILTER_OFFSET "11*8"
  357. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  358. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  359. #define ESP_OFFSET "11*8+4*4*256*2+8"
  360. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  361. #define U_TEMP "11*8+4*4*256*2+24"
  362. #define V_TEMP "11*8+4*4*256*2+32"
  363. #define Y_TEMP "11*8+4*4*256*2+40"
  364. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  365. #define UV_OFF_PX "11*8+4*4*256*3+48"
  366. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  367. #define DITHER16 "11*8+4*4*256*3+64"
  368. #define DITHER32 "11*8+4*4*256*3+80"
  369. DECLARE_ALIGNED(8, uint64_t, redDither);
  370. DECLARE_ALIGNED(8, uint64_t, greenDither);
  371. DECLARE_ALIGNED(8, uint64_t, blueDither);
  372. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  373. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  374. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  375. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  376. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  377. DECLARE_ALIGNED(8, uint64_t, yOffset);
  378. DECLARE_ALIGNED(8, uint64_t, uOffset);
  379. DECLARE_ALIGNED(8, uint64_t, vOffset);
  380. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  381. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  382. int dstW; ///< Width of destination luma/alpha planes.
  383. DECLARE_ALIGNED(8, uint64_t, esp);
  384. DECLARE_ALIGNED(8, uint64_t, vRounder);
  385. DECLARE_ALIGNED(8, uint64_t, u_temp);
  386. DECLARE_ALIGNED(8, uint64_t, v_temp);
  387. DECLARE_ALIGNED(8, uint64_t, y_temp);
  388. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  389. // alignment of these values is not necessary, but merely here
  390. // to maintain the same offset across x8632 and x86-64. Once we
  391. // use proper offset macros in the asm, they can be removed.
  392. DECLARE_ALIGNED(8, ptrdiff_t, uv_off_px); ///< offset (in pixels) between u and v planes
  393. DECLARE_ALIGNED(8, ptrdiff_t, uv_off_byte); ///< offset (in bytes) between u and v planes
  394. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  395. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  396. const uint8_t *chrDither8, *lumDither8;
  397. #if HAVE_ALTIVEC
  398. vector signed short CY;
  399. vector signed short CRV;
  400. vector signed short CBU;
  401. vector signed short CGU;
  402. vector signed short CGV;
  403. vector signed short OY;
  404. vector unsigned short CSHIFT;
  405. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  406. #endif
  407. /* function pointers for swscale() */
  408. yuv2planar1_fn yuv2plane1;
  409. yuv2planarX_fn yuv2planeX;
  410. yuv2interleavedX_fn yuv2nv12cX;
  411. yuv2packed1_fn yuv2packed1;
  412. yuv2packed2_fn yuv2packed2;
  413. yuv2packedX_fn yuv2packedX;
  414. yuv2anyX_fn yuv2anyX;
  415. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  416. void (*lumToYV12)(uint8_t *dst, const uint8_t *src,
  417. int width, uint32_t *pal);
  418. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  419. void (*alpToYV12)(uint8_t *dst, const uint8_t *src,
  420. int width, uint32_t *pal);
  421. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  422. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  423. const uint8_t *src1, const uint8_t *src2,
  424. int width, uint32_t *pal);
  425. /**
  426. * Functions to read planar input, such as planar RGB, and convert
  427. * internally to Y/UV/A.
  428. */
  429. /** @{ */
  430. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  431. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  432. int width);
  433. void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  434. /** @} */
  435. /**
  436. * Scale one horizontal line of input data using a bilinear filter
  437. * to produce one line of output data. Compared to SwsContext->hScale(),
  438. * please take note of the following caveats when using these:
  439. * - Scaling is done using only 7bit instead of 14bit coefficients.
  440. * - You can use no more than 5 input pixels to produce 4 output
  441. * pixels. Therefore, this filter should not be used for downscaling
  442. * by more than ~20% in width (because that equals more than 5/4th
  443. * downscaling and thus more than 5 pixels input per 4 pixels output).
  444. * - In general, bilinear filters create artifacts during downscaling
  445. * (even when <20%), because one output pixel will span more than one
  446. * input pixel, and thus some pixels will need edges of both neighbor
  447. * pixels to interpolate the output pixel. Since you can use at most
  448. * two input pixels per output pixel in bilinear scaling, this is
  449. * impossible and thus downscaling by any size will create artifacts.
  450. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  451. * in SwsContext->flags.
  452. */
  453. /** @{ */
  454. void (*hyscale_fast)(struct SwsContext *c,
  455. int16_t *dst, int dstWidth,
  456. const uint8_t *src, int srcW, int xInc);
  457. void (*hcscale_fast)(struct SwsContext *c,
  458. int16_t *dst1, int16_t *dst2, int dstWidth,
  459. const uint8_t *src1, const uint8_t *src2,
  460. int srcW, int xInc);
  461. /** @} */
  462. /**
  463. * Scale one horizontal line of input data using a filter over the input
  464. * lines, to produce one (differently sized) line of output data.
  465. *
  466. * @param dst pointer to destination buffer for horizontally scaled
  467. * data. If the number of bits per component of one
  468. * destination pixel (SwsContext->dstBpc) is <= 10, data
  469. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  470. * SwsContext->dstBpc == 16), data will be 19bpc in
  471. * 32bits (int32_t) width.
  472. * @param dstW width of destination image
  473. * @param src pointer to source data to be scaled. If the number of
  474. * bits per component of a source pixel (SwsContext->srcBpc)
  475. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  476. * (i.e. SwsContext->dstBpc > 8), this is native depth
  477. * in 16bits (uint16_t) width. In other words, for 9-bit
  478. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  479. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  480. * @param filter filter coefficients to be used per output pixel for
  481. * scaling. This contains 14bpp filtering coefficients.
  482. * Guaranteed to contain dstW * filterSize entries.
  483. * @param filterPos position of the first input pixel to be used for
  484. * each output pixel during scaling. Guaranteed to
  485. * contain dstW entries.
  486. * @param filterSize the number of input coefficients to be used (and
  487. * thus the number of input pixels to be used) for
  488. * creating a single output pixel. Is aligned to 4
  489. * (and input coefficients thus padded with zeroes)
  490. * to simplify creating SIMD code.
  491. */
  492. /** @{ */
  493. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  494. const uint8_t *src, const int16_t *filter,
  495. const int32_t *filterPos, int filterSize);
  496. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  497. const uint8_t *src, const int16_t *filter,
  498. const int32_t *filterPos, int filterSize);
  499. /** @} */
  500. /// Color range conversion function for luma plane if needed.
  501. void (*lumConvertRange)(int16_t *dst, int width);
  502. /// Color range conversion function for chroma planes if needed.
  503. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  504. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  505. } SwsContext;
  506. //FIXME check init (where 0)
  507. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  508. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  509. int fullRange, int brightness,
  510. int contrast, int saturation);
  511. void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
  512. int brightness, int contrast, int saturation);
  513. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  514. int lastInLumBuf, int lastInChrBuf);
  515. SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
  516. SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
  517. const char *sws_format_name(enum AVPixelFormat format);
  518. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  519. {
  520. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  521. av_assert0(desc);
  522. return desc->comp[0].depth == 16;
  523. }
  524. static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
  525. {
  526. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  527. av_assert0(desc);
  528. return desc->comp[0].depth == 9 || desc->comp[0].depth == 10;
  529. }
  530. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  531. {
  532. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  533. av_assert0(desc);
  534. return desc->flags & AV_PIX_FMT_FLAG_BE;
  535. }
  536. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  537. {
  538. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  539. av_assert0(desc);
  540. return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
  541. }
  542. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  543. {
  544. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  545. av_assert0(desc);
  546. return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
  547. }
  548. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  549. {
  550. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  551. av_assert0(desc);
  552. return (desc->flags & AV_PIX_FMT_FLAG_RGB);
  553. }
  554. #if 0 // FIXME
  555. #define isGray(x) \
  556. (!(av_pix_fmt_descriptors[x].flags & AV_PIX_FMT_FLAG_PAL) && \
  557. av_pix_fmt_descriptors[x].nb_components <= 2)
  558. #else
  559. #define isGray(x) \
  560. ((x) == AV_PIX_FMT_GRAY8 || \
  561. (x) == AV_PIX_FMT_YA8 || \
  562. (x) == AV_PIX_FMT_GRAY16BE || \
  563. (x) == AV_PIX_FMT_GRAY16LE || \
  564. (x) == AV_PIX_FMT_YA16BE || \
  565. (x) == AV_PIX_FMT_YA16LE)
  566. #endif
  567. #define isRGBinInt(x) \
  568. ((x) == AV_PIX_FMT_RGB48BE || \
  569. (x) == AV_PIX_FMT_RGB48LE || \
  570. (x) == AV_PIX_FMT_RGB32 || \
  571. (x) == AV_PIX_FMT_RGB32_1 || \
  572. (x) == AV_PIX_FMT_RGB24 || \
  573. (x) == AV_PIX_FMT_RGB565BE || \
  574. (x) == AV_PIX_FMT_RGB565LE || \
  575. (x) == AV_PIX_FMT_RGB555BE || \
  576. (x) == AV_PIX_FMT_RGB555LE || \
  577. (x) == AV_PIX_FMT_RGB444BE || \
  578. (x) == AV_PIX_FMT_RGB444LE || \
  579. (x) == AV_PIX_FMT_RGB8 || \
  580. (x) == AV_PIX_FMT_RGB4 || \
  581. (x) == AV_PIX_FMT_RGB4_BYTE || \
  582. (x) == AV_PIX_FMT_RGBA64BE || \
  583. (x) == AV_PIX_FMT_RGBA64LE || \
  584. (x) == AV_PIX_FMT_MONOBLACK || \
  585. (x) == AV_PIX_FMT_MONOWHITE)
  586. #define isBGRinInt(x) \
  587. ((x) == AV_PIX_FMT_BGR48BE || \
  588. (x) == AV_PIX_FMT_BGR48LE || \
  589. (x) == AV_PIX_FMT_BGR32 || \
  590. (x) == AV_PIX_FMT_BGR32_1 || \
  591. (x) == AV_PIX_FMT_BGR24 || \
  592. (x) == AV_PIX_FMT_BGR565BE || \
  593. (x) == AV_PIX_FMT_BGR565LE || \
  594. (x) == AV_PIX_FMT_BGR555BE || \
  595. (x) == AV_PIX_FMT_BGR555LE || \
  596. (x) == AV_PIX_FMT_BGR444BE || \
  597. (x) == AV_PIX_FMT_BGR444LE || \
  598. (x) == AV_PIX_FMT_BGR8 || \
  599. (x) == AV_PIX_FMT_BGR4 || \
  600. (x) == AV_PIX_FMT_BGR4_BYTE || \
  601. (x) == AV_PIX_FMT_BGRA64BE || \
  602. (x) == AV_PIX_FMT_BGRA64LE || \
  603. (x) == AV_PIX_FMT_MONOBLACK || \
  604. (x) == AV_PIX_FMT_MONOWHITE)
  605. #define isAnyRGB(x) \
  606. (isRGBinInt(x) || \
  607. isBGRinInt(x))
  608. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  609. {
  610. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  611. av_assert0(desc);
  612. return desc->nb_components == 2 || desc->nb_components == 4;
  613. }
  614. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  615. {
  616. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  617. av_assert0(desc);
  618. return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
  619. pix_fmt == AV_PIX_FMT_PAL8);
  620. }
  621. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  622. {
  623. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  624. av_assert0(desc);
  625. return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
  626. }
  627. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  628. {
  629. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  630. av_assert0(desc);
  631. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
  632. }
  633. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  634. {
  635. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  636. av_assert0(desc);
  637. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
  638. (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
  639. }
  640. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  641. {
  642. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  643. av_assert0(desc);
  644. return ((desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL) ||
  645. pix_fmt == AV_PIX_FMT_YA8);
  646. }
  647. extern const uint64_t ff_dither4[2];
  648. extern const uint64_t ff_dither8[2];
  649. extern const uint8_t ff_dither_4x4_16[4][8];
  650. extern const uint8_t ff_dither_8x8_32[8][8];
  651. extern const uint8_t ff_dither_8x8_73[8][8];
  652. extern const uint8_t ff_dither_8x8_128[8][8];
  653. extern const uint8_t ff_dither_8x8_220[8][8];
  654. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  655. extern const AVClass sws_context_class;
  656. /**
  657. * Set c->swscale to an unscaled converter if one exists for the specific
  658. * source and destination formats, bit depths, flags, etc.
  659. */
  660. void ff_get_unscaled_swscale(SwsContext *c);
  661. void ff_get_unscaled_swscale_ppc(SwsContext *c);
  662. /**
  663. * Return function pointer to fastest main scaler path function depending
  664. * on architecture and available optimizations.
  665. */
  666. SwsFunc ff_getSwsFunc(SwsContext *c);
  667. void ff_sws_init_input_funcs(SwsContext *c);
  668. void ff_sws_init_output_funcs(SwsContext *c,
  669. yuv2planar1_fn *yuv2plane1,
  670. yuv2planarX_fn *yuv2planeX,
  671. yuv2interleavedX_fn *yuv2nv12cX,
  672. yuv2packed1_fn *yuv2packed1,
  673. yuv2packed2_fn *yuv2packed2,
  674. yuv2packedX_fn *yuv2packedX,
  675. yuv2anyX_fn *yuv2anyX);
  676. void ff_sws_init_swscale_ppc(SwsContext *c);
  677. void ff_sws_init_swscale_x86(SwsContext *c);
  678. #endif /* SWSCALE_SWSCALE_INTERNAL_H */