You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

488 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "internal.h"
  24. #include "sinewin.h"
  25. #include "wma.h"
  26. #include "wma_common.h"
  27. #include "wma_freqs.h"
  28. #include "wmadata.h"
  29. #undef NDEBUG
  30. #include <assert.h>
  31. /* XXX: use same run/length optimization as mpeg decoders */
  32. // FIXME maybe split decode / encode or pass flag
  33. static av_cold int init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  34. float **plevel_table, uint16_t **pint_table,
  35. const CoefVLCTable *vlc_table)
  36. {
  37. int n = vlc_table->n;
  38. const uint8_t *table_bits = vlc_table->huffbits;
  39. const uint32_t *table_codes = vlc_table->huffcodes;
  40. const uint16_t *levels_table = vlc_table->levels;
  41. uint16_t *run_table, *level_table, *int_table;
  42. float *flevel_table;
  43. int i, l, j, k, level;
  44. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  45. run_table = av_malloc(n * sizeof(uint16_t));
  46. level_table = av_malloc(n * sizeof(uint16_t));
  47. flevel_table = av_malloc(n * sizeof(*flevel_table));
  48. int_table = av_malloc(n * sizeof(uint16_t));
  49. if (!run_table || !level_table || !flevel_table || !int_table) {
  50. av_freep(&run_table);
  51. av_freep(&level_table);
  52. av_freep(&flevel_table);
  53. av_freep(&int_table);
  54. return AVERROR(ENOMEM);
  55. }
  56. i = 2;
  57. level = 1;
  58. k = 0;
  59. while (i < n) {
  60. int_table[k] = i;
  61. l = levels_table[k++];
  62. for (j = 0; j < l; j++) {
  63. run_table[i] = j;
  64. level_table[i] = level;
  65. flevel_table[i] = level;
  66. i++;
  67. }
  68. level++;
  69. }
  70. *prun_table = run_table;
  71. *plevel_table = flevel_table;
  72. *pint_table = int_table;
  73. av_free(level_table);
  74. return 0;
  75. }
  76. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  77. {
  78. WMACodecContext *s = avctx->priv_data;
  79. int i, ret;
  80. float bps1, high_freq;
  81. volatile float bps;
  82. int sample_rate1;
  83. int coef_vlc_table;
  84. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  85. avctx->channels <= 0 || avctx->channels > 2 ||
  86. avctx->bit_rate <= 0)
  87. return -1;
  88. avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
  89. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  90. s->version = 1;
  91. else
  92. s->version = 2;
  93. /* compute MDCT block size */
  94. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  95. s->version, 0);
  96. s->next_block_len_bits = s->frame_len_bits;
  97. s->prev_block_len_bits = s->frame_len_bits;
  98. s->block_len_bits = s->frame_len_bits;
  99. s->frame_len = 1 << s->frame_len_bits;
  100. if (s->use_variable_block_len) {
  101. int nb_max, nb;
  102. nb = ((flags2 >> 3) & 3) + 1;
  103. if ((avctx->bit_rate / avctx->channels) >= 32000)
  104. nb += 2;
  105. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  106. if (nb > nb_max)
  107. nb = nb_max;
  108. s->nb_block_sizes = nb + 1;
  109. } else
  110. s->nb_block_sizes = 1;
  111. /* init rate dependent parameters */
  112. s->use_noise_coding = 1;
  113. high_freq = avctx->sample_rate * 0.5;
  114. /* if version 2, then the rates are normalized */
  115. sample_rate1 = avctx->sample_rate;
  116. if (s->version == 2) {
  117. if (sample_rate1 >= 44100)
  118. sample_rate1 = 44100;
  119. else if (sample_rate1 >= 22050)
  120. sample_rate1 = 22050;
  121. else if (sample_rate1 >= 16000)
  122. sample_rate1 = 16000;
  123. else if (sample_rate1 >= 11025)
  124. sample_rate1 = 11025;
  125. else if (sample_rate1 >= 8000)
  126. sample_rate1 = 8000;
  127. }
  128. bps = (float) avctx->bit_rate /
  129. (float) (avctx->channels * avctx->sample_rate);
  130. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  131. /* compute high frequency value and choose if noise coding should
  132. * be activated */
  133. bps1 = bps;
  134. if (avctx->channels == 2)
  135. bps1 = bps * 1.6;
  136. if (sample_rate1 == 44100) {
  137. if (bps1 >= 0.61)
  138. s->use_noise_coding = 0;
  139. else
  140. high_freq = high_freq * 0.4;
  141. } else if (sample_rate1 == 22050) {
  142. if (bps1 >= 1.16)
  143. s->use_noise_coding = 0;
  144. else if (bps1 >= 0.72)
  145. high_freq = high_freq * 0.7;
  146. else
  147. high_freq = high_freq * 0.6;
  148. } else if (sample_rate1 == 16000) {
  149. if (bps > 0.5)
  150. high_freq = high_freq * 0.5;
  151. else
  152. high_freq = high_freq * 0.3;
  153. } else if (sample_rate1 == 11025)
  154. high_freq = high_freq * 0.7;
  155. else if (sample_rate1 == 8000) {
  156. if (bps <= 0.625)
  157. high_freq = high_freq * 0.5;
  158. else if (bps > 0.75)
  159. s->use_noise_coding = 0;
  160. else
  161. high_freq = high_freq * 0.65;
  162. } else {
  163. if (bps >= 0.8)
  164. high_freq = high_freq * 0.75;
  165. else if (bps >= 0.6)
  166. high_freq = high_freq * 0.6;
  167. else
  168. high_freq = high_freq * 0.5;
  169. }
  170. ff_dlog(s->avctx, "flags2=0x%x\n", flags2);
  171. ff_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  172. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  173. avctx->block_align);
  174. ff_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  175. bps, bps1, high_freq, s->byte_offset_bits);
  176. ff_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  177. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  178. /* compute the scale factor band sizes for each MDCT block size */
  179. {
  180. int a, b, pos, lpos, k, block_len, i, j, n;
  181. const uint8_t *table;
  182. if (s->version == 1)
  183. s->coefs_start = 3;
  184. else
  185. s->coefs_start = 0;
  186. for (k = 0; k < s->nb_block_sizes; k++) {
  187. block_len = s->frame_len >> k;
  188. if (s->version == 1) {
  189. lpos = 0;
  190. for (i = 0; i < 25; i++) {
  191. a = ff_wma_critical_freqs[i];
  192. b = avctx->sample_rate;
  193. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  194. if (pos > block_len)
  195. pos = block_len;
  196. s->exponent_bands[0][i] = pos - lpos;
  197. if (pos >= block_len) {
  198. i++;
  199. break;
  200. }
  201. lpos = pos;
  202. }
  203. s->exponent_sizes[0] = i;
  204. } else {
  205. /* hardcoded tables */
  206. table = NULL;
  207. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  208. if (a < 3) {
  209. if (avctx->sample_rate >= 44100)
  210. table = exponent_band_44100[a];
  211. else if (avctx->sample_rate >= 32000)
  212. table = exponent_band_32000[a];
  213. else if (avctx->sample_rate >= 22050)
  214. table = exponent_band_22050[a];
  215. }
  216. if (table) {
  217. n = *table++;
  218. for (i = 0; i < n; i++)
  219. s->exponent_bands[k][i] = table[i];
  220. s->exponent_sizes[k] = n;
  221. } else {
  222. j = 0;
  223. lpos = 0;
  224. for (i = 0; i < 25; i++) {
  225. a = ff_wma_critical_freqs[i];
  226. b = avctx->sample_rate;
  227. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  228. pos <<= 2;
  229. if (pos > block_len)
  230. pos = block_len;
  231. if (pos > lpos)
  232. s->exponent_bands[k][j++] = pos - lpos;
  233. if (pos >= block_len)
  234. break;
  235. lpos = pos;
  236. }
  237. s->exponent_sizes[k] = j;
  238. }
  239. }
  240. /* max number of coefs */
  241. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  242. /* high freq computation */
  243. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  244. avctx->sample_rate + 0.5);
  245. n = s->exponent_sizes[k];
  246. j = 0;
  247. pos = 0;
  248. for (i = 0; i < n; i++) {
  249. int start, end;
  250. start = pos;
  251. pos += s->exponent_bands[k][i];
  252. end = pos;
  253. if (start < s->high_band_start[k])
  254. start = s->high_band_start[k];
  255. if (end > s->coefs_end[k])
  256. end = s->coefs_end[k];
  257. if (end > start)
  258. s->exponent_high_bands[k][j++] = end - start;
  259. }
  260. s->exponent_high_sizes[k] = j;
  261. #if 0
  262. ff_tlog(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  263. s->frame_len >> k,
  264. s->coefs_end[k],
  265. s->high_band_start[k],
  266. s->exponent_high_sizes[k]);
  267. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  268. ff_tlog(s->avctx, " %d", s->exponent_high_bands[k][j]);
  269. ff_tlog(s->avctx, "\n");
  270. #endif /* 0 */
  271. }
  272. }
  273. #ifdef TRACE
  274. {
  275. int i, j;
  276. for (i = 0; i < s->nb_block_sizes; i++) {
  277. ff_tlog(s->avctx, "%5d: n=%2d:",
  278. s->frame_len >> i,
  279. s->exponent_sizes[i]);
  280. for (j = 0; j < s->exponent_sizes[i]; j++)
  281. ff_tlog(s->avctx, " %d", s->exponent_bands[i][j]);
  282. ff_tlog(s->avctx, "\n");
  283. }
  284. }
  285. #endif /* TRACE */
  286. /* init MDCT windows : simple sine window */
  287. for (i = 0; i < s->nb_block_sizes; i++) {
  288. ff_init_ff_sine_windows(s->frame_len_bits - i);
  289. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  290. }
  291. s->reset_block_lengths = 1;
  292. if (s->use_noise_coding) {
  293. /* init the noise generator */
  294. if (s->use_exp_vlc)
  295. s->noise_mult = 0.02;
  296. else
  297. s->noise_mult = 0.04;
  298. #ifdef TRACE
  299. for (i = 0; i < NOISE_TAB_SIZE; i++)
  300. s->noise_table[i] = 1.0 * s->noise_mult;
  301. #else
  302. {
  303. unsigned int seed;
  304. float norm;
  305. seed = 1;
  306. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  307. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  308. seed = seed * 314159 + 1;
  309. s->noise_table[i] = (float) ((int) seed) * norm;
  310. }
  311. }
  312. #endif /* TRACE */
  313. }
  314. /* choose the VLC tables for the coefficients */
  315. coef_vlc_table = 2;
  316. if (avctx->sample_rate >= 32000) {
  317. if (bps1 < 0.72)
  318. coef_vlc_table = 0;
  319. else if (bps1 < 1.16)
  320. coef_vlc_table = 1;
  321. }
  322. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  323. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  324. ret = init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  325. &s->int_table[0], s->coef_vlcs[0]);
  326. if (ret < 0)
  327. return ret;
  328. return init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  329. &s->int_table[1], s->coef_vlcs[1]);
  330. }
  331. int ff_wma_total_gain_to_bits(int total_gain)
  332. {
  333. if (total_gain < 15)
  334. return 13;
  335. else if (total_gain < 32)
  336. return 12;
  337. else if (total_gain < 40)
  338. return 11;
  339. else if (total_gain < 45)
  340. return 10;
  341. else
  342. return 9;
  343. }
  344. int ff_wma_end(AVCodecContext *avctx)
  345. {
  346. WMACodecContext *s = avctx->priv_data;
  347. int i;
  348. for (i = 0; i < s->nb_block_sizes; i++)
  349. ff_mdct_end(&s->mdct_ctx[i]);
  350. if (s->use_exp_vlc)
  351. ff_free_vlc(&s->exp_vlc);
  352. if (s->use_noise_coding)
  353. ff_free_vlc(&s->hgain_vlc);
  354. for (i = 0; i < 2; i++) {
  355. ff_free_vlc(&s->coef_vlc[i]);
  356. av_free(s->run_table[i]);
  357. av_free(s->level_table[i]);
  358. av_free(s->int_table[i]);
  359. }
  360. return 0;
  361. }
  362. /**
  363. * Decode an uncompressed coefficient.
  364. * @param gb GetBitContext
  365. * @return the decoded coefficient
  366. */
  367. unsigned int ff_wma_get_large_val(GetBitContext *gb)
  368. {
  369. /** consumes up to 34 bits */
  370. int n_bits = 8;
  371. /** decode length */
  372. if (get_bits1(gb)) {
  373. n_bits += 8;
  374. if (get_bits1(gb)) {
  375. n_bits += 8;
  376. if (get_bits1(gb))
  377. n_bits += 7;
  378. }
  379. }
  380. return get_bits_long(gb, n_bits);
  381. }
  382. /**
  383. * Decode run level compressed coefficients.
  384. * @param avctx codec context
  385. * @param gb bitstream reader context
  386. * @param vlc vlc table for get_vlc2
  387. * @param level_table level codes
  388. * @param run_table run codes
  389. * @param version 0 for wma1,2 1 for wmapro
  390. * @param ptr output buffer
  391. * @param offset offset in the output buffer
  392. * @param num_coefs number of input coefficents
  393. * @param block_len input buffer length (2^n)
  394. * @param frame_len_bits number of bits for escaped run codes
  395. * @param coef_nb_bits number of bits for escaped level codes
  396. * @return 0 on success, -1 otherwise
  397. */
  398. int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
  399. VLC *vlc, const float *level_table,
  400. const uint16_t *run_table, int version,
  401. WMACoef *ptr, int offset, int num_coefs,
  402. int block_len, int frame_len_bits,
  403. int coef_nb_bits)
  404. {
  405. int code, level, sign;
  406. const uint32_t *ilvl = (const uint32_t *) level_table;
  407. uint32_t *iptr = (uint32_t *) ptr;
  408. const unsigned int coef_mask = block_len - 1;
  409. for (; offset < num_coefs; offset++) {
  410. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  411. if (code > 1) {
  412. /** normal code */
  413. offset += run_table[code];
  414. sign = get_bits1(gb) - 1;
  415. iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
  416. } else if (code == 1) {
  417. /** EOB */
  418. break;
  419. } else {
  420. /** escape */
  421. if (!version) {
  422. level = get_bits(gb, coef_nb_bits);
  423. /** NOTE: this is rather suboptimal. reading
  424. * block_len_bits would be better */
  425. offset += get_bits(gb, frame_len_bits);
  426. } else {
  427. level = ff_wma_get_large_val(gb);
  428. /** escape decode */
  429. if (get_bits1(gb)) {
  430. if (get_bits1(gb)) {
  431. if (get_bits1(gb)) {
  432. av_log(avctx, AV_LOG_ERROR,
  433. "broken escape sequence\n");
  434. return -1;
  435. } else
  436. offset += get_bits(gb, frame_len_bits) + 4;
  437. } else
  438. offset += get_bits(gb, 2) + 1;
  439. }
  440. }
  441. sign = get_bits1(gb) - 1;
  442. ptr[offset & coef_mask] = (level ^ sign) - sign;
  443. }
  444. }
  445. /** NOTE: EOB can be omitted */
  446. if (offset > num_coefs) {
  447. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  448. return -1;
  449. }
  450. return 0;
  451. }