You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1084 lines
25KB

  1. ;******************************************************************************
  2. ;* FFT transform with SSE/3DNow optimizations
  3. ;* Copyright (c) 2008 Loren Merritt
  4. ;* Copyright (c) 2011 Vitor Sessak
  5. ;*
  6. ;* This algorithm (though not any of the implementation details) is
  7. ;* based on libdjbfft by D. J. Bernstein.
  8. ;*
  9. ;* This file is part of Libav.
  10. ;*
  11. ;* Libav is free software; you can redistribute it and/or
  12. ;* modify it under the terms of the GNU Lesser General Public
  13. ;* License as published by the Free Software Foundation; either
  14. ;* version 2.1 of the License, or (at your option) any later version.
  15. ;*
  16. ;* Libav is distributed in the hope that it will be useful,
  17. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. ;* Lesser General Public License for more details.
  20. ;*
  21. ;* You should have received a copy of the GNU Lesser General Public
  22. ;* License along with Libav; if not, write to the Free Software
  23. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. ;******************************************************************************
  25. ; These functions are not individually interchangeable with the C versions.
  26. ; While C takes arrays of FFTComplex, SSE/3DNow leave intermediate results
  27. ; in blocks as conventient to the vector size.
  28. ; i.e. {4x real, 4x imaginary, 4x real, ...} (or 2x respectively)
  29. %include "libavutil/x86/x86util.asm"
  30. %if ARCH_X86_64
  31. %define pointer resq
  32. %else
  33. %define pointer resd
  34. %endif
  35. struc FFTContext
  36. .nbits: resd 1
  37. .reverse: resd 1
  38. .revtab: pointer 1
  39. .tmpbuf: pointer 1
  40. .mdctsize: resd 1
  41. .mdctbits: resd 1
  42. .tcos: pointer 1
  43. .tsin: pointer 1
  44. .fftperm: pointer 1
  45. .fftcalc: pointer 1
  46. .imdctcalc:pointer 1
  47. .imdcthalf:pointer 1
  48. endstruc
  49. SECTION_RODATA
  50. %define M_SQRT1_2 0.70710678118654752440
  51. %define M_COS_PI_1_8 0.923879532511287
  52. %define M_COS_PI_3_8 0.38268343236509
  53. align 32
  54. ps_cos16_1: dd 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8, 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8
  55. ps_cos16_2: dd 0, M_COS_PI_3_8, M_SQRT1_2, M_COS_PI_1_8, 0, -M_COS_PI_3_8, -M_SQRT1_2, -M_COS_PI_1_8
  56. ps_root2: times 8 dd M_SQRT1_2
  57. ps_root2mppm: dd -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2, -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2
  58. ps_p1p1m1p1: dd 0, 0, 1<<31, 0, 0, 0, 1<<31, 0
  59. perm1: dd 0x00, 0x02, 0x03, 0x01, 0x03, 0x00, 0x02, 0x01
  60. perm2: dd 0x00, 0x01, 0x02, 0x03, 0x01, 0x00, 0x02, 0x03
  61. ps_p1p1m1p1root2: dd 1.0, 1.0, -1.0, 1.0, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2
  62. ps_m1m1p1m1p1m1m1m1: dd 1<<31, 1<<31, 0, 1<<31, 0, 1<<31, 1<<31, 1<<31
  63. ps_m1m1m1m1: times 4 dd 1<<31
  64. ps_m1p1: dd 1<<31, 0
  65. %assign i 16
  66. %rep 13
  67. cextern cos_ %+ i
  68. %assign i i<<1
  69. %endrep
  70. %if ARCH_X86_64
  71. %define pointer dq
  72. %else
  73. %define pointer dd
  74. %endif
  75. %macro IF0 1+
  76. %endmacro
  77. %macro IF1 1+
  78. %1
  79. %endmacro
  80. SECTION .text
  81. %macro T2_3DNOW 4 ; z0, z1, mem0, mem1
  82. mova %1, %3
  83. mova %2, %1
  84. pfadd %1, %4
  85. pfsub %2, %4
  86. %endmacro
  87. %macro T4_3DNOW 6 ; z0, z1, z2, z3, tmp0, tmp1
  88. mova %5, %3
  89. pfsub %3, %4
  90. pfadd %5, %4 ; {t6,t5}
  91. pxor %3, [ps_m1p1] ; {t8,t7}
  92. mova %6, %1
  93. movd [r0+12], %3
  94. punpckhdq %3, [r0+8]
  95. pfadd %1, %5 ; {r0,i0}
  96. pfsub %6, %5 ; {r2,i2}
  97. mova %4, %2
  98. pfadd %2, %3 ; {r1,i1}
  99. pfsub %4, %3 ; {r3,i3}
  100. SWAP %3, %6
  101. %endmacro
  102. ; in: %1 = {r0,i0,r2,i2,r4,i4,r6,i6}
  103. ; %2 = {r1,i1,r3,i3,r5,i5,r7,i7}
  104. ; %3, %4, %5 tmp
  105. ; out: %1 = {r0,r1,r2,r3,i0,i1,i2,i3}
  106. ; %2 = {r4,r5,r6,r7,i4,i5,i6,i7}
  107. %macro T8_AVX 5
  108. vsubps %5, %1, %2 ; v = %1 - %2
  109. vaddps %3, %1, %2 ; w = %1 + %2
  110. vmulps %2, %5, [ps_p1p1m1p1root2] ; v *= vals1
  111. vpermilps %2, %2, [perm1]
  112. vblendps %1, %2, %3, 0x33 ; q = {w1,w2,v4,v2,w5,w6,v7,v6}
  113. vshufps %5, %3, %2, 0x4e ; r = {w3,w4,v1,v3,w7,w8,v8,v5}
  114. vsubps %4, %5, %1 ; s = r - q
  115. vaddps %1, %5, %1 ; u = r + q
  116. vpermilps %1, %1, [perm2] ; k = {u1,u2,u3,u4,u6,u5,u7,u8}
  117. vshufps %5, %4, %1, 0xbb
  118. vshufps %3, %4, %1, 0xee
  119. vperm2f128 %3, %3, %5, 0x13
  120. vxorps %4, %4, [ps_m1m1p1m1p1m1m1m1] ; s *= {1,1,-1,-1,1,-1,-1,-1}
  121. vshufps %2, %1, %4, 0xdd
  122. vshufps %1, %1, %4, 0x88
  123. vperm2f128 %4, %2, %1, 0x02 ; v = {k1,k3,s1,s3,k2,k4,s2,s4}
  124. vperm2f128 %1, %1, %2, 0x13 ; w = {k6,k8,s6,s8,k5,k7,s5,s7}
  125. vsubps %5, %1, %3
  126. vblendps %1, %5, %1, 0x55 ; w -= {0,s7,0,k7,0,s8,0,k8}
  127. vsubps %2, %4, %1 ; %2 = v - w
  128. vaddps %1, %4, %1 ; %1 = v + w
  129. %endmacro
  130. ; In SSE mode do one fft4 transforms
  131. ; in: %1={r0,i0,r2,i2} %2={r1,i1,r3,i3}
  132. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3}
  133. ;
  134. ; In AVX mode do two fft4 transforms
  135. ; in: %1={r0,i0,r2,i2,r4,i4,r6,i6} %2={r1,i1,r3,i3,r5,i5,r7,i7}
  136. ; out: %1={r0,r1,r2,r3,r4,r5,r6,r7} %2={i0,i1,i2,i3,i4,i5,i6,i7}
  137. %macro T4_SSE 3
  138. subps %3, %1, %2 ; {t3,t4,-t8,t7}
  139. addps %1, %1, %2 ; {t1,t2,t6,t5}
  140. xorps %3, %3, [ps_p1p1m1p1]
  141. shufps %2, %1, %3, 0xbe ; {t6,t5,t7,t8}
  142. shufps %1, %1, %3, 0x44 ; {t1,t2,t3,t4}
  143. subps %3, %1, %2 ; {r2,i2,r3,i3}
  144. addps %1, %1, %2 ; {r0,i0,r1,i1}
  145. shufps %2, %1, %3, 0xdd ; {i0,i1,i2,i3}
  146. shufps %1, %1, %3, 0x88 ; {r0,r1,r2,r3}
  147. %endmacro
  148. ; In SSE mode do one FFT8
  149. ; in: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %3={r4,i4,r6,i6} %4={r5,i5,r7,i7}
  150. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %1={r4,r5,r6,r7} %2={i4,i5,i6,i7}
  151. ;
  152. ; In AVX mode do two FFT8
  153. ; in: %1={r0,i0,r2,i2,r8, i8, r10,i10} %2={r1,i1,r3,i3,r9, i9, r11,i11}
  154. ; %3={r4,i4,r6,i6,r12,i12,r14,i14} %4={r5,i5,r7,i7,r13,i13,r15,i15}
  155. ; out: %1={r0,r1,r2,r3,r8, r9, r10,r11} %2={i0,i1,i2,i3,i8, i9, i10,i11}
  156. ; %3={r4,r5,r6,r7,r12,r13,r14,r15} %4={i4,i5,i6,i7,i12,i13,i14,i15}
  157. %macro T8_SSE 6
  158. addps %6, %3, %4 ; {t1,t2,t3,t4}
  159. subps %3, %3, %4 ; {r5,i5,r7,i7}
  160. shufps %4, %3, %3, 0xb1 ; {i5,r5,i7,r7}
  161. mulps %3, %3, [ps_root2mppm] ; {-r5,i5,r7,-i7}
  162. mulps %4, %4, [ps_root2]
  163. addps %3, %3, %4 ; {t8,t7,ta,t9}
  164. shufps %4, %6, %3, 0x9c ; {t1,t4,t7,ta}
  165. shufps %6, %6, %3, 0x36 ; {t3,t2,t9,t8}
  166. subps %3, %6, %4 ; {t6,t5,tc,tb}
  167. addps %6, %6, %4 ; {t1,t2,t9,ta}
  168. shufps %5, %6, %3, 0x8d ; {t2,ta,t6,tc}
  169. shufps %6, %6, %3, 0xd8 ; {t1,t9,t5,tb}
  170. subps %3, %1, %6 ; {r4,r5,r6,r7}
  171. addps %1, %1, %6 ; {r0,r1,r2,r3}
  172. subps %4, %2, %5 ; {i4,i5,i6,i7}
  173. addps %2, %2, %5 ; {i0,i1,i2,i3}
  174. %endmacro
  175. ; scheduled for cpu-bound sizes
  176. %macro PASS_SMALL 3 ; (to load m4-m7), wre, wim
  177. IF%1 mova m4, Z(4)
  178. IF%1 mova m5, Z(5)
  179. mova m0, %2 ; wre
  180. mova m1, %3 ; wim
  181. mulps m2, m4, m0 ; r2*wre
  182. IF%1 mova m6, Z2(6)
  183. mulps m3, m5, m1 ; i2*wim
  184. IF%1 mova m7, Z2(7)
  185. mulps m4, m4, m1 ; r2*wim
  186. mulps m5, m5, m0 ; i2*wre
  187. addps m2, m2, m3 ; r2*wre + i2*wim
  188. mulps m3, m1, m7 ; i3*wim
  189. subps m5, m5, m4 ; i2*wre - r2*wim
  190. mulps m1, m1, m6 ; r3*wim
  191. mulps m4, m0, m6 ; r3*wre
  192. mulps m0, m0, m7 ; i3*wre
  193. subps m4, m4, m3 ; r3*wre - i3*wim
  194. mova m3, Z(0)
  195. addps m0, m0, m1 ; i3*wre + r3*wim
  196. subps m1, m4, m2 ; t3
  197. addps m4, m4, m2 ; t5
  198. subps m3, m3, m4 ; r2
  199. addps m4, m4, Z(0) ; r0
  200. mova m6, Z(2)
  201. mova Z(4), m3
  202. mova Z(0), m4
  203. subps m3, m5, m0 ; t4
  204. subps m4, m6, m3 ; r3
  205. addps m3, m3, m6 ; r1
  206. mova Z2(6), m4
  207. mova Z(2), m3
  208. mova m2, Z(3)
  209. addps m3, m5, m0 ; t6
  210. subps m2, m2, m1 ; i3
  211. mova m7, Z(1)
  212. addps m1, m1, Z(3) ; i1
  213. mova Z2(7), m2
  214. mova Z(3), m1
  215. subps m4, m7, m3 ; i2
  216. addps m3, m3, m7 ; i0
  217. mova Z(5), m4
  218. mova Z(1), m3
  219. %endmacro
  220. ; scheduled to avoid store->load aliasing
  221. %macro PASS_BIG 1 ; (!interleave)
  222. mova m4, Z(4) ; r2
  223. mova m5, Z(5) ; i2
  224. mova m0, [wq] ; wre
  225. mova m1, [wq+o1q] ; wim
  226. mulps m2, m4, m0 ; r2*wre
  227. mova m6, Z2(6) ; r3
  228. mulps m3, m5, m1 ; i2*wim
  229. mova m7, Z2(7) ; i3
  230. mulps m4, m4, m1 ; r2*wim
  231. mulps m5, m5, m0 ; i2*wre
  232. addps m2, m2, m3 ; r2*wre + i2*wim
  233. mulps m3, m1, m7 ; i3*wim
  234. mulps m1, m1, m6 ; r3*wim
  235. subps m5, m5, m4 ; i2*wre - r2*wim
  236. mulps m4, m0, m6 ; r3*wre
  237. mulps m0, m0, m7 ; i3*wre
  238. subps m4, m4, m3 ; r3*wre - i3*wim
  239. mova m3, Z(0)
  240. addps m0, m0, m1 ; i3*wre + r3*wim
  241. subps m1, m4, m2 ; t3
  242. addps m4, m4, m2 ; t5
  243. subps m3, m3, m4 ; r2
  244. addps m4, m4, Z(0) ; r0
  245. mova m6, Z(2)
  246. mova Z(4), m3
  247. mova Z(0), m4
  248. subps m3, m5, m0 ; t4
  249. subps m4, m6, m3 ; r3
  250. addps m3, m3, m6 ; r1
  251. IF%1 mova Z2(6), m4
  252. IF%1 mova Z(2), m3
  253. mova m2, Z(3)
  254. addps m5, m5, m0 ; t6
  255. subps m2, m2, m1 ; i3
  256. mova m7, Z(1)
  257. addps m1, m1, Z(3) ; i1
  258. IF%1 mova Z2(7), m2
  259. IF%1 mova Z(3), m1
  260. subps m6, m7, m5 ; i2
  261. addps m5, m5, m7 ; i0
  262. IF%1 mova Z(5), m6
  263. IF%1 mova Z(1), m5
  264. %if %1==0
  265. INTERL m1, m3, m7, Z, 2
  266. INTERL m2, m4, m0, Z2, 6
  267. mova m1, Z(0)
  268. mova m2, Z(4)
  269. INTERL m5, m1, m3, Z, 0
  270. INTERL m6, m2, m7, Z, 4
  271. %endif
  272. %endmacro
  273. %macro PUNPCK 3
  274. mova %3, %1
  275. punpckldq %1, %2
  276. punpckhdq %3, %2
  277. %endmacro
  278. %define Z(x) [r0+mmsize*x]
  279. %define Z2(x) [r0+mmsize*x]
  280. %define ZH(x) [r0+mmsize*x+mmsize/2]
  281. INIT_YMM avx
  282. align 16
  283. fft8_avx:
  284. mova m0, Z(0)
  285. mova m1, Z(1)
  286. T8_AVX m0, m1, m2, m3, m4
  287. mova Z(0), m0
  288. mova Z(1), m1
  289. ret
  290. align 16
  291. fft16_avx:
  292. mova m2, Z(2)
  293. mova m3, Z(3)
  294. T4_SSE m2, m3, m7
  295. mova m0, Z(0)
  296. mova m1, Z(1)
  297. T8_AVX m0, m1, m4, m5, m7
  298. mova m4, [ps_cos16_1]
  299. mova m5, [ps_cos16_2]
  300. vmulps m6, m2, m4
  301. vmulps m7, m3, m5
  302. vaddps m7, m7, m6
  303. vmulps m2, m2, m5
  304. vmulps m3, m3, m4
  305. vsubps m3, m3, m2
  306. vblendps m2, m7, m3, 0xf0
  307. vperm2f128 m3, m7, m3, 0x21
  308. vaddps m4, m2, m3
  309. vsubps m2, m3, m2
  310. vperm2f128 m2, m2, m2, 0x01
  311. vsubps m3, m1, m2
  312. vaddps m1, m1, m2
  313. vsubps m5, m0, m4
  314. vaddps m0, m0, m4
  315. vextractf128 Z(0), m0, 0
  316. vextractf128 ZH(0), m1, 0
  317. vextractf128 Z(1), m0, 1
  318. vextractf128 ZH(1), m1, 1
  319. vextractf128 Z(2), m5, 0
  320. vextractf128 ZH(2), m3, 0
  321. vextractf128 Z(3), m5, 1
  322. vextractf128 ZH(3), m3, 1
  323. ret
  324. align 16
  325. fft32_avx:
  326. call fft16_avx
  327. mova m0, Z(4)
  328. mova m1, Z(5)
  329. T4_SSE m0, m1, m4
  330. mova m2, Z(6)
  331. mova m3, Z(7)
  332. T8_SSE m0, m1, m2, m3, m4, m6
  333. ; m0={r0,r1,r2,r3,r8, r9, r10,r11} m1={i0,i1,i2,i3,i8, i9, i10,i11}
  334. ; m2={r4,r5,r6,r7,r12,r13,r14,r15} m3={i4,i5,i6,i7,i12,i13,i14,i15}
  335. vperm2f128 m4, m0, m2, 0x20
  336. vperm2f128 m5, m1, m3, 0x20
  337. vperm2f128 m6, m0, m2, 0x31
  338. vperm2f128 m7, m1, m3, 0x31
  339. PASS_SMALL 0, [cos_32], [cos_32+32]
  340. ret
  341. fft32_interleave_avx:
  342. call fft32_avx
  343. mov r2d, 32
  344. .deint_loop:
  345. mova m2, Z(0)
  346. mova m3, Z(1)
  347. vunpcklps m0, m2, m3
  348. vunpckhps m1, m2, m3
  349. vextractf128 Z(0), m0, 0
  350. vextractf128 ZH(0), m1, 0
  351. vextractf128 Z(1), m0, 1
  352. vextractf128 ZH(1), m1, 1
  353. add r0, mmsize*2
  354. sub r2d, mmsize/4
  355. jg .deint_loop
  356. ret
  357. INIT_XMM sse
  358. align 16
  359. fft4_avx:
  360. fft4_sse:
  361. mova m0, Z(0)
  362. mova m1, Z(1)
  363. T4_SSE m0, m1, m2
  364. mova Z(0), m0
  365. mova Z(1), m1
  366. ret
  367. align 16
  368. fft8_sse:
  369. mova m0, Z(0)
  370. mova m1, Z(1)
  371. T4_SSE m0, m1, m2
  372. mova m2, Z(2)
  373. mova m3, Z(3)
  374. T8_SSE m0, m1, m2, m3, m4, m5
  375. mova Z(0), m0
  376. mova Z(1), m1
  377. mova Z(2), m2
  378. mova Z(3), m3
  379. ret
  380. align 16
  381. fft16_sse:
  382. mova m0, Z(0)
  383. mova m1, Z(1)
  384. T4_SSE m0, m1, m2
  385. mova m2, Z(2)
  386. mova m3, Z(3)
  387. T8_SSE m0, m1, m2, m3, m4, m5
  388. mova m4, Z(4)
  389. mova m5, Z(5)
  390. mova Z(0), m0
  391. mova Z(1), m1
  392. mova Z(2), m2
  393. mova Z(3), m3
  394. T4_SSE m4, m5, m6
  395. mova m6, Z2(6)
  396. mova m7, Z2(7)
  397. T4_SSE m6, m7, m0
  398. PASS_SMALL 0, [cos_16], [cos_16+16]
  399. ret
  400. %macro FFT48_3DNOW 0
  401. align 16
  402. fft4 %+ SUFFIX:
  403. T2_3DNOW m0, m1, Z(0), Z(1)
  404. mova m2, Z(2)
  405. mova m3, Z(3)
  406. T4_3DNOW m0, m1, m2, m3, m4, m5
  407. PUNPCK m0, m1, m4
  408. PUNPCK m2, m3, m5
  409. mova Z(0), m0
  410. mova Z(1), m4
  411. mova Z(2), m2
  412. mova Z(3), m5
  413. ret
  414. align 16
  415. fft8 %+ SUFFIX:
  416. T2_3DNOW m0, m1, Z(0), Z(1)
  417. mova m2, Z(2)
  418. mova m3, Z(3)
  419. T4_3DNOW m0, m1, m2, m3, m4, m5
  420. mova Z(0), m0
  421. mova Z(2), m2
  422. T2_3DNOW m4, m5, Z(4), Z(5)
  423. T2_3DNOW m6, m7, Z2(6), Z2(7)
  424. PSWAPD m0, m5
  425. PSWAPD m2, m7
  426. pxor m0, [ps_m1p1]
  427. pxor m2, [ps_m1p1]
  428. pfsub m5, m0
  429. pfadd m7, m2
  430. pfmul m5, [ps_root2]
  431. pfmul m7, [ps_root2]
  432. T4_3DNOW m1, m3, m5, m7, m0, m2
  433. mova Z(5), m5
  434. mova Z2(7), m7
  435. mova m0, Z(0)
  436. mova m2, Z(2)
  437. T4_3DNOW m0, m2, m4, m6, m5, m7
  438. PUNPCK m0, m1, m5
  439. PUNPCK m2, m3, m7
  440. mova Z(0), m0
  441. mova Z(1), m5
  442. mova Z(2), m2
  443. mova Z(3), m7
  444. PUNPCK m4, Z(5), m5
  445. PUNPCK m6, Z2(7), m7
  446. mova Z(4), m4
  447. mova Z(5), m5
  448. mova Z2(6), m6
  449. mova Z2(7), m7
  450. ret
  451. %endmacro
  452. %if ARCH_X86_32
  453. INIT_MMX 3dnowext
  454. FFT48_3DNOW
  455. INIT_MMX 3dnow
  456. FFT48_3DNOW
  457. %endif
  458. %define Z(x) [zcq + o1q*(x&6) + mmsize*(x&1)]
  459. %define Z2(x) [zcq + o3q + mmsize*(x&1)]
  460. %define ZH(x) [zcq + o1q*(x&6) + mmsize*(x&1) + mmsize/2]
  461. %define Z2H(x) [zcq + o3q + mmsize*(x&1) + mmsize/2]
  462. %macro DECL_PASS 2+ ; name, payload
  463. align 16
  464. %1:
  465. DEFINE_ARGS zc, w, n, o1, o3
  466. lea o3q, [nq*3]
  467. lea o1q, [nq*8]
  468. shl o3q, 4
  469. .loop:
  470. %2
  471. add zcq, mmsize*2
  472. add wq, mmsize
  473. sub nd, mmsize/8
  474. jg .loop
  475. rep ret
  476. %endmacro
  477. %macro FFT_DISPATCH 2; clobbers 5 GPRs, 8 XMMs
  478. lea r2, [dispatch_tab%1]
  479. mov r2, [r2 + (%2q-2)*gprsize]
  480. %ifdef PIC
  481. lea r3, [$$]
  482. add r2, r3
  483. %endif
  484. call r2
  485. %endmacro ; FFT_DISPATCH
  486. INIT_YMM avx
  487. %macro INTERL_AVX 5
  488. vunpckhps %3, %2, %1
  489. vunpcklps %2, %2, %1
  490. vextractf128 %4(%5), %2, 0
  491. vextractf128 %4 %+ H(%5), %3, 0
  492. vextractf128 %4(%5 + 1), %2, 1
  493. vextractf128 %4 %+ H(%5 + 1), %3, 1
  494. %endmacro
  495. %define INTERL INTERL_AVX
  496. DECL_PASS pass_avx, PASS_BIG 1
  497. DECL_PASS pass_interleave_avx, PASS_BIG 0
  498. cglobal fft_calc, 2,5,8
  499. mov r3d, [r0 + FFTContext.nbits]
  500. mov r0, r1
  501. mov r1, r3
  502. FFT_DISPATCH _interleave %+ SUFFIX, r1
  503. REP_RET
  504. INIT_XMM sse
  505. %macro INTERL_SSE 5
  506. mova %3, %2
  507. unpcklps %2, %1
  508. unpckhps %3, %1
  509. mova %4(%5), %2
  510. mova %4(%5+1), %3
  511. %endmacro
  512. %define INTERL INTERL_SSE
  513. DECL_PASS pass_sse, PASS_BIG 1
  514. DECL_PASS pass_interleave_sse, PASS_BIG 0
  515. %macro FFT_CALC_FUNC 0
  516. cglobal fft_calc, 2,5,8
  517. mov r3d, [r0 + FFTContext.nbits]
  518. PUSH r1
  519. PUSH r3
  520. mov r0, r1
  521. mov r1, r3
  522. FFT_DISPATCH _interleave %+ SUFFIX, r1
  523. POP rcx
  524. POP r4
  525. cmp rcx, 3+(mmsize/16)
  526. jg .end
  527. mov r2, -1
  528. add rcx, 3
  529. shl r2, cl
  530. sub r4, r2
  531. .loop:
  532. %if mmsize == 8
  533. PSWAPD m0, [r4 + r2 + 4]
  534. mova [r4 + r2 + 4], m0
  535. %else
  536. movaps xmm0, [r4 + r2]
  537. movaps xmm1, xmm0
  538. unpcklps xmm0, [r4 + r2 + 16]
  539. unpckhps xmm1, [r4 + r2 + 16]
  540. movaps [r4 + r2], xmm0
  541. movaps [r4 + r2 + 16], xmm1
  542. %endif
  543. add r2, mmsize*2
  544. jl .loop
  545. .end:
  546. %if cpuflag(3dnow)
  547. femms
  548. RET
  549. %else
  550. REP_RET
  551. %endif
  552. %endmacro
  553. %if ARCH_X86_32
  554. INIT_MMX 3dnow
  555. FFT_CALC_FUNC
  556. INIT_MMX 3dnowext
  557. FFT_CALC_FUNC
  558. %endif
  559. INIT_XMM sse
  560. FFT_CALC_FUNC
  561. cglobal fft_permute, 2,7,1
  562. mov r4, [r0 + FFTContext.revtab]
  563. mov r5, [r0 + FFTContext.tmpbuf]
  564. mov ecx, [r0 + FFTContext.nbits]
  565. mov r2, 1
  566. shl r2, cl
  567. xor r0, r0
  568. %if ARCH_X86_32
  569. mov r1, r1m
  570. %endif
  571. .loop:
  572. movaps xmm0, [r1 + 8*r0]
  573. movzx r6, word [r4 + 2*r0]
  574. movzx r3, word [r4 + 2*r0 + 2]
  575. movlps [r5 + 8*r6], xmm0
  576. movhps [r5 + 8*r3], xmm0
  577. add r0, 2
  578. cmp r0, r2
  579. jl .loop
  580. shl r2, 3
  581. add r1, r2
  582. add r5, r2
  583. neg r2
  584. ; nbits >= 2 (FFT4) and sizeof(FFTComplex)=8 => at least 32B
  585. .loopcopy:
  586. movaps xmm0, [r5 + r2]
  587. movaps xmm1, [r5 + r2 + 16]
  588. movaps [r1 + r2], xmm0
  589. movaps [r1 + r2 + 16], xmm1
  590. add r2, 32
  591. jl .loopcopy
  592. REP_RET
  593. %macro IMDCT_CALC_FUNC 0
  594. cglobal imdct_calc, 3,5,3
  595. mov r3d, [r0 + FFTContext.mdctsize]
  596. mov r4, [r0 + FFTContext.imdcthalf]
  597. add r1, r3
  598. PUSH r3
  599. PUSH r1
  600. %if ARCH_X86_32
  601. push r2
  602. push r1
  603. push r0
  604. %else
  605. sub rsp, 8+32*WIN64 ; allocate win64 shadow space
  606. %endif
  607. call r4
  608. %if ARCH_X86_32
  609. add esp, 12
  610. %else
  611. add rsp, 8+32*WIN64
  612. %endif
  613. POP r1
  614. POP r3
  615. lea r0, [r1 + 2*r3]
  616. mov r2, r3
  617. sub r3, mmsize
  618. neg r2
  619. mova m2, [ps_m1m1m1m1]
  620. .loop:
  621. %if mmsize == 8
  622. PSWAPD m0, [r1 + r3]
  623. PSWAPD m1, [r0 + r2]
  624. pxor m0, m2
  625. %else
  626. mova m0, [r1 + r3]
  627. mova m1, [r0 + r2]
  628. shufps m0, m0, 0x1b
  629. shufps m1, m1, 0x1b
  630. xorps m0, m2
  631. %endif
  632. mova [r0 + r3], m1
  633. mova [r1 + r2], m0
  634. sub r3, mmsize
  635. add r2, mmsize
  636. jl .loop
  637. %if cpuflag(3dnow)
  638. femms
  639. RET
  640. %else
  641. REP_RET
  642. %endif
  643. %endmacro
  644. %if ARCH_X86_32
  645. INIT_MMX 3dnow
  646. IMDCT_CALC_FUNC
  647. INIT_MMX 3dnowext
  648. IMDCT_CALC_FUNC
  649. %endif
  650. INIT_XMM sse
  651. IMDCT_CALC_FUNC
  652. %if ARCH_X86_32
  653. INIT_MMX 3dnow
  654. %define mulps pfmul
  655. %define addps pfadd
  656. %define subps pfsub
  657. %define unpcklps punpckldq
  658. %define unpckhps punpckhdq
  659. DECL_PASS pass_3dnow, PASS_SMALL 1, [wq], [wq+o1q]
  660. DECL_PASS pass_interleave_3dnow, PASS_BIG 0
  661. %define pass_3dnowext pass_3dnow
  662. %define pass_interleave_3dnowext pass_interleave_3dnow
  663. %endif
  664. %ifdef PIC
  665. %define SECTION_REL - $$
  666. %else
  667. %define SECTION_REL
  668. %endif
  669. %macro DECL_FFT 1-2 ; nbits, suffix
  670. %ifidn %0, 1
  671. %xdefine fullsuffix SUFFIX
  672. %else
  673. %xdefine fullsuffix %2 %+ SUFFIX
  674. %endif
  675. %xdefine list_of_fft fft4 %+ SUFFIX SECTION_REL, fft8 %+ SUFFIX SECTION_REL
  676. %if %1>=5
  677. %xdefine list_of_fft list_of_fft, fft16 %+ SUFFIX SECTION_REL
  678. %endif
  679. %if %1>=6
  680. %xdefine list_of_fft list_of_fft, fft32 %+ fullsuffix SECTION_REL
  681. %endif
  682. %assign n 1<<%1
  683. %rep 17-%1
  684. %assign n2 n/2
  685. %assign n4 n/4
  686. %xdefine list_of_fft list_of_fft, fft %+ n %+ fullsuffix SECTION_REL
  687. align 16
  688. fft %+ n %+ fullsuffix:
  689. call fft %+ n2 %+ SUFFIX
  690. add r0, n*4 - (n&(-2<<%1))
  691. call fft %+ n4 %+ SUFFIX
  692. add r0, n*2 - (n2&(-2<<%1))
  693. call fft %+ n4 %+ SUFFIX
  694. sub r0, n*6 + (n2&(-2<<%1))
  695. lea r1, [cos_ %+ n]
  696. mov r2d, n4/2
  697. jmp pass %+ fullsuffix
  698. %assign n n*2
  699. %endrep
  700. %undef n
  701. align 8
  702. dispatch_tab %+ fullsuffix: pointer list_of_fft
  703. %endmacro ; DECL_FFT
  704. INIT_YMM avx
  705. DECL_FFT 6
  706. DECL_FFT 6, _interleave
  707. INIT_XMM sse
  708. DECL_FFT 5
  709. DECL_FFT 5, _interleave
  710. %if ARCH_X86_32
  711. INIT_MMX 3dnow
  712. DECL_FFT 4
  713. DECL_FFT 4, _interleave
  714. INIT_MMX 3dnowext
  715. DECL_FFT 4
  716. DECL_FFT 4, _interleave
  717. %endif
  718. INIT_XMM sse
  719. %undef mulps
  720. %undef addps
  721. %undef subps
  722. %undef unpcklps
  723. %undef unpckhps
  724. %macro PREROTATER 5 ;-2*k, 2*k, input+n4, tcos+n8, tsin+n8
  725. %if mmsize == 8 ; j*2+2-n4, n4-2-j*2, input+n4, tcos+n8, tsin+n8
  726. PSWAPD m0, [%3+%2*4]
  727. movq m2, [%3+%1*4-8]
  728. movq m3, m0
  729. punpckldq m0, m2
  730. punpckhdq m2, m3
  731. movd m1, [%4+%1*2-4] ; tcos[j]
  732. movd m3, [%4+%2*2] ; tcos[n4-j-1]
  733. punpckldq m1, [%5+%1*2-4] ; tsin[j]
  734. punpckldq m3, [%5+%2*2] ; tsin[n4-j-1]
  735. mova m4, m0
  736. PSWAPD m5, m1
  737. pfmul m0, m1
  738. pfmul m4, m5
  739. mova m6, m2
  740. PSWAPD m5, m3
  741. pfmul m2, m3
  742. pfmul m6, m5
  743. %if cpuflag(3dnowext)
  744. pfpnacc m0, m4
  745. pfpnacc m2, m6
  746. %else
  747. SBUTTERFLY dq, 0, 4, 1
  748. SBUTTERFLY dq, 2, 6, 3
  749. pxor m4, m7
  750. pxor m6, m7
  751. pfadd m0, m4
  752. pfadd m2, m6
  753. %endif
  754. %else
  755. movaps xmm0, [%3+%2*4]
  756. movaps xmm1, [%3+%1*4-0x10]
  757. movaps xmm2, xmm0
  758. shufps xmm0, xmm1, 0x88
  759. shufps xmm1, xmm2, 0x77
  760. movlps xmm4, [%4+%2*2]
  761. movlps xmm5, [%5+%2*2+0x0]
  762. movhps xmm4, [%4+%1*2-0x8]
  763. movhps xmm5, [%5+%1*2-0x8]
  764. movaps xmm2, xmm0
  765. movaps xmm3, xmm1
  766. mulps xmm0, xmm5
  767. mulps xmm1, xmm4
  768. mulps xmm2, xmm4
  769. mulps xmm3, xmm5
  770. subps xmm1, xmm0
  771. addps xmm2, xmm3
  772. movaps xmm0, xmm1
  773. unpcklps xmm1, xmm2
  774. unpckhps xmm0, xmm2
  775. %endif
  776. %endmacro
  777. %macro CMUL 6 ;j, xmm0, xmm1, 3, 4, 5
  778. mulps m6, %3, [%5+%1]
  779. mulps m7, %2, [%5+%1]
  780. mulps %2, %2, [%6+%1]
  781. mulps %3, %3, [%6+%1]
  782. subps %2, %2, m6
  783. addps %3, %3, m7
  784. %endmacro
  785. %macro POSROTATESHUF_AVX 5 ;j, k, z+n8, tcos+n8, tsin+n8
  786. .post:
  787. vmovaps ymm1, [%3+%1*2]
  788. vmovaps ymm0, [%3+%1*2+0x20]
  789. vmovaps ymm3, [%3+%2*2]
  790. vmovaps ymm2, [%3+%2*2+0x20]
  791. CMUL %1, ymm0, ymm1, %3, %4, %5
  792. CMUL %2, ymm2, ymm3, %3, %4, %5
  793. vshufps ymm1, ymm1, ymm1, 0x1b
  794. vshufps ymm3, ymm3, ymm3, 0x1b
  795. vperm2f128 ymm1, ymm1, ymm1, 0x01
  796. vperm2f128 ymm3, ymm3, ymm3, 0x01
  797. vunpcklps ymm6, ymm2, ymm1
  798. vunpckhps ymm4, ymm2, ymm1
  799. vunpcklps ymm7, ymm0, ymm3
  800. vunpckhps ymm5, ymm0, ymm3
  801. vextractf128 [%3+%1*2], ymm7, 0
  802. vextractf128 [%3+%1*2+0x10], ymm5, 0
  803. vextractf128 [%3+%1*2+0x20], ymm7, 1
  804. vextractf128 [%3+%1*2+0x30], ymm5, 1
  805. vextractf128 [%3+%2*2], ymm6, 0
  806. vextractf128 [%3+%2*2+0x10], ymm4, 0
  807. vextractf128 [%3+%2*2+0x20], ymm6, 1
  808. vextractf128 [%3+%2*2+0x30], ymm4, 1
  809. sub %2, 0x20
  810. add %1, 0x20
  811. jl .post
  812. %endmacro
  813. %macro POSROTATESHUF 5 ;j, k, z+n8, tcos+n8, tsin+n8
  814. .post:
  815. movaps xmm1, [%3+%1*2]
  816. movaps xmm0, [%3+%1*2+0x10]
  817. CMUL %1, xmm0, xmm1, %3, %4, %5
  818. movaps xmm5, [%3+%2*2]
  819. movaps xmm4, [%3+%2*2+0x10]
  820. CMUL %2, xmm4, xmm5, %3, %4, %5
  821. shufps xmm1, xmm1, 0x1b
  822. shufps xmm5, xmm5, 0x1b
  823. movaps xmm6, xmm4
  824. unpckhps xmm4, xmm1
  825. unpcklps xmm6, xmm1
  826. movaps xmm2, xmm0
  827. unpcklps xmm0, xmm5
  828. unpckhps xmm2, xmm5
  829. movaps [%3+%2*2], xmm6
  830. movaps [%3+%2*2+0x10], xmm4
  831. movaps [%3+%1*2], xmm0
  832. movaps [%3+%1*2+0x10], xmm2
  833. sub %2, 0x10
  834. add %1, 0x10
  835. jl .post
  836. %endmacro
  837. %macro CMUL_3DNOW 6
  838. mova m6, [%1+%2*2]
  839. mova %3, [%1+%2*2+8]
  840. mova %4, m6
  841. mova m7, %3
  842. pfmul m6, [%5+%2]
  843. pfmul %3, [%6+%2]
  844. pfmul %4, [%6+%2]
  845. pfmul m7, [%5+%2]
  846. pfsub %3, m6
  847. pfadd %4, m7
  848. %endmacro
  849. %macro POSROTATESHUF_3DNOW 5 ;j, k, z+n8, tcos+n8, tsin+n8
  850. .post:
  851. CMUL_3DNOW %3, %1, m0, m1, %4, %5
  852. CMUL_3DNOW %3, %2, m2, m3, %4, %5
  853. movd [%3+%1*2+ 0], m0
  854. movd [%3+%2*2+12], m1
  855. movd [%3+%2*2+ 0], m2
  856. movd [%3+%1*2+12], m3
  857. psrlq m0, 32
  858. psrlq m1, 32
  859. psrlq m2, 32
  860. psrlq m3, 32
  861. movd [%3+%1*2+ 8], m0
  862. movd [%3+%2*2+ 4], m1
  863. movd [%3+%2*2+ 8], m2
  864. movd [%3+%1*2+ 4], m3
  865. sub %2, 8
  866. add %1, 8
  867. jl .post
  868. %endmacro
  869. %macro DECL_IMDCT 1
  870. cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *input
  871. %if ARCH_X86_64
  872. %define rrevtab r7
  873. %define rtcos r8
  874. %define rtsin r9
  875. %else
  876. %define rrevtab r6
  877. %define rtsin r6
  878. %define rtcos r5
  879. %endif
  880. mov r3d, [r0+FFTContext.mdctsize]
  881. add r2, r3
  882. shr r3, 1
  883. mov rtcos, [r0+FFTContext.tcos]
  884. mov rtsin, [r0+FFTContext.tsin]
  885. add rtcos, r3
  886. add rtsin, r3
  887. %if ARCH_X86_64 == 0
  888. push rtcos
  889. push rtsin
  890. %endif
  891. shr r3, 1
  892. mov rrevtab, [r0+FFTContext.revtab]
  893. add rrevtab, r3
  894. %if ARCH_X86_64 == 0
  895. push rrevtab
  896. %endif
  897. %if mmsize == 8
  898. sub r3, 2
  899. %else
  900. sub r3, 4
  901. %endif
  902. %if ARCH_X86_64 || mmsize == 8
  903. xor r4, r4
  904. sub r4, r3
  905. %endif
  906. %if notcpuflag(3dnowext) && mmsize == 8
  907. movd m7, [ps_m1m1m1m1]
  908. %endif
  909. .pre:
  910. %if ARCH_X86_64 == 0
  911. ;unspill
  912. %if mmsize != 8
  913. xor r4, r4
  914. sub r4, r3
  915. %endif
  916. mov rtcos, [esp+8]
  917. mov rtsin, [esp+4]
  918. %endif
  919. PREROTATER r4, r3, r2, rtcos, rtsin
  920. %if mmsize == 8
  921. mov r6, [esp] ; rrevtab = ptr+n8
  922. movzx r5, word [rrevtab+r4-2] ; rrevtab[j]
  923. movzx r6, word [rrevtab+r3] ; rrevtab[n4-j-1]
  924. mova [r1+r5*8], m0
  925. mova [r1+r6*8], m2
  926. add r4, 2
  927. sub r3, 2
  928. %else
  929. %if ARCH_X86_64
  930. movzx r5, word [rrevtab+r4-4]
  931. movzx r6, word [rrevtab+r4-2]
  932. movzx r10, word [rrevtab+r3]
  933. movzx r11, word [rrevtab+r3+2]
  934. movlps [r1+r5 *8], xmm0
  935. movhps [r1+r6 *8], xmm0
  936. movlps [r1+r10*8], xmm1
  937. movhps [r1+r11*8], xmm1
  938. add r4, 4
  939. %else
  940. mov r6, [esp]
  941. movzx r5, word [r6+r4-4]
  942. movzx r4, word [r6+r4-2]
  943. movlps [r1+r5*8], xmm0
  944. movhps [r1+r4*8], xmm0
  945. movzx r5, word [r6+r3]
  946. movzx r4, word [r6+r3+2]
  947. movlps [r1+r5*8], xmm1
  948. movhps [r1+r4*8], xmm1
  949. %endif
  950. sub r3, 4
  951. %endif
  952. jns .pre
  953. mov r5, r0
  954. mov r6, r1
  955. mov r0, r1
  956. mov r1d, [r5+FFTContext.nbits]
  957. FFT_DISPATCH SUFFIX, r1
  958. mov r0d, [r5+FFTContext.mdctsize]
  959. add r6, r0
  960. shr r0, 1
  961. %if ARCH_X86_64 == 0
  962. %define rtcos r2
  963. %define rtsin r3
  964. mov rtcos, [esp+8]
  965. mov rtsin, [esp+4]
  966. %endif
  967. neg r0
  968. mov r1, -mmsize
  969. sub r1, r0
  970. %1 r0, r1, r6, rtcos, rtsin
  971. %if ARCH_X86_64 == 0
  972. add esp, 12
  973. %endif
  974. %if mmsize == 8
  975. femms
  976. %endif
  977. RET
  978. %endmacro
  979. DECL_IMDCT POSROTATESHUF
  980. %if ARCH_X86_32
  981. INIT_MMX 3dnow
  982. DECL_IMDCT POSROTATESHUF_3DNOW
  983. INIT_MMX 3dnowext
  984. DECL_IMDCT POSROTATESHUF_3DNOW
  985. %endif
  986. INIT_YMM avx
  987. DECL_IMDCT POSROTATESHUF_AVX