You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1190 lines
44KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 cavlc bitstream decoding.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #define CABAC(h) 0
  27. #include "internal.h"
  28. #include "avcodec.h"
  29. #include "h264.h"
  30. #include "h264data.h" // FIXME FIXME FIXME
  31. #include "h264_mvpred.h"
  32. #include "golomb.h"
  33. #include "mpegutils.h"
  34. #include <assert.h>
  35. static const uint8_t golomb_to_inter_cbp_gray[16]={
  36. 0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9,
  37. };
  38. static const uint8_t golomb_to_intra4x4_cbp_gray[16]={
  39. 15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9,
  40. };
  41. static const uint8_t chroma_dc_coeff_token_len[4*5]={
  42. 2, 0, 0, 0,
  43. 6, 1, 0, 0,
  44. 6, 6, 3, 0,
  45. 6, 7, 7, 6,
  46. 6, 8, 8, 7,
  47. };
  48. static const uint8_t chroma_dc_coeff_token_bits[4*5]={
  49. 1, 0, 0, 0,
  50. 7, 1, 0, 0,
  51. 4, 6, 1, 0,
  52. 3, 3, 2, 5,
  53. 2, 3, 2, 0,
  54. };
  55. static const uint8_t chroma422_dc_coeff_token_len[4*9]={
  56. 1, 0, 0, 0,
  57. 7, 2, 0, 0,
  58. 7, 7, 3, 0,
  59. 9, 7, 7, 5,
  60. 9, 9, 7, 6,
  61. 10, 10, 9, 7,
  62. 11, 11, 10, 7,
  63. 12, 12, 11, 10,
  64. 13, 12, 12, 11,
  65. };
  66. static const uint8_t chroma422_dc_coeff_token_bits[4*9]={
  67. 1, 0, 0, 0,
  68. 15, 1, 0, 0,
  69. 14, 13, 1, 0,
  70. 7, 12, 11, 1,
  71. 6, 5, 10, 1,
  72. 7, 6, 4, 9,
  73. 7, 6, 5, 8,
  74. 7, 6, 5, 4,
  75. 7, 5, 4, 4,
  76. };
  77. static const uint8_t coeff_token_len[4][4*17]={
  78. {
  79. 1, 0, 0, 0,
  80. 6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6,
  81. 11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10,
  82. 14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14,
  83. 16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16,
  84. },
  85. {
  86. 2, 0, 0, 0,
  87. 6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4,
  88. 8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7,
  89. 12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12,
  90. 13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14,
  91. },
  92. {
  93. 4, 0, 0, 0,
  94. 6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4,
  95. 7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5,
  96. 8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8,
  97. 10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10,
  98. },
  99. {
  100. 6, 0, 0, 0,
  101. 6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6,
  102. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  103. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  104. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  105. }
  106. };
  107. static const uint8_t coeff_token_bits[4][4*17]={
  108. {
  109. 1, 0, 0, 0,
  110. 5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3,
  111. 7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4,
  112. 15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8,
  113. 15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8,
  114. },
  115. {
  116. 3, 0, 0, 0,
  117. 11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4,
  118. 4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4,
  119. 15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12,
  120. 11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4,
  121. },
  122. {
  123. 15, 0, 0, 0,
  124. 15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11,
  125. 11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13,
  126. 11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8,
  127. 13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2,
  128. },
  129. {
  130. 3, 0, 0, 0,
  131. 0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15,
  132. 16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
  133. 32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47,
  134. 48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63,
  135. }
  136. };
  137. static const uint8_t total_zeros_len[16][16]= {
  138. {1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},
  139. {3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},
  140. {4,3,3,3,4,4,3,3,4,5,5,6,5,6},
  141. {5,3,4,4,3,3,3,4,3,4,5,5,5},
  142. {4,4,4,3,3,3,3,3,4,5,4,5},
  143. {6,5,3,3,3,3,3,3,4,3,6},
  144. {6,5,3,3,3,2,3,4,3,6},
  145. {6,4,5,3,2,2,3,3,6},
  146. {6,6,4,2,2,3,2,5},
  147. {5,5,3,2,2,2,4},
  148. {4,4,3,3,1,3},
  149. {4,4,2,1,3},
  150. {3,3,1,2},
  151. {2,2,1},
  152. {1,1},
  153. };
  154. static const uint8_t total_zeros_bits[16][16]= {
  155. {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},
  156. {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},
  157. {5,7,6,5,4,3,4,3,2,3,2,1,1,0},
  158. {3,7,5,4,6,5,4,3,3,2,2,1,0},
  159. {5,4,3,7,6,5,4,3,2,1,1,0},
  160. {1,1,7,6,5,4,3,2,1,1,0},
  161. {1,1,5,4,3,3,2,1,1,0},
  162. {1,1,1,3,3,2,2,1,0},
  163. {1,0,1,3,2,1,1,1},
  164. {1,0,1,3,2,1,1},
  165. {0,1,1,2,1,3},
  166. {0,1,1,1,1},
  167. {0,1,1,1},
  168. {0,1,1},
  169. {0,1},
  170. };
  171. static const uint8_t chroma_dc_total_zeros_len[3][4]= {
  172. { 1, 2, 3, 3,},
  173. { 1, 2, 2, 0,},
  174. { 1, 1, 0, 0,},
  175. };
  176. static const uint8_t chroma_dc_total_zeros_bits[3][4]= {
  177. { 1, 1, 1, 0,},
  178. { 1, 1, 0, 0,},
  179. { 1, 0, 0, 0,},
  180. };
  181. static const uint8_t chroma422_dc_total_zeros_len[7][8]= {
  182. { 1, 3, 3, 4, 4, 4, 5, 5 },
  183. { 3, 2, 3, 3, 3, 3, 3 },
  184. { 3, 3, 2, 2, 3, 3 },
  185. { 3, 2, 2, 2, 3 },
  186. { 2, 2, 2, 2 },
  187. { 2, 2, 1 },
  188. { 1, 1 },
  189. };
  190. static const uint8_t chroma422_dc_total_zeros_bits[7][8]= {
  191. { 1, 2, 3, 2, 3, 1, 1, 0 },
  192. { 0, 1, 1, 4, 5, 6, 7 },
  193. { 0, 1, 1, 2, 6, 7 },
  194. { 6, 0, 1, 2, 7 },
  195. { 0, 1, 2, 3 },
  196. { 0, 1, 1 },
  197. { 0, 1 },
  198. };
  199. static const uint8_t run_len[7][16]={
  200. {1,1},
  201. {1,2,2},
  202. {2,2,2,2},
  203. {2,2,2,3,3},
  204. {2,2,3,3,3,3},
  205. {2,3,3,3,3,3,3},
  206. {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},
  207. };
  208. static const uint8_t run_bits[7][16]={
  209. {1,0},
  210. {1,1,0},
  211. {3,2,1,0},
  212. {3,2,1,1,0},
  213. {3,2,3,2,1,0},
  214. {3,0,1,3,2,5,4},
  215. {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},
  216. };
  217. static VLC coeff_token_vlc[4];
  218. static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
  219. static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
  220. static VLC chroma_dc_coeff_token_vlc;
  221. static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
  222. static const int chroma_dc_coeff_token_vlc_table_size = 256;
  223. static VLC chroma422_dc_coeff_token_vlc;
  224. static VLC_TYPE chroma422_dc_coeff_token_vlc_table[8192][2];
  225. static const int chroma422_dc_coeff_token_vlc_table_size = 8192;
  226. static VLC total_zeros_vlc[15];
  227. static VLC_TYPE total_zeros_vlc_tables[15][512][2];
  228. static const int total_zeros_vlc_tables_size = 512;
  229. static VLC chroma_dc_total_zeros_vlc[3];
  230. static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
  231. static const int chroma_dc_total_zeros_vlc_tables_size = 8;
  232. static VLC chroma422_dc_total_zeros_vlc[7];
  233. static VLC_TYPE chroma422_dc_total_zeros_vlc_tables[7][32][2];
  234. static const int chroma422_dc_total_zeros_vlc_tables_size = 32;
  235. static VLC run_vlc[6];
  236. static VLC_TYPE run_vlc_tables[6][8][2];
  237. static const int run_vlc_tables_size = 8;
  238. static VLC run7_vlc;
  239. static VLC_TYPE run7_vlc_table[96][2];
  240. static const int run7_vlc_table_size = 96;
  241. #define LEVEL_TAB_BITS 8
  242. static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
  243. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  244. #define CHROMA422_DC_COEFF_TOKEN_VLC_BITS 13
  245. #define COEFF_TOKEN_VLC_BITS 8
  246. #define TOTAL_ZEROS_VLC_BITS 9
  247. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  248. #define CHROMA422_DC_TOTAL_ZEROS_VLC_BITS 5
  249. #define RUN_VLC_BITS 3
  250. #define RUN7_VLC_BITS 6
  251. /**
  252. * Get the predicted number of non-zero coefficients.
  253. * @param n block index
  254. */
  255. static inline int pred_non_zero_count(const H264Context *h, H264SliceContext *sl, int n)
  256. {
  257. const int index8= scan8[n];
  258. const int left = sl->non_zero_count_cache[index8 - 1];
  259. const int top = sl->non_zero_count_cache[index8 - 8];
  260. int i= left + top;
  261. if(i<64) i= (i+1)>>1;
  262. ff_tlog(h->avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  263. return i&31;
  264. }
  265. static av_cold void init_cavlc_level_tab(void){
  266. int suffix_length;
  267. unsigned int i;
  268. for(suffix_length=0; suffix_length<7; suffix_length++){
  269. for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
  270. int prefix= LEVEL_TAB_BITS - av_log2(2*i);
  271. if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
  272. int level_code = (prefix << suffix_length) +
  273. (i >> (av_log2(i) - suffix_length)) - (1 << suffix_length);
  274. int mask = -(level_code&1);
  275. level_code = (((2 + level_code) >> 1) ^ mask) - mask;
  276. cavlc_level_tab[suffix_length][i][0]= level_code;
  277. cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
  278. }else if(prefix + 1 <= LEVEL_TAB_BITS){
  279. cavlc_level_tab[suffix_length][i][0]= prefix+100;
  280. cavlc_level_tab[suffix_length][i][1]= prefix + 1;
  281. }else{
  282. cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
  283. cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
  284. }
  285. }
  286. }
  287. }
  288. av_cold void ff_h264_decode_init_vlc(void){
  289. static int done = 0;
  290. if (!done) {
  291. int i;
  292. int offset;
  293. done = 1;
  294. chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
  295. chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
  296. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  297. &chroma_dc_coeff_token_len [0], 1, 1,
  298. &chroma_dc_coeff_token_bits[0], 1, 1,
  299. INIT_VLC_USE_NEW_STATIC);
  300. chroma422_dc_coeff_token_vlc.table = chroma422_dc_coeff_token_vlc_table;
  301. chroma422_dc_coeff_token_vlc.table_allocated = chroma422_dc_coeff_token_vlc_table_size;
  302. init_vlc(&chroma422_dc_coeff_token_vlc, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4*9,
  303. &chroma422_dc_coeff_token_len [0], 1, 1,
  304. &chroma422_dc_coeff_token_bits[0], 1, 1,
  305. INIT_VLC_USE_NEW_STATIC);
  306. offset = 0;
  307. for(i=0; i<4; i++){
  308. coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
  309. coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
  310. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  311. &coeff_token_len [i][0], 1, 1,
  312. &coeff_token_bits[i][0], 1, 1,
  313. INIT_VLC_USE_NEW_STATIC);
  314. offset += coeff_token_vlc_tables_size[i];
  315. }
  316. /*
  317. * This is a one time safety check to make sure that
  318. * the packed static coeff_token_vlc table sizes
  319. * were initialized correctly.
  320. */
  321. assert(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
  322. for(i=0; i<3; i++){
  323. chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
  324. chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
  325. init_vlc(&chroma_dc_total_zeros_vlc[i],
  326. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  327. &chroma_dc_total_zeros_len [i][0], 1, 1,
  328. &chroma_dc_total_zeros_bits[i][0], 1, 1,
  329. INIT_VLC_USE_NEW_STATIC);
  330. }
  331. for(i=0; i<7; i++){
  332. chroma422_dc_total_zeros_vlc[i].table = chroma422_dc_total_zeros_vlc_tables[i];
  333. chroma422_dc_total_zeros_vlc[i].table_allocated = chroma422_dc_total_zeros_vlc_tables_size;
  334. init_vlc(&chroma422_dc_total_zeros_vlc[i],
  335. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8,
  336. &chroma422_dc_total_zeros_len [i][0], 1, 1,
  337. &chroma422_dc_total_zeros_bits[i][0], 1, 1,
  338. INIT_VLC_USE_NEW_STATIC);
  339. }
  340. for(i=0; i<15; i++){
  341. total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
  342. total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
  343. init_vlc(&total_zeros_vlc[i],
  344. TOTAL_ZEROS_VLC_BITS, 16,
  345. &total_zeros_len [i][0], 1, 1,
  346. &total_zeros_bits[i][0], 1, 1,
  347. INIT_VLC_USE_NEW_STATIC);
  348. }
  349. for(i=0; i<6; i++){
  350. run_vlc[i].table = run_vlc_tables[i];
  351. run_vlc[i].table_allocated = run_vlc_tables_size;
  352. init_vlc(&run_vlc[i],
  353. RUN_VLC_BITS, 7,
  354. &run_len [i][0], 1, 1,
  355. &run_bits[i][0], 1, 1,
  356. INIT_VLC_USE_NEW_STATIC);
  357. }
  358. run7_vlc.table = run7_vlc_table,
  359. run7_vlc.table_allocated = run7_vlc_table_size;
  360. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  361. &run_len [6][0], 1, 1,
  362. &run_bits[6][0], 1, 1,
  363. INIT_VLC_USE_NEW_STATIC);
  364. init_cavlc_level_tab();
  365. }
  366. }
  367. /**
  368. *
  369. */
  370. static inline int get_level_prefix(GetBitContext *gb){
  371. unsigned int buf;
  372. int log;
  373. OPEN_READER(re, gb);
  374. UPDATE_CACHE(re, gb);
  375. buf=GET_CACHE(re, gb);
  376. log= 32 - av_log2(buf);
  377. #ifdef TRACE
  378. print_bin(buf>>(32-log), log);
  379. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  380. #endif
  381. LAST_SKIP_BITS(re, gb, log);
  382. CLOSE_READER(re, gb);
  383. return log-1;
  384. }
  385. /**
  386. * Decode a residual block.
  387. * @param n block index
  388. * @param scantable scantable
  389. * @param max_coeff number of coefficients in the block
  390. * @return <0 if an error occurred
  391. */
  392. static int decode_residual(const H264Context *h, H264SliceContext *sl,
  393. GetBitContext *gb, int16_t *block, int n,
  394. const uint8_t *scantable, const uint32_t *qmul,
  395. int max_coeff)
  396. {
  397. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  398. int level[16];
  399. int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before;
  400. //FIXME put trailing_onex into the context
  401. if(max_coeff <= 8){
  402. if (max_coeff == 4)
  403. coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  404. else
  405. coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc.table, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1);
  406. total_coeff= coeff_token>>2;
  407. }else{
  408. if(n >= LUMA_DC_BLOCK_INDEX){
  409. total_coeff= pred_non_zero_count(h, sl, (n - LUMA_DC_BLOCK_INDEX)*16);
  410. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  411. total_coeff= coeff_token>>2;
  412. }else{
  413. total_coeff= pred_non_zero_count(h, sl, n);
  414. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  415. total_coeff= coeff_token>>2;
  416. }
  417. }
  418. sl->non_zero_count_cache[scan8[n]] = total_coeff;
  419. //FIXME set last_non_zero?
  420. if(total_coeff==0)
  421. return 0;
  422. if(total_coeff > (unsigned)max_coeff) {
  423. av_log(h->avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", sl->mb_x, sl->mb_y, total_coeff);
  424. return -1;
  425. }
  426. trailing_ones= coeff_token&3;
  427. ff_tlog(h->avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  428. assert(total_coeff<=16);
  429. i = show_bits(gb, 3);
  430. skip_bits(gb, trailing_ones);
  431. level[0] = 1-((i&4)>>1);
  432. level[1] = 1-((i&2) );
  433. level[2] = 1-((i&1)<<1);
  434. if(trailing_ones<total_coeff) {
  435. int mask, prefix;
  436. int suffix_length = total_coeff > 10 & trailing_ones < 3;
  437. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  438. int level_code= cavlc_level_tab[suffix_length][bitsi][0];
  439. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  440. if(level_code >= 100){
  441. prefix= level_code - 100;
  442. if(prefix == LEVEL_TAB_BITS)
  443. prefix += get_level_prefix(gb);
  444. //first coefficient has suffix_length equal to 0 or 1
  445. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  446. if(suffix_length)
  447. level_code= (prefix<<1) + get_bits1(gb); //part
  448. else
  449. level_code= prefix; //part
  450. }else if(prefix==14){
  451. if(suffix_length)
  452. level_code= (prefix<<1) + get_bits1(gb); //part
  453. else
  454. level_code= prefix + get_bits(gb, 4); //part
  455. }else{
  456. level_code= 30 + get_bits(gb, prefix-3); //part
  457. if(prefix>=16){
  458. if(prefix > 25+3){
  459. av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n");
  460. return -1;
  461. }
  462. level_code += (1<<(prefix-3))-4096;
  463. }
  464. }
  465. if(trailing_ones < 3) level_code += 2;
  466. suffix_length = 2;
  467. mask= -(level_code&1);
  468. level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
  469. }else{
  470. level_code += ((level_code>>31)|1) & -(trailing_ones < 3);
  471. suffix_length = 1 + (level_code + 3U > 6U);
  472. level[trailing_ones]= level_code;
  473. }
  474. //remaining coefficients have suffix_length > 0
  475. for(i=trailing_ones+1;i<total_coeff;i++) {
  476. static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX };
  477. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  478. level_code= cavlc_level_tab[suffix_length][bitsi][0];
  479. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  480. if(level_code >= 100){
  481. prefix= level_code - 100;
  482. if(prefix == LEVEL_TAB_BITS){
  483. prefix += get_level_prefix(gb);
  484. }
  485. if(prefix<15){
  486. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  487. }else{
  488. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  489. if(prefix>=16)
  490. level_code += (1<<(prefix-3))-4096;
  491. }
  492. mask= -(level_code&1);
  493. level_code= (((2+level_code)>>1) ^ mask) - mask;
  494. }
  495. level[i]= level_code;
  496. suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length];
  497. }
  498. }
  499. if(total_coeff == max_coeff)
  500. zeros_left=0;
  501. else{
  502. if (max_coeff <= 8) {
  503. if (max_coeff == 4)
  504. zeros_left = get_vlc2(gb, chroma_dc_total_zeros_vlc[total_coeff - 1].table,
  505. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  506. else
  507. zeros_left = get_vlc2(gb, chroma422_dc_total_zeros_vlc[total_coeff - 1].table,
  508. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1);
  509. } else {
  510. zeros_left= get_vlc2(gb, total_zeros_vlc[total_coeff - 1].table, TOTAL_ZEROS_VLC_BITS, 1);
  511. }
  512. }
  513. #define STORE_BLOCK(type) \
  514. scantable += zeros_left + total_coeff - 1; \
  515. if(n >= LUMA_DC_BLOCK_INDEX){ \
  516. ((type*)block)[*scantable] = level[0]; \
  517. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  518. if(zeros_left < 7) \
  519. run_before= get_vlc2(gb, run_vlc[zeros_left - 1].table, RUN_VLC_BITS, 1); \
  520. else \
  521. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  522. zeros_left -= run_before; \
  523. scantable -= 1 + run_before; \
  524. ((type*)block)[*scantable]= level[i]; \
  525. } \
  526. for(;i<total_coeff;i++) { \
  527. scantable--; \
  528. ((type*)block)[*scantable]= level[i]; \
  529. } \
  530. }else{ \
  531. ((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \
  532. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  533. if(zeros_left < 7) \
  534. run_before= get_vlc2(gb, run_vlc[zeros_left - 1].table, RUN_VLC_BITS, 1); \
  535. else \
  536. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  537. zeros_left -= run_before; \
  538. scantable -= 1 + run_before; \
  539. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  540. } \
  541. for(;i<total_coeff;i++) { \
  542. scantable--; \
  543. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  544. } \
  545. }
  546. if (zeros_left < 0) {
  547. av_log(h->avctx, AV_LOG_ERROR,
  548. "negative number of zero coeffs at %d %d\n", sl->mb_x, sl->mb_y);
  549. return AVERROR_INVALIDDATA;
  550. }
  551. if (h->pixel_shift) {
  552. STORE_BLOCK(int32_t)
  553. } else {
  554. STORE_BLOCK(int16_t)
  555. }
  556. return 0;
  557. }
  558. static av_always_inline
  559. int decode_luma_residual(const H264Context *h, H264SliceContext *sl,
  560. GetBitContext *gb, const uint8_t *scan,
  561. const uint8_t *scan8x8, int pixel_shift,
  562. int mb_type, int cbp, int p)
  563. {
  564. int i4x4, i8x8;
  565. int qscale = p == 0 ? sl->qscale : sl->chroma_qp[p - 1];
  566. if(IS_INTRA16x16(mb_type)){
  567. AV_ZERO128(sl->mb_luma_dc[p]+0);
  568. AV_ZERO128(sl->mb_luma_dc[p]+8);
  569. AV_ZERO128(sl->mb_luma_dc[p]+16);
  570. AV_ZERO128(sl->mb_luma_dc[p]+24);
  571. if (decode_residual(h, sl, gb, sl->mb_luma_dc[p], LUMA_DC_BLOCK_INDEX + p, scan, NULL, 16) < 0) {
  572. return -1; //FIXME continue if partitioned and other return -1 too
  573. }
  574. assert((cbp&15) == 0 || (cbp&15) == 15);
  575. if(cbp&15){
  576. for(i8x8=0; i8x8<4; i8x8++){
  577. for(i4x4=0; i4x4<4; i4x4++){
  578. const int index= i4x4 + 4*i8x8 + p*16;
  579. if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift),
  580. index, scan + 1, h->dequant4_coeff[p][qscale], 15) < 0 ){
  581. return -1;
  582. }
  583. }
  584. }
  585. return 0xf;
  586. }else{
  587. fill_rectangle(&sl->non_zero_count_cache[scan8[p*16]], 4, 4, 8, 0, 1);
  588. return 0;
  589. }
  590. }else{
  591. int cqm = (IS_INTRA( mb_type ) ? 0:3)+p;
  592. /* For CAVLC 4:4:4, we need to keep track of the luma 8x8 CBP for deblocking nnz purposes. */
  593. int new_cbp = 0;
  594. for(i8x8=0; i8x8<4; i8x8++){
  595. if(cbp & (1<<i8x8)){
  596. if(IS_8x8DCT(mb_type)){
  597. int16_t *buf = &sl->mb[64*i8x8+256*p << pixel_shift];
  598. uint8_t *nnz;
  599. for(i4x4=0; i4x4<4; i4x4++){
  600. const int index= i4x4 + 4*i8x8 + p*16;
  601. if( decode_residual(h, sl, gb, buf, index, scan8x8+16*i4x4,
  602. h->dequant8_coeff[cqm][qscale], 16) < 0 )
  603. return -1;
  604. }
  605. nnz = &sl->non_zero_count_cache[scan8[4 * i8x8 + p * 16]];
  606. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  607. new_cbp |= !!nnz[0] << i8x8;
  608. }else{
  609. for(i4x4=0; i4x4<4; i4x4++){
  610. const int index= i4x4 + 4*i8x8 + p*16;
  611. if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift), index,
  612. scan, h->dequant4_coeff[cqm][qscale], 16) < 0 ){
  613. return -1;
  614. }
  615. new_cbp |= sl->non_zero_count_cache[scan8[index]] << i8x8;
  616. }
  617. }
  618. }else{
  619. uint8_t * const nnz = &sl->non_zero_count_cache[scan8[4 * i8x8 + p * 16]];
  620. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  621. }
  622. }
  623. return new_cbp;
  624. }
  625. }
  626. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
  627. {
  628. int mb_xy;
  629. int partition_count;
  630. unsigned int mb_type, cbp;
  631. int dct8x8_allowed= h->pps.transform_8x8_mode;
  632. int decode_chroma = h->sps.chroma_format_idc == 1 || h->sps.chroma_format_idc == 2;
  633. const int pixel_shift = h->pixel_shift;
  634. mb_xy = sl->mb_xy = sl->mb_x + sl->mb_y*h->mb_stride;
  635. ff_tlog(h->avctx, "pic:%d mb:%d/%d\n", h->frame_num, sl->mb_x, sl->mb_y);
  636. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  637. down the code */
  638. if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
  639. if (sl->mb_skip_run == -1)
  640. sl->mb_skip_run = get_ue_golomb(&sl->gb);
  641. if (sl->mb_skip_run--) {
  642. if (FRAME_MBAFF(h) && (sl->mb_y & 1) == 0) {
  643. if (sl->mb_skip_run == 0)
  644. sl->mb_mbaff = sl->mb_field_decoding_flag = get_bits1(&sl->gb);
  645. }
  646. decode_mb_skip(h, sl);
  647. return 0;
  648. }
  649. }
  650. if (FRAME_MBAFF(h)) {
  651. if ((sl->mb_y & 1) == 0)
  652. sl->mb_mbaff = sl->mb_field_decoding_flag = get_bits1(&sl->gb);
  653. }
  654. sl->prev_mb_skipped = 0;
  655. mb_type= get_ue_golomb(&sl->gb);
  656. if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
  657. if(mb_type < 23){
  658. partition_count= b_mb_type_info[mb_type].partition_count;
  659. mb_type= b_mb_type_info[mb_type].type;
  660. }else{
  661. mb_type -= 23;
  662. goto decode_intra_mb;
  663. }
  664. } else if (sl->slice_type_nos == AV_PICTURE_TYPE_P) {
  665. if(mb_type < 5){
  666. partition_count= p_mb_type_info[mb_type].partition_count;
  667. mb_type= p_mb_type_info[mb_type].type;
  668. }else{
  669. mb_type -= 5;
  670. goto decode_intra_mb;
  671. }
  672. }else{
  673. assert(sl->slice_type_nos == AV_PICTURE_TYPE_I);
  674. if (sl->slice_type == AV_PICTURE_TYPE_SI && mb_type)
  675. mb_type--;
  676. decode_intra_mb:
  677. if(mb_type > 25){
  678. av_log(h->avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_picture_type_char(sl->slice_type), sl->mb_x, sl->mb_y);
  679. return -1;
  680. }
  681. partition_count=0;
  682. cbp= i_mb_type_info[mb_type].cbp;
  683. sl->intra16x16_pred_mode = i_mb_type_info[mb_type].pred_mode;
  684. mb_type= i_mb_type_info[mb_type].type;
  685. }
  686. if (MB_FIELD(sl))
  687. mb_type |= MB_TYPE_INTERLACED;
  688. h->slice_table[mb_xy] = sl->slice_num;
  689. if(IS_INTRA_PCM(mb_type)){
  690. const int mb_size = ff_h264_mb_sizes[h->sps.chroma_format_idc] *
  691. h->sps.bit_depth_luma;
  692. // We assume these blocks are very rare so we do not optimize it.
  693. sl->intra_pcm_ptr = align_get_bits(&sl->gb);
  694. if (get_bits_left(&sl->gb) < mb_size) {
  695. av_log(h->avctx, AV_LOG_ERROR, "Not enough data for an intra PCM block.\n");
  696. return AVERROR_INVALIDDATA;
  697. }
  698. skip_bits_long(&sl->gb, mb_size);
  699. // In deblocking, the quantizer is 0
  700. h->cur_pic.qscale_table[mb_xy] = 0;
  701. // All coeffs are present
  702. memset(h->non_zero_count[mb_xy], 16, 48);
  703. h->cur_pic.mb_type[mb_xy] = mb_type;
  704. return 0;
  705. }
  706. fill_decode_neighbors(h, sl, mb_type);
  707. fill_decode_caches(h, sl, mb_type);
  708. //mb_pred
  709. if(IS_INTRA(mb_type)){
  710. int pred_mode;
  711. // init_top_left_availability(h);
  712. if(IS_INTRA4x4(mb_type)){
  713. int i;
  714. int di = 1;
  715. if(dct8x8_allowed && get_bits1(&sl->gb)){
  716. mb_type |= MB_TYPE_8x8DCT;
  717. di = 4;
  718. }
  719. // fill_intra4x4_pred_table(h);
  720. for(i=0; i<16; i+=di){
  721. int mode = pred_intra_mode(h, sl, i);
  722. if(!get_bits1(&sl->gb)){
  723. const int rem_mode= get_bits(&sl->gb, 3);
  724. mode = rem_mode + (rem_mode >= mode);
  725. }
  726. if(di==4)
  727. fill_rectangle(&sl->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1);
  728. else
  729. sl->intra4x4_pred_mode_cache[scan8[i]] = mode;
  730. }
  731. write_back_intra_pred_mode(h, sl);
  732. if (ff_h264_check_intra4x4_pred_mode(h, sl) < 0)
  733. return -1;
  734. }else{
  735. sl->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, sl, sl->intra16x16_pred_mode, 0);
  736. if (sl->intra16x16_pred_mode < 0)
  737. return -1;
  738. }
  739. if(decode_chroma){
  740. pred_mode= ff_h264_check_intra_pred_mode(h, sl, get_ue_golomb_31(&sl->gb), 1);
  741. if(pred_mode < 0)
  742. return -1;
  743. sl->chroma_pred_mode = pred_mode;
  744. } else {
  745. sl->chroma_pred_mode = DC_128_PRED8x8;
  746. }
  747. }else if(partition_count==4){
  748. int i, j, sub_partition_count[4], list, ref[2][4];
  749. if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
  750. for(i=0; i<4; i++){
  751. sl->sub_mb_type[i]= get_ue_golomb_31(&sl->gb);
  752. if(sl->sub_mb_type[i] >=13){
  753. av_log(h->avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", sl->sub_mb_type[i], sl->mb_x, sl->mb_y);
  754. return -1;
  755. }
  756. sub_partition_count[i]= b_sub_mb_type_info[ sl->sub_mb_type[i] ].partition_count;
  757. sl->sub_mb_type[i]= b_sub_mb_type_info[ sl->sub_mb_type[i] ].type;
  758. }
  759. if( IS_DIRECT(sl->sub_mb_type[0]|sl->sub_mb_type[1]|sl->sub_mb_type[2]|sl->sub_mb_type[3])) {
  760. ff_h264_pred_direct_motion(h, sl, &mb_type);
  761. sl->ref_cache[0][scan8[4]] =
  762. sl->ref_cache[1][scan8[4]] =
  763. sl->ref_cache[0][scan8[12]] =
  764. sl->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  765. }
  766. }else{
  767. assert(sl->slice_type_nos == AV_PICTURE_TYPE_P); //FIXME SP correct ?
  768. for(i=0; i<4; i++){
  769. sl->sub_mb_type[i]= get_ue_golomb_31(&sl->gb);
  770. if(sl->sub_mb_type[i] >=4){
  771. av_log(h->avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", sl->sub_mb_type[i], sl->mb_x, sl->mb_y);
  772. return -1;
  773. }
  774. sub_partition_count[i]= p_sub_mb_type_info[ sl->sub_mb_type[i] ].partition_count;
  775. sl->sub_mb_type[i]= p_sub_mb_type_info[ sl->sub_mb_type[i] ].type;
  776. }
  777. }
  778. for (list = 0; list < sl->list_count; list++) {
  779. int ref_count = IS_REF0(mb_type) ? 1 : sl->ref_count[list] << MB_MBAFF(sl);
  780. for(i=0; i<4; i++){
  781. if(IS_DIRECT(sl->sub_mb_type[i])) continue;
  782. if(IS_DIR(sl->sub_mb_type[i], 0, list)){
  783. unsigned int tmp;
  784. if(ref_count == 1){
  785. tmp= 0;
  786. }else if(ref_count == 2){
  787. tmp= get_bits1(&sl->gb)^1;
  788. }else{
  789. tmp= get_ue_golomb_31(&sl->gb);
  790. if(tmp>=ref_count){
  791. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  792. return -1;
  793. }
  794. }
  795. ref[list][i]= tmp;
  796. }else{
  797. //FIXME
  798. ref[list][i] = -1;
  799. }
  800. }
  801. }
  802. if(dct8x8_allowed)
  803. dct8x8_allowed = get_dct8x8_allowed(h, sl);
  804. for (list = 0; list < sl->list_count; list++) {
  805. for(i=0; i<4; i++){
  806. if(IS_DIRECT(sl->sub_mb_type[i])) {
  807. sl->ref_cache[list][ scan8[4*i] ] = sl->ref_cache[list][ scan8[4*i]+1 ];
  808. continue;
  809. }
  810. sl->ref_cache[list][ scan8[4*i] ]=sl->ref_cache[list][ scan8[4*i]+1 ]=
  811. sl->ref_cache[list][ scan8[4*i]+8 ]=sl->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  812. if(IS_DIR(sl->sub_mb_type[i], 0, list)){
  813. const int sub_mb_type= sl->sub_mb_type[i];
  814. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  815. for(j=0; j<sub_partition_count[i]; j++){
  816. int mx, my;
  817. const int index= 4*i + block_width*j;
  818. int16_t (* mv_cache)[2]= &sl->mv_cache[list][ scan8[index] ];
  819. pred_motion(h, sl, index, block_width, list, sl->ref_cache[list][ scan8[index] ], &mx, &my);
  820. mx += get_se_golomb(&sl->gb);
  821. my += get_se_golomb(&sl->gb);
  822. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  823. if(IS_SUB_8X8(sub_mb_type)){
  824. mv_cache[ 1 ][0]=
  825. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  826. mv_cache[ 1 ][1]=
  827. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  828. }else if(IS_SUB_8X4(sub_mb_type)){
  829. mv_cache[ 1 ][0]= mx;
  830. mv_cache[ 1 ][1]= my;
  831. }else if(IS_SUB_4X8(sub_mb_type)){
  832. mv_cache[ 8 ][0]= mx;
  833. mv_cache[ 8 ][1]= my;
  834. }
  835. mv_cache[ 0 ][0]= mx;
  836. mv_cache[ 0 ][1]= my;
  837. }
  838. }else{
  839. uint32_t *p= (uint32_t *)&sl->mv_cache[list][ scan8[4*i] ][0];
  840. p[0] = p[1]=
  841. p[8] = p[9]= 0;
  842. }
  843. }
  844. }
  845. }else if(IS_DIRECT(mb_type)){
  846. ff_h264_pred_direct_motion(h, sl, &mb_type);
  847. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  848. }else{
  849. int list, mx, my, i;
  850. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  851. if(IS_16X16(mb_type)){
  852. for (list = 0; list < sl->list_count; list++) {
  853. unsigned int val;
  854. if(IS_DIR(mb_type, 0, list)){
  855. int rc = sl->ref_count[list] << MB_MBAFF(sl);
  856. if (rc == 1) {
  857. val= 0;
  858. } else if (rc == 2) {
  859. val= get_bits1(&sl->gb)^1;
  860. }else{
  861. val= get_ue_golomb_31(&sl->gb);
  862. if (val >= rc) {
  863. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  864. return -1;
  865. }
  866. }
  867. fill_rectangle(&sl->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  868. }
  869. }
  870. for (list = 0; list < sl->list_count; list++) {
  871. if(IS_DIR(mb_type, 0, list)){
  872. pred_motion(h, sl, 0, 4, list, sl->ref_cache[list][ scan8[0] ], &mx, &my);
  873. mx += get_se_golomb(&sl->gb);
  874. my += get_se_golomb(&sl->gb);
  875. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  876. fill_rectangle(sl->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  877. }
  878. }
  879. }
  880. else if(IS_16X8(mb_type)){
  881. for (list = 0; list < sl->list_count; list++) {
  882. for(i=0; i<2; i++){
  883. unsigned int val;
  884. if(IS_DIR(mb_type, i, list)){
  885. int rc = sl->ref_count[list] << MB_MBAFF(sl);
  886. if (rc == 1) {
  887. val= 0;
  888. } else if (rc == 2) {
  889. val= get_bits1(&sl->gb)^1;
  890. }else{
  891. val= get_ue_golomb_31(&sl->gb);
  892. if (val >= rc) {
  893. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  894. return -1;
  895. }
  896. }
  897. }else
  898. val= LIST_NOT_USED&0xFF;
  899. fill_rectangle(&sl->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  900. }
  901. }
  902. for (list = 0; list < sl->list_count; list++) {
  903. for(i=0; i<2; i++){
  904. unsigned int val;
  905. if(IS_DIR(mb_type, i, list)){
  906. pred_16x8_motion(h, sl, 8*i, list, sl->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  907. mx += get_se_golomb(&sl->gb);
  908. my += get_se_golomb(&sl->gb);
  909. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  910. val= pack16to32(mx,my);
  911. }else
  912. val=0;
  913. fill_rectangle(sl->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  914. }
  915. }
  916. }else{
  917. assert(IS_8X16(mb_type));
  918. for (list = 0; list < sl->list_count; list++) {
  919. for(i=0; i<2; i++){
  920. unsigned int val;
  921. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  922. int rc = sl->ref_count[list] << MB_MBAFF(sl);
  923. if (rc == 1) {
  924. val= 0;
  925. } else if (rc == 2) {
  926. val= get_bits1(&sl->gb)^1;
  927. }else{
  928. val= get_ue_golomb_31(&sl->gb);
  929. if (val >= rc) {
  930. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  931. return -1;
  932. }
  933. }
  934. }else
  935. val= LIST_NOT_USED&0xFF;
  936. fill_rectangle(&sl->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  937. }
  938. }
  939. for (list = 0; list < sl->list_count; list++) {
  940. for(i=0; i<2; i++){
  941. unsigned int val;
  942. if(IS_DIR(mb_type, i, list)){
  943. pred_8x16_motion(h, sl, i*4, list, sl->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  944. mx += get_se_golomb(&sl->gb);
  945. my += get_se_golomb(&sl->gb);
  946. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  947. val= pack16to32(mx,my);
  948. }else
  949. val=0;
  950. fill_rectangle(sl->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  951. }
  952. }
  953. }
  954. }
  955. if(IS_INTER(mb_type))
  956. write_back_motion(h, sl, mb_type);
  957. if(!IS_INTRA16x16(mb_type)){
  958. cbp= get_ue_golomb(&sl->gb);
  959. if(decode_chroma){
  960. if(cbp > 47){
  961. av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, sl->mb_x, sl->mb_y);
  962. return -1;
  963. }
  964. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp];
  965. else cbp= golomb_to_inter_cbp [cbp];
  966. }else{
  967. if(cbp > 15){
  968. av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, sl->mb_x, sl->mb_y);
  969. return -1;
  970. }
  971. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
  972. else cbp= golomb_to_inter_cbp_gray[cbp];
  973. }
  974. }
  975. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  976. mb_type |= MB_TYPE_8x8DCT*get_bits1(&sl->gb);
  977. }
  978. sl->cbp=
  979. h->cbp_table[mb_xy]= cbp;
  980. h->cur_pic.mb_type[mb_xy] = mb_type;
  981. if(cbp || IS_INTRA16x16(mb_type)){
  982. int i4x4, i8x8, chroma_idx;
  983. int dquant;
  984. int ret;
  985. GetBitContext *gb = &sl->gb;
  986. const uint8_t *scan, *scan8x8;
  987. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  988. if(IS_INTERLACED(mb_type)){
  989. scan8x8 = sl->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  990. scan = sl->qscale ? h->field_scan : h->field_scan_q0;
  991. }else{
  992. scan8x8 = sl->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  993. scan = sl->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  994. }
  995. dquant= get_se_golomb(&sl->gb);
  996. sl->qscale += dquant;
  997. if (((unsigned)sl->qscale) > max_qp){
  998. if (sl->qscale < 0) sl->qscale += max_qp + 1;
  999. else sl->qscale -= max_qp+1;
  1000. if (((unsigned)sl->qscale) > max_qp){
  1001. av_log(h->avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, sl->mb_x, sl->mb_y);
  1002. return -1;
  1003. }
  1004. }
  1005. sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
  1006. sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
  1007. if ((ret = decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 0)) < 0 ) {
  1008. return -1;
  1009. }
  1010. h->cbp_table[mb_xy] |= ret << 12;
  1011. if (CHROMA444(h)) {
  1012. if (decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 1) < 0 ) {
  1013. return -1;
  1014. }
  1015. if (decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 2) < 0 ) {
  1016. return -1;
  1017. }
  1018. } else if (CHROMA422(h)) {
  1019. if(cbp&0x30){
  1020. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  1021. if (decode_residual(h, sl, gb, sl->mb + ((256 + 16*16*chroma_idx) << pixel_shift),
  1022. CHROMA_DC_BLOCK_INDEX+chroma_idx, chroma422_dc_scan,
  1023. NULL, 8) < 0) {
  1024. return -1;
  1025. }
  1026. }
  1027. if(cbp&0x20){
  1028. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  1029. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][sl->chroma_qp[chroma_idx]];
  1030. int16_t *mb = sl->mb + (16*(16 + 16*chroma_idx) << pixel_shift);
  1031. for (i8x8 = 0; i8x8 < 2; i8x8++) {
  1032. for (i4x4 = 0; i4x4 < 4; i4x4++) {
  1033. const int index = 16 + 16*chroma_idx + 8*i8x8 + i4x4;
  1034. if (decode_residual(h, sl, gb, mb, index, scan + 1, qmul, 15) < 0)
  1035. return -1;
  1036. mb += 16 << pixel_shift;
  1037. }
  1038. }
  1039. }
  1040. }else{
  1041. fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1042. fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1043. }
  1044. } else /* yuv420 */ {
  1045. if(cbp&0x30){
  1046. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  1047. if( decode_residual(h, sl, gb, sl->mb + ((256 + 16*16*chroma_idx) << pixel_shift), CHROMA_DC_BLOCK_INDEX+chroma_idx, chroma_dc_scan, NULL, 4) < 0){
  1048. return -1;
  1049. }
  1050. }
  1051. if(cbp&0x20){
  1052. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  1053. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][sl->chroma_qp[chroma_idx]];
  1054. for(i4x4=0; i4x4<4; i4x4++){
  1055. const int index= 16 + 16*chroma_idx + i4x4;
  1056. if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift), index, scan + 1, qmul, 15) < 0){
  1057. return -1;
  1058. }
  1059. }
  1060. }
  1061. }else{
  1062. fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1063. fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1064. }
  1065. }
  1066. }else{
  1067. fill_rectangle(&sl->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1);
  1068. fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1069. fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1070. }
  1071. h->cur_pic.qscale_table[mb_xy] = sl->qscale;
  1072. write_back_non_zero_count(h, sl);
  1073. return 0;
  1074. }