You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

958 lines
33KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "libavutil/attributes.h"
  35. #include "avcodec.h"
  36. #include "internal.h"
  37. #include "wma.h"
  38. #undef NDEBUG
  39. #include <assert.h>
  40. #define EXPVLCBITS 8
  41. #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
  42. #define HGAINVLCBITS 9
  43. #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
  44. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  45. #ifdef TRACE
  46. static void dump_floats(WMACodecContext *s, const char *name,
  47. int prec, const float *tab, int n)
  48. {
  49. int i;
  50. ff_tlog(s->avctx, "%s[%d]:\n", name, n);
  51. for (i = 0; i < n; i++) {
  52. if ((i & 7) == 0)
  53. ff_tlog(s->avctx, "%4d: ", i);
  54. ff_tlog(s->avctx, " %8.*f", prec, tab[i]);
  55. if ((i & 7) == 7)
  56. ff_tlog(s->avctx, "\n");
  57. }
  58. if ((i & 7) != 0)
  59. ff_tlog(s->avctx, "\n");
  60. }
  61. #endif /* TRACE */
  62. static av_cold int wma_decode_init(AVCodecContext *avctx)
  63. {
  64. WMACodecContext *s = avctx->priv_data;
  65. int i, flags2;
  66. uint8_t *extradata;
  67. if (!avctx->block_align) {
  68. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  69. return AVERROR(EINVAL);
  70. }
  71. s->avctx = avctx;
  72. /* extract flag infos */
  73. flags2 = 0;
  74. extradata = avctx->extradata;
  75. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4)
  76. flags2 = AV_RL16(extradata + 2);
  77. else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6)
  78. flags2 = AV_RL16(extradata + 4);
  79. s->use_exp_vlc = flags2 & 0x0001;
  80. s->use_bit_reservoir = flags2 & 0x0002;
  81. s->use_variable_block_len = flags2 & 0x0004;
  82. if (ff_wma_init(avctx, flags2) < 0)
  83. return -1;
  84. /* init MDCT */
  85. for (i = 0; i < s->nb_block_sizes; i++)
  86. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  87. if (s->use_noise_coding) {
  88. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  89. ff_wma_hgain_huffbits, 1, 1,
  90. ff_wma_hgain_huffcodes, 2, 2, 0);
  91. }
  92. if (s->use_exp_vlc)
  93. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), // FIXME move out of context
  94. ff_aac_scalefactor_bits, 1, 1,
  95. ff_aac_scalefactor_code, 4, 4, 0);
  96. else
  97. wma_lsp_to_curve_init(s, s->frame_len);
  98. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  99. return 0;
  100. }
  101. /**
  102. * compute x^-0.25 with an exponent and mantissa table. We use linear
  103. * interpolation to reduce the mantissa table size at a small speed
  104. * expense (linear interpolation approximately doubles the number of
  105. * bits of precision).
  106. */
  107. static inline float pow_m1_4(WMACodecContext *s, float x)
  108. {
  109. union {
  110. float f;
  111. unsigned int v;
  112. } u, t;
  113. unsigned int e, m;
  114. float a, b;
  115. u.f = x;
  116. e = u.v >> 23;
  117. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  118. /* build interpolation scale: 1 <= t < 2. */
  119. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  120. a = s->lsp_pow_m_table1[m];
  121. b = s->lsp_pow_m_table2[m];
  122. return s->lsp_pow_e_table[e] * (a + b * t.f);
  123. }
  124. static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  125. {
  126. float wdel, a, b;
  127. int i, e, m;
  128. wdel = M_PI / frame_len;
  129. for (i = 0; i < frame_len; i++)
  130. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  131. /* tables for x^-0.25 computation */
  132. for (i = 0; i < 256; i++) {
  133. e = i - 126;
  134. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  135. }
  136. /* NOTE: these two tables are needed to avoid two operations in
  137. * pow_m1_4 */
  138. b = 1.0;
  139. for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
  140. m = (1 << LSP_POW_BITS) + i;
  141. a = (float) m * (0.5 / (1 << LSP_POW_BITS));
  142. a = pow(a, -0.25);
  143. s->lsp_pow_m_table1[i] = 2 * a - b;
  144. s->lsp_pow_m_table2[i] = b - a;
  145. b = a;
  146. }
  147. }
  148. /**
  149. * NOTE: We use the same code as Vorbis here
  150. * @todo optimize it further with SSE/3Dnow
  151. */
  152. static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr,
  153. int n, float *lsp)
  154. {
  155. int i, j;
  156. float p, q, w, v, val_max;
  157. val_max = 0;
  158. for (i = 0; i < n; i++) {
  159. p = 0.5f;
  160. q = 0.5f;
  161. w = s->lsp_cos_table[i];
  162. for (j = 1; j < NB_LSP_COEFS; j += 2) {
  163. q *= w - lsp[j - 1];
  164. p *= w - lsp[j];
  165. }
  166. p *= p * (2.0f - w);
  167. q *= q * (2.0f + w);
  168. v = p + q;
  169. v = pow_m1_4(s, v);
  170. if (v > val_max)
  171. val_max = v;
  172. out[i] = v;
  173. }
  174. *val_max_ptr = val_max;
  175. }
  176. /**
  177. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  178. */
  179. static void decode_exp_lsp(WMACodecContext *s, int ch)
  180. {
  181. float lsp_coefs[NB_LSP_COEFS];
  182. int val, i;
  183. for (i = 0; i < NB_LSP_COEFS; i++) {
  184. if (i == 0 || i >= 8)
  185. val = get_bits(&s->gb, 3);
  186. else
  187. val = get_bits(&s->gb, 4);
  188. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  189. }
  190. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  191. s->block_len, lsp_coefs);
  192. }
  193. /** pow(10, i / 16.0) for i in -60..95 */
  194. static const float pow_tab[] = {
  195. 1.7782794100389e-04, 2.0535250264571e-04,
  196. 2.3713737056617e-04, 2.7384196342644e-04,
  197. 3.1622776601684e-04, 3.6517412725484e-04,
  198. 4.2169650342858e-04, 4.8696752516586e-04,
  199. 5.6234132519035e-04, 6.4938163157621e-04,
  200. 7.4989420933246e-04, 8.6596432336006e-04,
  201. 1.0000000000000e-03, 1.1547819846895e-03,
  202. 1.3335214321633e-03, 1.5399265260595e-03,
  203. 1.7782794100389e-03, 2.0535250264571e-03,
  204. 2.3713737056617e-03, 2.7384196342644e-03,
  205. 3.1622776601684e-03, 3.6517412725484e-03,
  206. 4.2169650342858e-03, 4.8696752516586e-03,
  207. 5.6234132519035e-03, 6.4938163157621e-03,
  208. 7.4989420933246e-03, 8.6596432336006e-03,
  209. 1.0000000000000e-02, 1.1547819846895e-02,
  210. 1.3335214321633e-02, 1.5399265260595e-02,
  211. 1.7782794100389e-02, 2.0535250264571e-02,
  212. 2.3713737056617e-02, 2.7384196342644e-02,
  213. 3.1622776601684e-02, 3.6517412725484e-02,
  214. 4.2169650342858e-02, 4.8696752516586e-02,
  215. 5.6234132519035e-02, 6.4938163157621e-02,
  216. 7.4989420933246e-02, 8.6596432336007e-02,
  217. 1.0000000000000e-01, 1.1547819846895e-01,
  218. 1.3335214321633e-01, 1.5399265260595e-01,
  219. 1.7782794100389e-01, 2.0535250264571e-01,
  220. 2.3713737056617e-01, 2.7384196342644e-01,
  221. 3.1622776601684e-01, 3.6517412725484e-01,
  222. 4.2169650342858e-01, 4.8696752516586e-01,
  223. 5.6234132519035e-01, 6.4938163157621e-01,
  224. 7.4989420933246e-01, 8.6596432336007e-01,
  225. 1.0000000000000e+00, 1.1547819846895e+00,
  226. 1.3335214321633e+00, 1.5399265260595e+00,
  227. 1.7782794100389e+00, 2.0535250264571e+00,
  228. 2.3713737056617e+00, 2.7384196342644e+00,
  229. 3.1622776601684e+00, 3.6517412725484e+00,
  230. 4.2169650342858e+00, 4.8696752516586e+00,
  231. 5.6234132519035e+00, 6.4938163157621e+00,
  232. 7.4989420933246e+00, 8.6596432336007e+00,
  233. 1.0000000000000e+01, 1.1547819846895e+01,
  234. 1.3335214321633e+01, 1.5399265260595e+01,
  235. 1.7782794100389e+01, 2.0535250264571e+01,
  236. 2.3713737056617e+01, 2.7384196342644e+01,
  237. 3.1622776601684e+01, 3.6517412725484e+01,
  238. 4.2169650342858e+01, 4.8696752516586e+01,
  239. 5.6234132519035e+01, 6.4938163157621e+01,
  240. 7.4989420933246e+01, 8.6596432336007e+01,
  241. 1.0000000000000e+02, 1.1547819846895e+02,
  242. 1.3335214321633e+02, 1.5399265260595e+02,
  243. 1.7782794100389e+02, 2.0535250264571e+02,
  244. 2.3713737056617e+02, 2.7384196342644e+02,
  245. 3.1622776601684e+02, 3.6517412725484e+02,
  246. 4.2169650342858e+02, 4.8696752516586e+02,
  247. 5.6234132519035e+02, 6.4938163157621e+02,
  248. 7.4989420933246e+02, 8.6596432336007e+02,
  249. 1.0000000000000e+03, 1.1547819846895e+03,
  250. 1.3335214321633e+03, 1.5399265260595e+03,
  251. 1.7782794100389e+03, 2.0535250264571e+03,
  252. 2.3713737056617e+03, 2.7384196342644e+03,
  253. 3.1622776601684e+03, 3.6517412725484e+03,
  254. 4.2169650342858e+03, 4.8696752516586e+03,
  255. 5.6234132519035e+03, 6.4938163157621e+03,
  256. 7.4989420933246e+03, 8.6596432336007e+03,
  257. 1.0000000000000e+04, 1.1547819846895e+04,
  258. 1.3335214321633e+04, 1.5399265260595e+04,
  259. 1.7782794100389e+04, 2.0535250264571e+04,
  260. 2.3713737056617e+04, 2.7384196342644e+04,
  261. 3.1622776601684e+04, 3.6517412725484e+04,
  262. 4.2169650342858e+04, 4.8696752516586e+04,
  263. 5.6234132519035e+04, 6.4938163157621e+04,
  264. 7.4989420933246e+04, 8.6596432336007e+04,
  265. 1.0000000000000e+05, 1.1547819846895e+05,
  266. 1.3335214321633e+05, 1.5399265260595e+05,
  267. 1.7782794100389e+05, 2.0535250264571e+05,
  268. 2.3713737056617e+05, 2.7384196342644e+05,
  269. 3.1622776601684e+05, 3.6517412725484e+05,
  270. 4.2169650342858e+05, 4.8696752516586e+05,
  271. 5.6234132519035e+05, 6.4938163157621e+05,
  272. 7.4989420933246e+05, 8.6596432336007e+05,
  273. };
  274. /**
  275. * decode exponents coded with VLC codes
  276. */
  277. static int decode_exp_vlc(WMACodecContext *s, int ch)
  278. {
  279. int last_exp, n, code;
  280. const uint16_t *ptr;
  281. float v, max_scale;
  282. uint32_t *q, *q_end, iv;
  283. const float *ptab = pow_tab + 60;
  284. const uint32_t *iptab = (const uint32_t *) ptab;
  285. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  286. q = (uint32_t *) s->exponents[ch];
  287. q_end = q + s->block_len;
  288. max_scale = 0;
  289. if (s->version == 1) {
  290. last_exp = get_bits(&s->gb, 5) + 10;
  291. v = ptab[last_exp];
  292. iv = iptab[last_exp];
  293. max_scale = v;
  294. n = *ptr++;
  295. switch (n & 3) do {
  296. case 0: *q++ = iv;
  297. case 3: *q++ = iv;
  298. case 2: *q++ = iv;
  299. case 1: *q++ = iv;
  300. } while ((n -= 4) > 0);
  301. } else
  302. last_exp = 36;
  303. while (q < q_end) {
  304. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  305. if (code < 0) {
  306. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  307. return -1;
  308. }
  309. /* NOTE: this offset is the same as MPEG4 AAC ! */
  310. last_exp += code - 60;
  311. if ((unsigned) last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  312. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  313. last_exp);
  314. return -1;
  315. }
  316. v = ptab[last_exp];
  317. iv = iptab[last_exp];
  318. if (v > max_scale)
  319. max_scale = v;
  320. n = *ptr++;
  321. switch (n & 3) do {
  322. case 0: *q++ = iv;
  323. case 3: *q++ = iv;
  324. case 2: *q++ = iv;
  325. case 1: *q++ = iv;
  326. } while ((n -= 4) > 0);
  327. }
  328. s->max_exponent[ch] = max_scale;
  329. return 0;
  330. }
  331. /**
  332. * Apply MDCT window and add into output.
  333. *
  334. * We ensure that when the windows overlap their squared sum
  335. * is always 1 (MDCT reconstruction rule).
  336. */
  337. static void wma_window(WMACodecContext *s, float *out)
  338. {
  339. float *in = s->output;
  340. int block_len, bsize, n;
  341. /* left part */
  342. if (s->block_len_bits <= s->prev_block_len_bits) {
  343. block_len = s->block_len;
  344. bsize = s->frame_len_bits - s->block_len_bits;
  345. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  346. out, block_len);
  347. } else {
  348. block_len = 1 << s->prev_block_len_bits;
  349. n = (s->block_len - block_len) / 2;
  350. bsize = s->frame_len_bits - s->prev_block_len_bits;
  351. s->fdsp.vector_fmul_add(out + n, in + n, s->windows[bsize],
  352. out + n, block_len);
  353. memcpy(out + n + block_len, in + n + block_len, n * sizeof(float));
  354. }
  355. out += s->block_len;
  356. in += s->block_len;
  357. /* right part */
  358. if (s->block_len_bits <= s->next_block_len_bits) {
  359. block_len = s->block_len;
  360. bsize = s->frame_len_bits - s->block_len_bits;
  361. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  362. } else {
  363. block_len = 1 << s->next_block_len_bits;
  364. n = (s->block_len - block_len) / 2;
  365. bsize = s->frame_len_bits - s->next_block_len_bits;
  366. memcpy(out, in, n * sizeof(float));
  367. s->fdsp.vector_fmul_reverse(out + n, in + n, s->windows[bsize],
  368. block_len);
  369. memset(out + n + block_len, 0, n * sizeof(float));
  370. }
  371. }
  372. /**
  373. * @return 0 if OK. 1 if last block of frame. return -1 if
  374. * unrecorrable error.
  375. */
  376. static int wma_decode_block(WMACodecContext *s)
  377. {
  378. int n, v, a, ch, bsize;
  379. int coef_nb_bits, total_gain;
  380. int nb_coefs[MAX_CHANNELS];
  381. float mdct_norm;
  382. FFTContext *mdct;
  383. #ifdef TRACE
  384. ff_tlog(s->avctx, "***decode_block: %d:%d\n",
  385. s->frame_count - 1, s->block_num);
  386. #endif /* TRACE */
  387. /* compute current block length */
  388. if (s->use_variable_block_len) {
  389. n = av_log2(s->nb_block_sizes - 1) + 1;
  390. if (s->reset_block_lengths) {
  391. s->reset_block_lengths = 0;
  392. v = get_bits(&s->gb, n);
  393. if (v >= s->nb_block_sizes) {
  394. av_log(s->avctx, AV_LOG_ERROR,
  395. "prev_block_len_bits %d out of range\n",
  396. s->frame_len_bits - v);
  397. return -1;
  398. }
  399. s->prev_block_len_bits = s->frame_len_bits - v;
  400. v = get_bits(&s->gb, n);
  401. if (v >= s->nb_block_sizes) {
  402. av_log(s->avctx, AV_LOG_ERROR,
  403. "block_len_bits %d out of range\n",
  404. s->frame_len_bits - v);
  405. return -1;
  406. }
  407. s->block_len_bits = s->frame_len_bits - v;
  408. } else {
  409. /* update block lengths */
  410. s->prev_block_len_bits = s->block_len_bits;
  411. s->block_len_bits = s->next_block_len_bits;
  412. }
  413. v = get_bits(&s->gb, n);
  414. if (v >= s->nb_block_sizes) {
  415. av_log(s->avctx, AV_LOG_ERROR,
  416. "next_block_len_bits %d out of range\n",
  417. s->frame_len_bits - v);
  418. return -1;
  419. }
  420. s->next_block_len_bits = s->frame_len_bits - v;
  421. } else {
  422. /* fixed block len */
  423. s->next_block_len_bits = s->frame_len_bits;
  424. s->prev_block_len_bits = s->frame_len_bits;
  425. s->block_len_bits = s->frame_len_bits;
  426. }
  427. /* now check if the block length is coherent with the frame length */
  428. s->block_len = 1 << s->block_len_bits;
  429. if ((s->block_pos + s->block_len) > s->frame_len) {
  430. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  431. return -1;
  432. }
  433. if (s->avctx->channels == 2)
  434. s->ms_stereo = get_bits1(&s->gb);
  435. v = 0;
  436. for (ch = 0; ch < s->avctx->channels; ch++) {
  437. a = get_bits1(&s->gb);
  438. s->channel_coded[ch] = a;
  439. v |= a;
  440. }
  441. bsize = s->frame_len_bits - s->block_len_bits;
  442. /* if no channel coded, no need to go further */
  443. /* XXX: fix potential framing problems */
  444. if (!v)
  445. goto next;
  446. /* read total gain and extract corresponding number of bits for
  447. * coef escape coding */
  448. total_gain = 1;
  449. for (;;) {
  450. a = get_bits(&s->gb, 7);
  451. total_gain += a;
  452. if (a != 127)
  453. break;
  454. }
  455. coef_nb_bits = ff_wma_total_gain_to_bits(total_gain);
  456. /* compute number of coefficients */
  457. n = s->coefs_end[bsize] - s->coefs_start;
  458. for (ch = 0; ch < s->avctx->channels; ch++)
  459. nb_coefs[ch] = n;
  460. /* complex coding */
  461. if (s->use_noise_coding) {
  462. for (ch = 0; ch < s->avctx->channels; ch++) {
  463. if (s->channel_coded[ch]) {
  464. int i, n, a;
  465. n = s->exponent_high_sizes[bsize];
  466. for (i = 0; i < n; i++) {
  467. a = get_bits1(&s->gb);
  468. s->high_band_coded[ch][i] = a;
  469. /* if noise coding, the coefficients are not transmitted */
  470. if (a)
  471. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  472. }
  473. }
  474. }
  475. for (ch = 0; ch < s->avctx->channels; ch++) {
  476. if (s->channel_coded[ch]) {
  477. int i, n, val, code;
  478. n = s->exponent_high_sizes[bsize];
  479. val = (int) 0x80000000;
  480. for (i = 0; i < n; i++) {
  481. if (s->high_band_coded[ch][i]) {
  482. if (val == (int) 0x80000000) {
  483. val = get_bits(&s->gb, 7) - 19;
  484. } else {
  485. code = get_vlc2(&s->gb, s->hgain_vlc.table,
  486. HGAINVLCBITS, HGAINMAX);
  487. if (code < 0) {
  488. av_log(s->avctx, AV_LOG_ERROR,
  489. "hgain vlc invalid\n");
  490. return -1;
  491. }
  492. val += code - 18;
  493. }
  494. s->high_band_values[ch][i] = val;
  495. }
  496. }
  497. }
  498. }
  499. }
  500. /* exponents can be reused in short blocks. */
  501. if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
  502. for (ch = 0; ch < s->avctx->channels; ch++) {
  503. if (s->channel_coded[ch]) {
  504. if (s->use_exp_vlc) {
  505. if (decode_exp_vlc(s, ch) < 0)
  506. return -1;
  507. } else {
  508. decode_exp_lsp(s, ch);
  509. }
  510. s->exponents_bsize[ch] = bsize;
  511. }
  512. }
  513. }
  514. /* parse spectral coefficients : just RLE encoding */
  515. for (ch = 0; ch < s->avctx->channels; ch++) {
  516. if (s->channel_coded[ch]) {
  517. int tindex;
  518. WMACoef *ptr = &s->coefs1[ch][0];
  519. /* special VLC tables are used for ms stereo because
  520. * there is potentially less energy there */
  521. tindex = (ch == 1 && s->ms_stereo);
  522. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  523. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  524. s->level_table[tindex], s->run_table[tindex],
  525. 0, ptr, 0, nb_coefs[ch],
  526. s->block_len, s->frame_len_bits, coef_nb_bits);
  527. }
  528. if (s->version == 1 && s->avctx->channels >= 2)
  529. align_get_bits(&s->gb);
  530. }
  531. /* normalize */
  532. {
  533. int n4 = s->block_len / 2;
  534. mdct_norm = 1.0 / (float) n4;
  535. if (s->version == 1)
  536. mdct_norm *= sqrt(n4);
  537. }
  538. /* finally compute the MDCT coefficients */
  539. for (ch = 0; ch < s->avctx->channels; ch++) {
  540. if (s->channel_coded[ch]) {
  541. WMACoef *coefs1;
  542. float *coefs, *exponents, mult, mult1, noise;
  543. int i, j, n, n1, last_high_band, esize;
  544. float exp_power[HIGH_BAND_MAX_SIZE];
  545. coefs1 = s->coefs1[ch];
  546. exponents = s->exponents[ch];
  547. esize = s->exponents_bsize[ch];
  548. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  549. mult *= mdct_norm;
  550. coefs = s->coefs[ch];
  551. if (s->use_noise_coding) {
  552. mult1 = mult;
  553. /* very low freqs : noise */
  554. for (i = 0; i < s->coefs_start; i++) {
  555. *coefs++ = s->noise_table[s->noise_index] *
  556. exponents[i << bsize >> esize] * mult1;
  557. s->noise_index = (s->noise_index + 1) &
  558. (NOISE_TAB_SIZE - 1);
  559. }
  560. n1 = s->exponent_high_sizes[bsize];
  561. /* compute power of high bands */
  562. exponents = s->exponents[ch] +
  563. (s->high_band_start[bsize] << bsize >> esize);
  564. last_high_band = 0; /* avoid warning */
  565. for (j = 0; j < n1; j++) {
  566. n = s->exponent_high_bands[s->frame_len_bits -
  567. s->block_len_bits][j];
  568. if (s->high_band_coded[ch][j]) {
  569. float e2, v;
  570. e2 = 0;
  571. for (i = 0; i < n; i++) {
  572. v = exponents[i << bsize >> esize];
  573. e2 += v * v;
  574. }
  575. exp_power[j] = e2 / n;
  576. last_high_band = j;
  577. ff_tlog(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  578. }
  579. exponents += n << bsize >> esize;
  580. }
  581. /* main freqs and high freqs */
  582. exponents = s->exponents[ch] + (s->coefs_start << bsize >> esize);
  583. for (j = -1; j < n1; j++) {
  584. if (j < 0)
  585. n = s->high_band_start[bsize] - s->coefs_start;
  586. else
  587. n = s->exponent_high_bands[s->frame_len_bits -
  588. s->block_len_bits][j];
  589. if (j >= 0 && s->high_band_coded[ch][j]) {
  590. /* use noise with specified power */
  591. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  592. /* XXX: use a table */
  593. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  594. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  595. mult1 *= mdct_norm;
  596. for (i = 0; i < n; i++) {
  597. noise = s->noise_table[s->noise_index];
  598. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  599. *coefs++ = noise * exponents[i << bsize >> esize] * mult1;
  600. }
  601. exponents += n << bsize >> esize;
  602. } else {
  603. /* coded values + small noise */
  604. for (i = 0; i < n; i++) {
  605. noise = s->noise_table[s->noise_index];
  606. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  607. *coefs++ = ((*coefs1++) + noise) *
  608. exponents[i << bsize >> esize] * mult;
  609. }
  610. exponents += n << bsize >> esize;
  611. }
  612. }
  613. /* very high freqs : noise */
  614. n = s->block_len - s->coefs_end[bsize];
  615. mult1 = mult * exponents[((-1 << bsize)) >> esize];
  616. for (i = 0; i < n; i++) {
  617. *coefs++ = s->noise_table[s->noise_index] * mult1;
  618. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  619. }
  620. } else {
  621. /* XXX: optimize more */
  622. for (i = 0; i < s->coefs_start; i++)
  623. *coefs++ = 0.0;
  624. n = nb_coefs[ch];
  625. for (i = 0; i < n; i++)
  626. *coefs++ = coefs1[i] * exponents[i << bsize >> esize] * mult;
  627. n = s->block_len - s->coefs_end[bsize];
  628. for (i = 0; i < n; i++)
  629. *coefs++ = 0.0;
  630. }
  631. }
  632. }
  633. #ifdef TRACE
  634. for (ch = 0; ch < s->avctx->channels; ch++) {
  635. if (s->channel_coded[ch]) {
  636. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  637. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  638. }
  639. }
  640. #endif /* TRACE */
  641. if (s->ms_stereo && s->channel_coded[1]) {
  642. /* nominal case for ms stereo: we do it before mdct */
  643. /* no need to optimize this case because it should almost
  644. * never happen */
  645. if (!s->channel_coded[0]) {
  646. ff_tlog(s->avctx, "rare ms-stereo case happened\n");
  647. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  648. s->channel_coded[0] = 1;
  649. }
  650. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  651. }
  652. next:
  653. mdct = &s->mdct_ctx[bsize];
  654. for (ch = 0; ch < s->avctx->channels; ch++) {
  655. int n4, index;
  656. n4 = s->block_len / 2;
  657. if (s->channel_coded[ch])
  658. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  659. else if (!(s->ms_stereo && ch == 1))
  660. memset(s->output, 0, sizeof(s->output));
  661. /* multiply by the window and add in the frame */
  662. index = (s->frame_len / 2) + s->block_pos - n4;
  663. wma_window(s, &s->frame_out[ch][index]);
  664. }
  665. /* update block number */
  666. s->block_num++;
  667. s->block_pos += s->block_len;
  668. if (s->block_pos >= s->frame_len)
  669. return 1;
  670. else
  671. return 0;
  672. }
  673. /* decode a frame of frame_len samples */
  674. static int wma_decode_frame(WMACodecContext *s, float **samples,
  675. int samples_offset)
  676. {
  677. int ret, ch;
  678. #ifdef TRACE
  679. ff_tlog(s->avctx, "***decode_frame: %d size=%d\n",
  680. s->frame_count++, s->frame_len);
  681. #endif /* TRACE */
  682. /* read each block */
  683. s->block_num = 0;
  684. s->block_pos = 0;
  685. for (;;) {
  686. ret = wma_decode_block(s);
  687. if (ret < 0)
  688. return -1;
  689. if (ret)
  690. break;
  691. }
  692. for (ch = 0; ch < s->avctx->channels; ch++) {
  693. /* copy current block to output */
  694. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  695. s->frame_len * sizeof(*s->frame_out[ch]));
  696. /* prepare for next block */
  697. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  698. s->frame_len * sizeof(*s->frame_out[ch]));
  699. #ifdef TRACE
  700. dump_floats(s, "samples", 6, samples[ch] + samples_offset,
  701. s->frame_len);
  702. #endif /* TRACE */
  703. }
  704. return 0;
  705. }
  706. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  707. int *got_frame_ptr, AVPacket *avpkt)
  708. {
  709. AVFrame *frame = data;
  710. const uint8_t *buf = avpkt->data;
  711. int buf_size = avpkt->size;
  712. WMACodecContext *s = avctx->priv_data;
  713. int nb_frames, bit_offset, i, pos, len, ret;
  714. uint8_t *q;
  715. float **samples;
  716. int samples_offset;
  717. ff_tlog(avctx, "***decode_superframe:\n");
  718. if (buf_size == 0) {
  719. s->last_superframe_len = 0;
  720. return 0;
  721. }
  722. if (buf_size < avctx->block_align) {
  723. av_log(avctx, AV_LOG_ERROR,
  724. "Input packet size too small (%d < %d)\n",
  725. buf_size, avctx->block_align);
  726. return AVERROR_INVALIDDATA;
  727. }
  728. buf_size = avctx->block_align;
  729. init_get_bits(&s->gb, buf, buf_size * 8);
  730. if (s->use_bit_reservoir) {
  731. /* read super frame header */
  732. skip_bits(&s->gb, 4); /* super frame index */
  733. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  734. } else
  735. nb_frames = 1;
  736. /* get output buffer */
  737. frame->nb_samples = nb_frames * s->frame_len;
  738. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  739. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  740. return ret;
  741. }
  742. samples = (float **) frame->extended_data;
  743. samples_offset = 0;
  744. if (s->use_bit_reservoir) {
  745. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  746. if (bit_offset > get_bits_left(&s->gb)) {
  747. av_log(avctx, AV_LOG_ERROR,
  748. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  749. bit_offset, get_bits_left(&s->gb), buf_size);
  750. goto fail;
  751. }
  752. if (s->last_superframe_len > 0) {
  753. /* add bit_offset bits to last frame */
  754. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  755. MAX_CODED_SUPERFRAME_SIZE)
  756. goto fail;
  757. q = s->last_superframe + s->last_superframe_len;
  758. len = bit_offset;
  759. while (len > 7) {
  760. *q++ = (get_bits) (&s->gb, 8);
  761. len -= 8;
  762. }
  763. if (len > 0)
  764. *q++ = (get_bits) (&s->gb, len) << (8 - len);
  765. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  766. /* XXX: bit_offset bits into last frame */
  767. init_get_bits(&s->gb, s->last_superframe,
  768. s->last_superframe_len * 8 + bit_offset);
  769. /* skip unused bits */
  770. if (s->last_bitoffset > 0)
  771. skip_bits(&s->gb, s->last_bitoffset);
  772. /* this frame is stored in the last superframe and in the
  773. * current one */
  774. if (wma_decode_frame(s, samples, samples_offset) < 0)
  775. goto fail;
  776. samples_offset += s->frame_len;
  777. nb_frames--;
  778. }
  779. /* read each frame starting from bit_offset */
  780. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  781. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  782. return AVERROR_INVALIDDATA;
  783. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3)) * 8);
  784. len = pos & 7;
  785. if (len > 0)
  786. skip_bits(&s->gb, len);
  787. s->reset_block_lengths = 1;
  788. for (i = 0; i < nb_frames; i++) {
  789. if (wma_decode_frame(s, samples, samples_offset) < 0)
  790. goto fail;
  791. samples_offset += s->frame_len;
  792. }
  793. /* we copy the end of the frame in the last frame buffer */
  794. pos = get_bits_count(&s->gb) +
  795. ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  796. s->last_bitoffset = pos & 7;
  797. pos >>= 3;
  798. len = buf_size - pos;
  799. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  800. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  801. goto fail;
  802. }
  803. s->last_superframe_len = len;
  804. memcpy(s->last_superframe, buf + pos, len);
  805. } else {
  806. /* single frame decode */
  807. if (wma_decode_frame(s, samples, samples_offset) < 0)
  808. goto fail;
  809. samples_offset += s->frame_len;
  810. }
  811. ff_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  812. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  813. (int8_t *) samples - (int8_t *) data, avctx->block_align);
  814. *got_frame_ptr = 1;
  815. return avctx->block_align;
  816. fail:
  817. /* when error, we reset the bit reservoir */
  818. s->last_superframe_len = 0;
  819. return -1;
  820. }
  821. static av_cold void flush(AVCodecContext *avctx)
  822. {
  823. WMACodecContext *s = avctx->priv_data;
  824. s->last_bitoffset =
  825. s->last_superframe_len = 0;
  826. }
  827. AVCodec ff_wmav1_decoder = {
  828. .name = "wmav1",
  829. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  830. .type = AVMEDIA_TYPE_AUDIO,
  831. .id = AV_CODEC_ID_WMAV1,
  832. .priv_data_size = sizeof(WMACodecContext),
  833. .init = wma_decode_init,
  834. .close = ff_wma_end,
  835. .decode = wma_decode_superframe,
  836. .flush = flush,
  837. .capabilities = AV_CODEC_CAP_DR1,
  838. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  839. AV_SAMPLE_FMT_NONE },
  840. };
  841. AVCodec ff_wmav2_decoder = {
  842. .name = "wmav2",
  843. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  844. .type = AVMEDIA_TYPE_AUDIO,
  845. .id = AV_CODEC_ID_WMAV2,
  846. .priv_data_size = sizeof(WMACodecContext),
  847. .init = wma_decode_init,
  848. .close = ff_wma_end,
  849. .decode = wma_decode_superframe,
  850. .flush = flush,
  851. .capabilities = AV_CODEC_CAP_DR1,
  852. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  853. AV_SAMPLE_FMT_NONE },
  854. };