You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

963 lines
34KB

  1. /*
  2. * VC-1 and WMV3 decoder - DSP functions
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "libavutil/common.h"
  27. #include "h264chroma.h"
  28. #include "qpeldsp.h"
  29. #include "vc1dsp.h"
  30. #include "startcode.h"
  31. /* Apply overlap transform to horizontal edge */
  32. static void vc1_v_overlap_c(uint8_t *src, int stride)
  33. {
  34. int i;
  35. int a, b, c, d;
  36. int d1, d2;
  37. int rnd = 1;
  38. for (i = 0; i < 8; i++) {
  39. a = src[-2 * stride];
  40. b = src[-stride];
  41. c = src[0];
  42. d = src[stride];
  43. d1 = (a - d + 3 + rnd) >> 3;
  44. d2 = (a - d + b - c + 4 - rnd) >> 3;
  45. src[-2 * stride] = a - d1;
  46. src[-stride] = av_clip_uint8(b - d2);
  47. src[0] = av_clip_uint8(c + d2);
  48. src[stride] = d + d1;
  49. src++;
  50. rnd = !rnd;
  51. }
  52. }
  53. /* Apply overlap transform to vertical edge */
  54. static void vc1_h_overlap_c(uint8_t *src, int stride)
  55. {
  56. int i;
  57. int a, b, c, d;
  58. int d1, d2;
  59. int rnd = 1;
  60. for (i = 0; i < 8; i++) {
  61. a = src[-2];
  62. b = src[-1];
  63. c = src[0];
  64. d = src[1];
  65. d1 = (a - d + 3 + rnd) >> 3;
  66. d2 = (a - d + b - c + 4 - rnd) >> 3;
  67. src[-2] = a - d1;
  68. src[-1] = av_clip_uint8(b - d2);
  69. src[0] = av_clip_uint8(c + d2);
  70. src[1] = d + d1;
  71. src += stride;
  72. rnd = !rnd;
  73. }
  74. }
  75. static void vc1_v_s_overlap_c(int16_t *top, int16_t *bottom)
  76. {
  77. int i;
  78. int a, b, c, d;
  79. int d1, d2;
  80. int rnd1 = 4, rnd2 = 3;
  81. for (i = 0; i < 8; i++) {
  82. a = top[48];
  83. b = top[56];
  84. c = bottom[0];
  85. d = bottom[8];
  86. d1 = a - d;
  87. d2 = a - d + b - c;
  88. top[48] = ((a << 3) - d1 + rnd1) >> 3;
  89. top[56] = ((b << 3) - d2 + rnd2) >> 3;
  90. bottom[0] = ((c << 3) + d2 + rnd1) >> 3;
  91. bottom[8] = ((d << 3) + d1 + rnd2) >> 3;
  92. bottom++;
  93. top++;
  94. rnd2 = 7 - rnd2;
  95. rnd1 = 7 - rnd1;
  96. }
  97. }
  98. static void vc1_h_s_overlap_c(int16_t *left, int16_t *right)
  99. {
  100. int i;
  101. int a, b, c, d;
  102. int d1, d2;
  103. int rnd1 = 4, rnd2 = 3;
  104. for (i = 0; i < 8; i++) {
  105. a = left[6];
  106. b = left[7];
  107. c = right[0];
  108. d = right[1];
  109. d1 = a - d;
  110. d2 = a - d + b - c;
  111. left[6] = ((a << 3) - d1 + rnd1) >> 3;
  112. left[7] = ((b << 3) - d2 + rnd2) >> 3;
  113. right[0] = ((c << 3) + d2 + rnd1) >> 3;
  114. right[1] = ((d << 3) + d1 + rnd2) >> 3;
  115. right += 8;
  116. left += 8;
  117. rnd2 = 7 - rnd2;
  118. rnd1 = 7 - rnd1;
  119. }
  120. }
  121. /**
  122. * VC-1 in-loop deblocking filter for one line
  123. * @param src source block type
  124. * @param stride block stride
  125. * @param pq block quantizer
  126. * @return whether other 3 pairs should be filtered or not
  127. * @see 8.6
  128. */
  129. static av_always_inline int vc1_filter_line(uint8_t *src, int stride, int pq)
  130. {
  131. int a0 = (2 * (src[-2 * stride] - src[1 * stride]) -
  132. 5 * (src[-1 * stride] - src[0 * stride]) + 4) >> 3;
  133. int a0_sign = a0 >> 31; /* Store sign */
  134. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  135. if (a0 < pq) {
  136. int a1 = FFABS((2 * (src[-4 * stride] - src[-1 * stride]) -
  137. 5 * (src[-3 * stride] - src[-2 * stride]) + 4) >> 3);
  138. int a2 = FFABS((2 * (src[ 0 * stride] - src[ 3 * stride]) -
  139. 5 * (src[ 1 * stride] - src[ 2 * stride]) + 4) >> 3);
  140. if (a1 < a0 || a2 < a0) {
  141. int clip = src[-1 * stride] - src[0 * stride];
  142. int clip_sign = clip >> 31;
  143. clip = ((clip ^ clip_sign) - clip_sign) >> 1;
  144. if (clip) {
  145. int a3 = FFMIN(a1, a2);
  146. int d = 5 * (a3 - a0);
  147. int d_sign = (d >> 31);
  148. d = ((d ^ d_sign) - d_sign) >> 3;
  149. d_sign ^= a0_sign;
  150. if (d_sign ^ clip_sign)
  151. d = 0;
  152. else {
  153. d = FFMIN(d, clip);
  154. d = (d ^ d_sign) - d_sign; /* Restore sign */
  155. src[-1 * stride] = av_clip_uint8(src[-1 * stride] - d);
  156. src[ 0 * stride] = av_clip_uint8(src[ 0 * stride] + d);
  157. }
  158. return 1;
  159. }
  160. }
  161. }
  162. return 0;
  163. }
  164. /**
  165. * VC-1 in-loop deblocking filter
  166. * @param src source block type
  167. * @param step distance between horizontally adjacent elements
  168. * @param stride distance between vertically adjacent elements
  169. * @param len edge length to filter (4 or 8 pixels)
  170. * @param pq block quantizer
  171. * @see 8.6
  172. */
  173. static inline void vc1_loop_filter(uint8_t *src, int step, int stride,
  174. int len, int pq)
  175. {
  176. int i;
  177. int filt3;
  178. for (i = 0; i < len; i += 4) {
  179. filt3 = vc1_filter_line(src + 2 * step, stride, pq);
  180. if (filt3) {
  181. vc1_filter_line(src + 0 * step, stride, pq);
  182. vc1_filter_line(src + 1 * step, stride, pq);
  183. vc1_filter_line(src + 3 * step, stride, pq);
  184. }
  185. src += step * 4;
  186. }
  187. }
  188. static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq)
  189. {
  190. vc1_loop_filter(src, 1, stride, 4, pq);
  191. }
  192. static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq)
  193. {
  194. vc1_loop_filter(src, stride, 1, 4, pq);
  195. }
  196. static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq)
  197. {
  198. vc1_loop_filter(src, 1, stride, 8, pq);
  199. }
  200. static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq)
  201. {
  202. vc1_loop_filter(src, stride, 1, 8, pq);
  203. }
  204. static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq)
  205. {
  206. vc1_loop_filter(src, 1, stride, 16, pq);
  207. }
  208. static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq)
  209. {
  210. vc1_loop_filter(src, stride, 1, 16, pq);
  211. }
  212. /* Do inverse transform on 8x8 block */
  213. static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, int linesize, int16_t *block)
  214. {
  215. int i;
  216. int dc = block[0];
  217. dc = (3 * dc + 1) >> 1;
  218. dc = (3 * dc + 16) >> 5;
  219. for (i = 0; i < 8; i++) {
  220. dest[0] = av_clip_uint8(dest[0] + dc);
  221. dest[1] = av_clip_uint8(dest[1] + dc);
  222. dest[2] = av_clip_uint8(dest[2] + dc);
  223. dest[3] = av_clip_uint8(dest[3] + dc);
  224. dest[4] = av_clip_uint8(dest[4] + dc);
  225. dest[5] = av_clip_uint8(dest[5] + dc);
  226. dest[6] = av_clip_uint8(dest[6] + dc);
  227. dest[7] = av_clip_uint8(dest[7] + dc);
  228. dest += linesize;
  229. }
  230. }
  231. static void vc1_inv_trans_8x8_c(int16_t block[64])
  232. {
  233. int i;
  234. register int t1, t2, t3, t4, t5, t6, t7, t8;
  235. int16_t *src, *dst, temp[64];
  236. src = block;
  237. dst = temp;
  238. for (i = 0; i < 8; i++) {
  239. t1 = 12 * (src[ 0] + src[32]) + 4;
  240. t2 = 12 * (src[ 0] - src[32]) + 4;
  241. t3 = 16 * src[16] + 6 * src[48];
  242. t4 = 6 * src[16] - 16 * src[48];
  243. t5 = t1 + t3;
  244. t6 = t2 + t4;
  245. t7 = t2 - t4;
  246. t8 = t1 - t3;
  247. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  248. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  249. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  250. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  251. dst[0] = (t5 + t1) >> 3;
  252. dst[1] = (t6 + t2) >> 3;
  253. dst[2] = (t7 + t3) >> 3;
  254. dst[3] = (t8 + t4) >> 3;
  255. dst[4] = (t8 - t4) >> 3;
  256. dst[5] = (t7 - t3) >> 3;
  257. dst[6] = (t6 - t2) >> 3;
  258. dst[7] = (t5 - t1) >> 3;
  259. src += 1;
  260. dst += 8;
  261. }
  262. src = temp;
  263. dst = block;
  264. for (i = 0; i < 8; i++) {
  265. t1 = 12 * (src[ 0] + src[32]) + 64;
  266. t2 = 12 * (src[ 0] - src[32]) + 64;
  267. t3 = 16 * src[16] + 6 * src[48];
  268. t4 = 6 * src[16] - 16 * src[48];
  269. t5 = t1 + t3;
  270. t6 = t2 + t4;
  271. t7 = t2 - t4;
  272. t8 = t1 - t3;
  273. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  274. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  275. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  276. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  277. dst[ 0] = (t5 + t1) >> 7;
  278. dst[ 8] = (t6 + t2) >> 7;
  279. dst[16] = (t7 + t3) >> 7;
  280. dst[24] = (t8 + t4) >> 7;
  281. dst[32] = (t8 - t4 + 1) >> 7;
  282. dst[40] = (t7 - t3 + 1) >> 7;
  283. dst[48] = (t6 - t2 + 1) >> 7;
  284. dst[56] = (t5 - t1 + 1) >> 7;
  285. src++;
  286. dst++;
  287. }
  288. }
  289. /* Do inverse transform on 8x4 part of block */
  290. static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, int linesize, int16_t *block)
  291. {
  292. int i;
  293. int dc = block[0];
  294. dc = (3 * dc + 1) >> 1;
  295. dc = (17 * dc + 64) >> 7;
  296. for (i = 0; i < 4; i++) {
  297. dest[0] = av_clip_uint8(dest[0] + dc);
  298. dest[1] = av_clip_uint8(dest[1] + dc);
  299. dest[2] = av_clip_uint8(dest[2] + dc);
  300. dest[3] = av_clip_uint8(dest[3] + dc);
  301. dest[4] = av_clip_uint8(dest[4] + dc);
  302. dest[5] = av_clip_uint8(dest[5] + dc);
  303. dest[6] = av_clip_uint8(dest[6] + dc);
  304. dest[7] = av_clip_uint8(dest[7] + dc);
  305. dest += linesize;
  306. }
  307. }
  308. static void vc1_inv_trans_8x4_c(uint8_t *dest, int linesize, int16_t *block)
  309. {
  310. int i;
  311. register int t1, t2, t3, t4, t5, t6, t7, t8;
  312. int16_t *src, *dst;
  313. src = block;
  314. dst = block;
  315. for (i = 0; i < 4; i++) {
  316. t1 = 12 * (src[0] + src[4]) + 4;
  317. t2 = 12 * (src[0] - src[4]) + 4;
  318. t3 = 16 * src[2] + 6 * src[6];
  319. t4 = 6 * src[2] - 16 * src[6];
  320. t5 = t1 + t3;
  321. t6 = t2 + t4;
  322. t7 = t2 - t4;
  323. t8 = t1 - t3;
  324. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  325. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  326. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  327. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  328. dst[0] = (t5 + t1) >> 3;
  329. dst[1] = (t6 + t2) >> 3;
  330. dst[2] = (t7 + t3) >> 3;
  331. dst[3] = (t8 + t4) >> 3;
  332. dst[4] = (t8 - t4) >> 3;
  333. dst[5] = (t7 - t3) >> 3;
  334. dst[6] = (t6 - t2) >> 3;
  335. dst[7] = (t5 - t1) >> 3;
  336. src += 8;
  337. dst += 8;
  338. }
  339. src = block;
  340. for (i = 0; i < 8; i++) {
  341. t1 = 17 * (src[ 0] + src[16]) + 64;
  342. t2 = 17 * (src[ 0] - src[16]) + 64;
  343. t3 = 22 * src[ 8] + 10 * src[24];
  344. t4 = 22 * src[24] - 10 * src[ 8];
  345. dest[0 * linesize] = av_clip_uint8(dest[0 * linesize] + ((t1 + t3) >> 7));
  346. dest[1 * linesize] = av_clip_uint8(dest[1 * linesize] + ((t2 - t4) >> 7));
  347. dest[2 * linesize] = av_clip_uint8(dest[2 * linesize] + ((t2 + t4) >> 7));
  348. dest[3 * linesize] = av_clip_uint8(dest[3 * linesize] + ((t1 - t3) >> 7));
  349. src++;
  350. dest++;
  351. }
  352. }
  353. /* Do inverse transform on 4x8 parts of block */
  354. static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, int linesize, int16_t *block)
  355. {
  356. int i;
  357. int dc = block[0];
  358. dc = (17 * dc + 4) >> 3;
  359. dc = (12 * dc + 64) >> 7;
  360. for (i = 0; i < 8; i++) {
  361. dest[0] = av_clip_uint8(dest[0] + dc);
  362. dest[1] = av_clip_uint8(dest[1] + dc);
  363. dest[2] = av_clip_uint8(dest[2] + dc);
  364. dest[3] = av_clip_uint8(dest[3] + dc);
  365. dest += linesize;
  366. }
  367. }
  368. static void vc1_inv_trans_4x8_c(uint8_t *dest, int linesize, int16_t *block)
  369. {
  370. int i;
  371. register int t1, t2, t3, t4, t5, t6, t7, t8;
  372. int16_t *src, *dst;
  373. src = block;
  374. dst = block;
  375. for (i = 0; i < 8; i++) {
  376. t1 = 17 * (src[0] + src[2]) + 4;
  377. t2 = 17 * (src[0] - src[2]) + 4;
  378. t3 = 22 * src[1] + 10 * src[3];
  379. t4 = 22 * src[3] - 10 * src[1];
  380. dst[0] = (t1 + t3) >> 3;
  381. dst[1] = (t2 - t4) >> 3;
  382. dst[2] = (t2 + t4) >> 3;
  383. dst[3] = (t1 - t3) >> 3;
  384. src += 8;
  385. dst += 8;
  386. }
  387. src = block;
  388. for (i = 0; i < 4; i++) {
  389. t1 = 12 * (src[ 0] + src[32]) + 64;
  390. t2 = 12 * (src[ 0] - src[32]) + 64;
  391. t3 = 16 * src[16] + 6 * src[48];
  392. t4 = 6 * src[16] - 16 * src[48];
  393. t5 = t1 + t3;
  394. t6 = t2 + t4;
  395. t7 = t2 - t4;
  396. t8 = t1 - t3;
  397. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  398. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  399. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  400. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  401. dest[0 * linesize] = av_clip_uint8(dest[0 * linesize] + ((t5 + t1) >> 7));
  402. dest[1 * linesize] = av_clip_uint8(dest[1 * linesize] + ((t6 + t2) >> 7));
  403. dest[2 * linesize] = av_clip_uint8(dest[2 * linesize] + ((t7 + t3) >> 7));
  404. dest[3 * linesize] = av_clip_uint8(dest[3 * linesize] + ((t8 + t4) >> 7));
  405. dest[4 * linesize] = av_clip_uint8(dest[4 * linesize] + ((t8 - t4 + 1) >> 7));
  406. dest[5 * linesize] = av_clip_uint8(dest[5 * linesize] + ((t7 - t3 + 1) >> 7));
  407. dest[6 * linesize] = av_clip_uint8(dest[6 * linesize] + ((t6 - t2 + 1) >> 7));
  408. dest[7 * linesize] = av_clip_uint8(dest[7 * linesize] + ((t5 - t1 + 1) >> 7));
  409. src++;
  410. dest++;
  411. }
  412. }
  413. /* Do inverse transform on 4x4 part of block */
  414. static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, int linesize, int16_t *block)
  415. {
  416. int i;
  417. int dc = block[0];
  418. dc = (17 * dc + 4) >> 3;
  419. dc = (17 * dc + 64) >> 7;
  420. for (i = 0; i < 4; i++) {
  421. dest[0] = av_clip_uint8(dest[0] + dc);
  422. dest[1] = av_clip_uint8(dest[1] + dc);
  423. dest[2] = av_clip_uint8(dest[2] + dc);
  424. dest[3] = av_clip_uint8(dest[3] + dc);
  425. dest += linesize;
  426. }
  427. }
  428. static void vc1_inv_trans_4x4_c(uint8_t *dest, int linesize, int16_t *block)
  429. {
  430. int i;
  431. register int t1, t2, t3, t4;
  432. int16_t *src, *dst;
  433. src = block;
  434. dst = block;
  435. for (i = 0; i < 4; i++) {
  436. t1 = 17 * (src[0] + src[2]) + 4;
  437. t2 = 17 * (src[0] - src[2]) + 4;
  438. t3 = 22 * src[1] + 10 * src[3];
  439. t4 = 22 * src[3] - 10 * src[1];
  440. dst[0] = (t1 + t3) >> 3;
  441. dst[1] = (t2 - t4) >> 3;
  442. dst[2] = (t2 + t4) >> 3;
  443. dst[3] = (t1 - t3) >> 3;
  444. src += 8;
  445. dst += 8;
  446. }
  447. src = block;
  448. for (i = 0; i < 4; i++) {
  449. t1 = 17 * (src[0] + src[16]) + 64;
  450. t2 = 17 * (src[0] - src[16]) + 64;
  451. t3 = 22 * src[8] + 10 * src[24];
  452. t4 = 22 * src[24] - 10 * src[8];
  453. dest[0 * linesize] = av_clip_uint8(dest[0 * linesize] + ((t1 + t3) >> 7));
  454. dest[1 * linesize] = av_clip_uint8(dest[1 * linesize] + ((t2 - t4) >> 7));
  455. dest[2 * linesize] = av_clip_uint8(dest[2 * linesize] + ((t2 + t4) >> 7));
  456. dest[3 * linesize] = av_clip_uint8(dest[3 * linesize] + ((t1 - t3) >> 7));
  457. src++;
  458. dest++;
  459. }
  460. }
  461. /* motion compensation functions */
  462. /* Filter in case of 2 filters */
  463. #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
  464. static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, \
  465. int stride, \
  466. int mode) \
  467. { \
  468. switch(mode) { \
  469. case 0: /* no shift - should not occur */ \
  470. return 0; \
  471. case 1: /* 1/4 shift */ \
  472. return -4 * src[-stride] + 53 * src[0] + \
  473. 18 * src[stride] - 3 * src[stride * 2]; \
  474. case 2: /* 1/2 shift */ \
  475. return -1 * src[-stride] + 9 * src[0] + \
  476. 9 * src[stride] - 1 * src[stride * 2]; \
  477. case 3: /* 3/4 shift */ \
  478. return -3 * src[-stride] + 18 * src[0] + \
  479. 53 * src[stride] - 4 * src[stride * 2]; \
  480. } \
  481. return 0; /* should not occur */ \
  482. }
  483. VC1_MSPEL_FILTER_16B(ver, uint8_t)
  484. VC1_MSPEL_FILTER_16B(hor, int16_t)
  485. /* Filter used to interpolate fractional pel values */
  486. static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride,
  487. int mode, int r)
  488. {
  489. switch (mode) {
  490. case 0: // no shift
  491. return src[0];
  492. case 1: // 1/4 shift
  493. return (-4 * src[-stride] + 53 * src[0] +
  494. 18 * src[stride] - 3 * src[stride * 2] + 32 - r) >> 6;
  495. case 2: // 1/2 shift
  496. return (-1 * src[-stride] + 9 * src[0] +
  497. 9 * src[stride] - 1 * src[stride * 2] + 8 - r) >> 4;
  498. case 3: // 3/4 shift
  499. return (-3 * src[-stride] + 18 * src[0] +
  500. 53 * src[stride] - 4 * src[stride * 2] + 32 - r) >> 6;
  501. }
  502. return 0; // should not occur
  503. }
  504. /* Function used to do motion compensation with bicubic interpolation */
  505. #define VC1_MSPEL_MC(OP, OPNAME) \
  506. static av_always_inline void OPNAME ## vc1_mspel_mc(uint8_t *dst, \
  507. const uint8_t *src, \
  508. int stride, \
  509. int hmode, \
  510. int vmode, \
  511. int rnd) \
  512. { \
  513. int i, j; \
  514. \
  515. if (vmode) { /* Horizontal filter to apply */ \
  516. int r; \
  517. \
  518. if (hmode) { /* Vertical filter to apply, output to tmp */ \
  519. static const int shift_value[] = { 0, 5, 1, 5 }; \
  520. int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \
  521. int16_t tmp[11 * 8], *tptr = tmp; \
  522. \
  523. r = (1 << (shift - 1)) + rnd - 1; \
  524. \
  525. src -= 1; \
  526. for (j = 0; j < 8; j++) { \
  527. for (i = 0; i < 11; i++) \
  528. tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \
  529. src += stride; \
  530. tptr += 11; \
  531. } \
  532. \
  533. r = 64 - rnd; \
  534. tptr = tmp + 1; \
  535. for (j = 0; j < 8; j++) { \
  536. for (i = 0; i < 8; i++) \
  537. OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \
  538. dst += stride; \
  539. tptr += 11; \
  540. } \
  541. \
  542. return; \
  543. } else { /* No horizontal filter, output 8 lines to dst */ \
  544. r = 1 - rnd; \
  545. \
  546. for (j = 0; j < 8; j++) { \
  547. for (i = 0; i < 8; i++) \
  548. OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \
  549. src += stride; \
  550. dst += stride; \
  551. } \
  552. return; \
  553. } \
  554. } \
  555. \
  556. /* Horizontal mode with no vertical mode */ \
  557. for (j = 0; j < 8; j++) { \
  558. for (i = 0; i < 8; i++) \
  559. OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \
  560. dst += stride; \
  561. src += stride; \
  562. } \
  563. }
  564. #define op_put(a, b) a = av_clip_uint8(b)
  565. #define op_avg(a, b) a = (a + av_clip_uint8(b) + 1) >> 1
  566. VC1_MSPEL_MC(op_put, put_)
  567. VC1_MSPEL_MC(op_avg, avg_)
  568. /* pixel functions - really are entry points to vc1_mspel_mc */
  569. #define PUT_VC1_MSPEL(a, b) \
  570. static void put_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
  571. const uint8_t *src, \
  572. ptrdiff_t stride, int rnd) \
  573. { \
  574. put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  575. } \
  576. static void avg_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
  577. const uint8_t *src, \
  578. ptrdiff_t stride, int rnd) \
  579. { \
  580. avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  581. }
  582. PUT_VC1_MSPEL(1, 0)
  583. PUT_VC1_MSPEL(2, 0)
  584. PUT_VC1_MSPEL(3, 0)
  585. PUT_VC1_MSPEL(0, 1)
  586. PUT_VC1_MSPEL(1, 1)
  587. PUT_VC1_MSPEL(2, 1)
  588. PUT_VC1_MSPEL(3, 1)
  589. PUT_VC1_MSPEL(0, 2)
  590. PUT_VC1_MSPEL(1, 2)
  591. PUT_VC1_MSPEL(2, 2)
  592. PUT_VC1_MSPEL(3, 2)
  593. PUT_VC1_MSPEL(0, 3)
  594. PUT_VC1_MSPEL(1, 3)
  595. PUT_VC1_MSPEL(2, 3)
  596. PUT_VC1_MSPEL(3, 3)
  597. static void put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src,
  598. ptrdiff_t stride, int rnd)
  599. {
  600. ff_put_pixels8x8_c(dst, src, stride);
  601. }
  602. static void avg_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src,
  603. ptrdiff_t stride, int rnd)
  604. {
  605. ff_avg_pixels8x8_c(dst, src, stride);
  606. }
  607. #define chroma_mc(a) \
  608. ((A * src[a] + B * src[a + 1] + \
  609. C * src[stride + a] + D * src[stride + a + 1] + 32 - 4) >> 6)
  610. static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */,
  611. uint8_t *src /* align 1 */,
  612. int stride, int h, int x, int y)
  613. {
  614. const int A = (8 - x) * (8 - y);
  615. const int B = (x) * (8 - y);
  616. const int C = (8 - x) * (y);
  617. const int D = (x) * (y);
  618. int i;
  619. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  620. for (i = 0; i < h; i++) {
  621. dst[0] = chroma_mc(0);
  622. dst[1] = chroma_mc(1);
  623. dst[2] = chroma_mc(2);
  624. dst[3] = chroma_mc(3);
  625. dst[4] = chroma_mc(4);
  626. dst[5] = chroma_mc(5);
  627. dst[6] = chroma_mc(6);
  628. dst[7] = chroma_mc(7);
  629. dst += stride;
  630. src += stride;
  631. }
  632. }
  633. static void put_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, uint8_t *src,
  634. int stride, int h, int x, int y)
  635. {
  636. const int A = (8 - x) * (8 - y);
  637. const int B = (x) * (8 - y);
  638. const int C = (8 - x) * (y);
  639. const int D = (x) * (y);
  640. int i;
  641. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  642. for (i = 0; i < h; i++) {
  643. dst[0] = chroma_mc(0);
  644. dst[1] = chroma_mc(1);
  645. dst[2] = chroma_mc(2);
  646. dst[3] = chroma_mc(3);
  647. dst += stride;
  648. src += stride;
  649. }
  650. }
  651. #define avg2(a, b) (((a) + (b) + 1) >> 1)
  652. static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */,
  653. uint8_t *src /* align 1 */,
  654. int stride, int h, int x, int y)
  655. {
  656. const int A = (8 - x) * (8 - y);
  657. const int B = (x) * (8 - y);
  658. const int C = (8 - x) * (y);
  659. const int D = (x) * (y);
  660. int i;
  661. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  662. for (i = 0; i < h; i++) {
  663. dst[0] = avg2(dst[0], chroma_mc(0));
  664. dst[1] = avg2(dst[1], chroma_mc(1));
  665. dst[2] = avg2(dst[2], chroma_mc(2));
  666. dst[3] = avg2(dst[3], chroma_mc(3));
  667. dst[4] = avg2(dst[4], chroma_mc(4));
  668. dst[5] = avg2(dst[5], chroma_mc(5));
  669. dst[6] = avg2(dst[6], chroma_mc(6));
  670. dst[7] = avg2(dst[7], chroma_mc(7));
  671. dst += stride;
  672. src += stride;
  673. }
  674. }
  675. static void avg_no_rnd_vc1_chroma_mc4_c(uint8_t *dst /* align 8 */,
  676. uint8_t *src /* align 1 */,
  677. int stride, int h, int x, int y)
  678. {
  679. const int A = (8 - x) * (8 - y);
  680. const int B = ( x) * (8 - y);
  681. const int C = (8 - x) * ( y);
  682. const int D = ( x) * ( y);
  683. int i;
  684. assert(x < 8 && y < 8 && x >= 0 && y >= 0);
  685. for (i = 0; i < h; i++) {
  686. dst[0] = avg2(dst[0], chroma_mc(0));
  687. dst[1] = avg2(dst[1], chroma_mc(1));
  688. dst[2] = avg2(dst[2], chroma_mc(2));
  689. dst[3] = avg2(dst[3], chroma_mc(3));
  690. dst += stride;
  691. src += stride;
  692. }
  693. }
  694. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  695. static void sprite_h_c(uint8_t *dst, const uint8_t *src, int offset,
  696. int advance, int count)
  697. {
  698. while (count--) {
  699. int a = src[(offset >> 16)];
  700. int b = src[(offset >> 16) + 1];
  701. *dst++ = a + ((b - a) * (offset & 0xFFFF) >> 16);
  702. offset += advance;
  703. }
  704. }
  705. static av_always_inline void sprite_v_template(uint8_t *dst,
  706. const uint8_t *src1a,
  707. const uint8_t *src1b,
  708. int offset1,
  709. int two_sprites,
  710. const uint8_t *src2a,
  711. const uint8_t *src2b,
  712. int offset2,
  713. int alpha, int scaled,
  714. int width)
  715. {
  716. int a1, b1, a2, b2;
  717. while (width--) {
  718. a1 = *src1a++;
  719. if (scaled) {
  720. b1 = *src1b++;
  721. a1 = a1 + ((b1 - a1) * offset1 >> 16);
  722. }
  723. if (two_sprites) {
  724. a2 = *src2a++;
  725. if (scaled > 1) {
  726. b2 = *src2b++;
  727. a2 = a2 + ((b2 - a2) * offset2 >> 16);
  728. }
  729. a1 = a1 + ((a2 - a1) * alpha >> 16);
  730. }
  731. *dst++ = a1;
  732. }
  733. }
  734. static void sprite_v_single_c(uint8_t *dst, const uint8_t *src1a,
  735. const uint8_t *src1b,
  736. int offset, int width)
  737. {
  738. sprite_v_template(dst, src1a, src1b, offset, 0, NULL, NULL, 0, 0, 1, width);
  739. }
  740. static void sprite_v_double_noscale_c(uint8_t *dst, const uint8_t *src1a,
  741. const uint8_t *src2a,
  742. int alpha, int width)
  743. {
  744. sprite_v_template(dst, src1a, NULL, 0, 1, src2a, NULL, 0, alpha, 0, width);
  745. }
  746. static void sprite_v_double_onescale_c(uint8_t *dst,
  747. const uint8_t *src1a,
  748. const uint8_t *src1b,
  749. int offset1,
  750. const uint8_t *src2a,
  751. int alpha, int width)
  752. {
  753. sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, NULL, 0, alpha, 1,
  754. width);
  755. }
  756. static void sprite_v_double_twoscale_c(uint8_t *dst,
  757. const uint8_t *src1a,
  758. const uint8_t *src1b,
  759. int offset1,
  760. const uint8_t *src2a,
  761. const uint8_t *src2b,
  762. int offset2,
  763. int alpha,
  764. int width)
  765. {
  766. sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2,
  767. alpha, 2, width);
  768. }
  769. #endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */
  770. av_cold void ff_vc1dsp_init(VC1DSPContext *dsp)
  771. {
  772. dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
  773. dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
  774. dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
  775. dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
  776. dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c;
  777. dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c;
  778. dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c;
  779. dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c;
  780. dsp->vc1_h_overlap = vc1_h_overlap_c;
  781. dsp->vc1_v_overlap = vc1_v_overlap_c;
  782. dsp->vc1_h_s_overlap = vc1_h_s_overlap_c;
  783. dsp->vc1_v_s_overlap = vc1_v_s_overlap_c;
  784. dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c;
  785. dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c;
  786. dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c;
  787. dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c;
  788. dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c;
  789. dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c;
  790. dsp->put_vc1_mspel_pixels_tab[0] = put_vc1_mspel_mc00_c;
  791. dsp->put_vc1_mspel_pixels_tab[1] = put_vc1_mspel_mc10_c;
  792. dsp->put_vc1_mspel_pixels_tab[2] = put_vc1_mspel_mc20_c;
  793. dsp->put_vc1_mspel_pixels_tab[3] = put_vc1_mspel_mc30_c;
  794. dsp->put_vc1_mspel_pixels_tab[4] = put_vc1_mspel_mc01_c;
  795. dsp->put_vc1_mspel_pixels_tab[5] = put_vc1_mspel_mc11_c;
  796. dsp->put_vc1_mspel_pixels_tab[6] = put_vc1_mspel_mc21_c;
  797. dsp->put_vc1_mspel_pixels_tab[7] = put_vc1_mspel_mc31_c;
  798. dsp->put_vc1_mspel_pixels_tab[8] = put_vc1_mspel_mc02_c;
  799. dsp->put_vc1_mspel_pixels_tab[9] = put_vc1_mspel_mc12_c;
  800. dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c;
  801. dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c;
  802. dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c;
  803. dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c;
  804. dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c;
  805. dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c;
  806. dsp->avg_vc1_mspel_pixels_tab[0] = avg_vc1_mspel_mc00_c;
  807. dsp->avg_vc1_mspel_pixels_tab[1] = avg_vc1_mspel_mc10_c;
  808. dsp->avg_vc1_mspel_pixels_tab[2] = avg_vc1_mspel_mc20_c;
  809. dsp->avg_vc1_mspel_pixels_tab[3] = avg_vc1_mspel_mc30_c;
  810. dsp->avg_vc1_mspel_pixels_tab[4] = avg_vc1_mspel_mc01_c;
  811. dsp->avg_vc1_mspel_pixels_tab[5] = avg_vc1_mspel_mc11_c;
  812. dsp->avg_vc1_mspel_pixels_tab[6] = avg_vc1_mspel_mc21_c;
  813. dsp->avg_vc1_mspel_pixels_tab[7] = avg_vc1_mspel_mc31_c;
  814. dsp->avg_vc1_mspel_pixels_tab[8] = avg_vc1_mspel_mc02_c;
  815. dsp->avg_vc1_mspel_pixels_tab[9] = avg_vc1_mspel_mc12_c;
  816. dsp->avg_vc1_mspel_pixels_tab[10] = avg_vc1_mspel_mc22_c;
  817. dsp->avg_vc1_mspel_pixels_tab[11] = avg_vc1_mspel_mc32_c;
  818. dsp->avg_vc1_mspel_pixels_tab[12] = avg_vc1_mspel_mc03_c;
  819. dsp->avg_vc1_mspel_pixels_tab[13] = avg_vc1_mspel_mc13_c;
  820. dsp->avg_vc1_mspel_pixels_tab[14] = avg_vc1_mspel_mc23_c;
  821. dsp->avg_vc1_mspel_pixels_tab[15] = avg_vc1_mspel_mc33_c;
  822. dsp->put_no_rnd_vc1_chroma_pixels_tab[0] = put_no_rnd_vc1_chroma_mc8_c;
  823. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0] = avg_no_rnd_vc1_chroma_mc8_c;
  824. dsp->put_no_rnd_vc1_chroma_pixels_tab[1] = put_no_rnd_vc1_chroma_mc4_c;
  825. dsp->avg_no_rnd_vc1_chroma_pixels_tab[1] = avg_no_rnd_vc1_chroma_mc4_c;
  826. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  827. dsp->sprite_h = sprite_h_c;
  828. dsp->sprite_v_single = sprite_v_single_c;
  829. dsp->sprite_v_double_noscale = sprite_v_double_noscale_c;
  830. dsp->sprite_v_double_onescale = sprite_v_double_onescale_c;
  831. dsp->sprite_v_double_twoscale = sprite_v_double_twoscale_c;
  832. #endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */
  833. dsp->startcode_find_candidate = ff_startcode_find_candidate_c;
  834. if (ARCH_AARCH64)
  835. ff_vc1dsp_init_aarch64(dsp);
  836. if (ARCH_ARM)
  837. ff_vc1dsp_init_arm(dsp);
  838. if (ARCH_PPC)
  839. ff_vc1dsp_init_ppc(dsp);
  840. if (ARCH_X86)
  841. ff_vc1dsp_init_x86(dsp);
  842. }