You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

727 lines
27KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * first version by Francois Revol (revol@free.fr)
  5. * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  6. * by Mike Melanson (melanson@pcisys.net)
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "get_bits.h"
  26. #include "put_bits.h"
  27. #include "bytestream.h"
  28. #include "adpcm.h"
  29. #include "adpcm_data.h"
  30. #include "internal.h"
  31. /**
  32. * @file
  33. * ADPCM encoders
  34. * See ADPCM decoder reference documents for codec information.
  35. */
  36. typedef struct TrellisPath {
  37. int nibble;
  38. int prev;
  39. } TrellisPath;
  40. typedef struct TrellisNode {
  41. uint32_t ssd;
  42. int path;
  43. int sample1;
  44. int sample2;
  45. int step;
  46. } TrellisNode;
  47. typedef struct ADPCMEncodeContext {
  48. ADPCMChannelStatus status[6];
  49. TrellisPath *paths;
  50. TrellisNode *node_buf;
  51. TrellisNode **nodep_buf;
  52. uint8_t *trellis_hash;
  53. } ADPCMEncodeContext;
  54. #define FREEZE_INTERVAL 128
  55. static av_cold int adpcm_encode_init(AVCodecContext *avctx)
  56. {
  57. ADPCMEncodeContext *s = avctx->priv_data;
  58. uint8_t *extradata;
  59. int i;
  60. int ret = AVERROR(ENOMEM);
  61. if (avctx->channels > 2) {
  62. av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
  63. return AVERROR(EINVAL);
  64. }
  65. if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
  66. av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
  67. return AVERROR(EINVAL);
  68. }
  69. if (avctx->trellis) {
  70. int frontier = 1 << avctx->trellis;
  71. int max_paths = frontier * FREEZE_INTERVAL;
  72. FF_ALLOC_OR_GOTO(avctx, s->paths,
  73. max_paths * sizeof(*s->paths), error);
  74. FF_ALLOC_OR_GOTO(avctx, s->node_buf,
  75. 2 * frontier * sizeof(*s->node_buf), error);
  76. FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
  77. 2 * frontier * sizeof(*s->nodep_buf), error);
  78. FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
  79. 65536 * sizeof(*s->trellis_hash), error);
  80. }
  81. avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
  82. switch (avctx->codec->id) {
  83. case AV_CODEC_ID_ADPCM_IMA_WAV:
  84. /* each 16 bits sample gives one nibble
  85. and we have 4 bytes per channel overhead */
  86. avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
  87. (4 * avctx->channels) + 1;
  88. /* seems frame_size isn't taken into account...
  89. have to buffer the samples :-( */
  90. avctx->block_align = BLKSIZE;
  91. break;
  92. case AV_CODEC_ID_ADPCM_IMA_QT:
  93. avctx->frame_size = 64;
  94. avctx->block_align = 34 * avctx->channels;
  95. break;
  96. case AV_CODEC_ID_ADPCM_MS:
  97. /* each 16 bits sample gives one nibble
  98. and we have 7 bytes per channel overhead */
  99. avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 /
  100. avctx->channels + 2;
  101. avctx->block_align = BLKSIZE;
  102. if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE)))
  103. goto error;
  104. avctx->extradata_size = 32;
  105. extradata = avctx->extradata;
  106. bytestream_put_le16(&extradata, avctx->frame_size);
  107. bytestream_put_le16(&extradata, 7); /* wNumCoef */
  108. for (i = 0; i < 7; i++) {
  109. bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
  110. bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
  111. }
  112. break;
  113. case AV_CODEC_ID_ADPCM_YAMAHA:
  114. avctx->frame_size = BLKSIZE * 2 / avctx->channels;
  115. avctx->block_align = BLKSIZE;
  116. break;
  117. case AV_CODEC_ID_ADPCM_SWF:
  118. if (avctx->sample_rate != 11025 &&
  119. avctx->sample_rate != 22050 &&
  120. avctx->sample_rate != 44100) {
  121. av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
  122. "22050 or 44100\n");
  123. ret = AVERROR(EINVAL);
  124. goto error;
  125. }
  126. avctx->frame_size = 512 * (avctx->sample_rate / 11025);
  127. break;
  128. default:
  129. ret = AVERROR(EINVAL);
  130. goto error;
  131. }
  132. return 0;
  133. error:
  134. av_freep(&s->paths);
  135. av_freep(&s->node_buf);
  136. av_freep(&s->nodep_buf);
  137. av_freep(&s->trellis_hash);
  138. return ret;
  139. }
  140. static av_cold int adpcm_encode_close(AVCodecContext *avctx)
  141. {
  142. ADPCMEncodeContext *s = avctx->priv_data;
  143. av_freep(&s->paths);
  144. av_freep(&s->node_buf);
  145. av_freep(&s->nodep_buf);
  146. av_freep(&s->trellis_hash);
  147. return 0;
  148. }
  149. static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
  150. int16_t sample)
  151. {
  152. int delta = sample - c->prev_sample;
  153. int nibble = FFMIN(7, abs(delta) * 4 /
  154. ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
  155. c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
  156. ff_adpcm_yamaha_difflookup[nibble]) / 8);
  157. c->prev_sample = av_clip_int16(c->prev_sample);
  158. c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
  159. return nibble;
  160. }
  161. static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
  162. int16_t sample)
  163. {
  164. int delta = sample - c->prev_sample;
  165. int mask, step = ff_adpcm_step_table[c->step_index];
  166. int diff = step >> 3;
  167. int nibble = 0;
  168. if (delta < 0) {
  169. nibble = 8;
  170. delta = -delta;
  171. }
  172. for (mask = 4; mask;) {
  173. if (delta >= step) {
  174. nibble |= mask;
  175. delta -= step;
  176. diff += step;
  177. }
  178. step >>= 1;
  179. mask >>= 1;
  180. }
  181. if (nibble & 8)
  182. c->prev_sample -= diff;
  183. else
  184. c->prev_sample += diff;
  185. c->prev_sample = av_clip_int16(c->prev_sample);
  186. c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
  187. return nibble;
  188. }
  189. static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
  190. int16_t sample)
  191. {
  192. int predictor, nibble, bias;
  193. predictor = (((c->sample1) * (c->coeff1)) +
  194. (( c->sample2) * (c->coeff2))) / 64;
  195. nibble = sample - predictor;
  196. if (nibble >= 0)
  197. bias = c->idelta / 2;
  198. else
  199. bias = -c->idelta / 2;
  200. nibble = (nibble + bias) / c->idelta;
  201. nibble = av_clip(nibble, -8, 7) & 0x0F;
  202. predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
  203. c->sample2 = c->sample1;
  204. c->sample1 = av_clip_int16(predictor);
  205. c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
  206. if (c->idelta < 16)
  207. c->idelta = 16;
  208. return nibble;
  209. }
  210. static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
  211. int16_t sample)
  212. {
  213. int nibble, delta;
  214. if (!c->step) {
  215. c->predictor = 0;
  216. c->step = 127;
  217. }
  218. delta = sample - c->predictor;
  219. nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
  220. c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
  221. c->predictor = av_clip_int16(c->predictor);
  222. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  223. c->step = av_clip(c->step, 127, 24567);
  224. return nibble;
  225. }
  226. static void adpcm_compress_trellis(AVCodecContext *avctx,
  227. const int16_t *samples, uint8_t *dst,
  228. ADPCMChannelStatus *c, int n, int stride)
  229. {
  230. //FIXME 6% faster if frontier is a compile-time constant
  231. ADPCMEncodeContext *s = avctx->priv_data;
  232. const int frontier = 1 << avctx->trellis;
  233. const int version = avctx->codec->id;
  234. TrellisPath *paths = s->paths, *p;
  235. TrellisNode *node_buf = s->node_buf;
  236. TrellisNode **nodep_buf = s->nodep_buf;
  237. TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
  238. TrellisNode **nodes_next = nodep_buf + frontier;
  239. int pathn = 0, froze = -1, i, j, k, generation = 0;
  240. uint8_t *hash = s->trellis_hash;
  241. memset(hash, 0xff, 65536 * sizeof(*hash));
  242. memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
  243. nodes[0] = node_buf + frontier;
  244. nodes[0]->ssd = 0;
  245. nodes[0]->path = 0;
  246. nodes[0]->step = c->step_index;
  247. nodes[0]->sample1 = c->sample1;
  248. nodes[0]->sample2 = c->sample2;
  249. if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
  250. version == AV_CODEC_ID_ADPCM_IMA_QT ||
  251. version == AV_CODEC_ID_ADPCM_SWF)
  252. nodes[0]->sample1 = c->prev_sample;
  253. if (version == AV_CODEC_ID_ADPCM_MS)
  254. nodes[0]->step = c->idelta;
  255. if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
  256. if (c->step == 0) {
  257. nodes[0]->step = 127;
  258. nodes[0]->sample1 = 0;
  259. } else {
  260. nodes[0]->step = c->step;
  261. nodes[0]->sample1 = c->predictor;
  262. }
  263. }
  264. for (i = 0; i < n; i++) {
  265. TrellisNode *t = node_buf + frontier*(i&1);
  266. TrellisNode **u;
  267. int sample = samples[i * stride];
  268. int heap_pos = 0;
  269. memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
  270. for (j = 0; j < frontier && nodes[j]; j++) {
  271. // higher j have higher ssd already, so they're likely
  272. // to yield a suboptimal next sample too
  273. const int range = (j < frontier / 2) ? 1 : 0;
  274. const int step = nodes[j]->step;
  275. int nidx;
  276. if (version == AV_CODEC_ID_ADPCM_MS) {
  277. const int predictor = ((nodes[j]->sample1 * c->coeff1) +
  278. (nodes[j]->sample2 * c->coeff2)) / 64;
  279. const int div = (sample - predictor) / step;
  280. const int nmin = av_clip(div-range, -8, 6);
  281. const int nmax = av_clip(div+range, -7, 7);
  282. for (nidx = nmin; nidx <= nmax; nidx++) {
  283. const int nibble = nidx & 0xf;
  284. int dec_sample = predictor + nidx * step;
  285. #define STORE_NODE(NAME, STEP_INDEX)\
  286. int d;\
  287. uint32_t ssd;\
  288. int pos;\
  289. TrellisNode *u;\
  290. uint8_t *h;\
  291. dec_sample = av_clip_int16(dec_sample);\
  292. d = sample - dec_sample;\
  293. ssd = nodes[j]->ssd + d*d;\
  294. /* Check for wraparound, skip such samples completely. \
  295. * Note, changing ssd to a 64 bit variable would be \
  296. * simpler, avoiding this check, but it's slower on \
  297. * x86 32 bit at the moment. */\
  298. if (ssd < nodes[j]->ssd)\
  299. goto next_##NAME;\
  300. /* Collapse any two states with the same previous sample value. \
  301. * One could also distinguish states by step and by 2nd to last
  302. * sample, but the effects of that are negligible.
  303. * Since nodes in the previous generation are iterated
  304. * through a heap, they're roughly ordered from better to
  305. * worse, but not strictly ordered. Therefore, an earlier
  306. * node with the same sample value is better in most cases
  307. * (and thus the current is skipped), but not strictly
  308. * in all cases. Only skipping samples where ssd >=
  309. * ssd of the earlier node with the same sample gives
  310. * slightly worse quality, though, for some reason. */ \
  311. h = &hash[(uint16_t) dec_sample];\
  312. if (*h == generation)\
  313. goto next_##NAME;\
  314. if (heap_pos < frontier) {\
  315. pos = heap_pos++;\
  316. } else {\
  317. /* Try to replace one of the leaf nodes with the new \
  318. * one, but try a different slot each time. */\
  319. pos = (frontier >> 1) +\
  320. (heap_pos & ((frontier >> 1) - 1));\
  321. if (ssd > nodes_next[pos]->ssd)\
  322. goto next_##NAME;\
  323. heap_pos++;\
  324. }\
  325. *h = generation;\
  326. u = nodes_next[pos];\
  327. if (!u) {\
  328. assert(pathn < FREEZE_INTERVAL << avctx->trellis);\
  329. u = t++;\
  330. nodes_next[pos] = u;\
  331. u->path = pathn++;\
  332. }\
  333. u->ssd = ssd;\
  334. u->step = STEP_INDEX;\
  335. u->sample2 = nodes[j]->sample1;\
  336. u->sample1 = dec_sample;\
  337. paths[u->path].nibble = nibble;\
  338. paths[u->path].prev = nodes[j]->path;\
  339. /* Sift the newly inserted node up in the heap to \
  340. * restore the heap property. */\
  341. while (pos > 0) {\
  342. int parent = (pos - 1) >> 1;\
  343. if (nodes_next[parent]->ssd <= ssd)\
  344. break;\
  345. FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
  346. pos = parent;\
  347. }\
  348. next_##NAME:;
  349. STORE_NODE(ms, FFMAX(16,
  350. (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
  351. }
  352. } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
  353. version == AV_CODEC_ID_ADPCM_IMA_QT ||
  354. version == AV_CODEC_ID_ADPCM_SWF) {
  355. #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
  356. const int predictor = nodes[j]->sample1;\
  357. const int div = (sample - predictor) * 4 / STEP_TABLE;\
  358. int nmin = av_clip(div - range, -7, 6);\
  359. int nmax = av_clip(div + range, -6, 7);\
  360. if (nmin <= 0)\
  361. nmin--; /* distinguish -0 from +0 */\
  362. if (nmax < 0)\
  363. nmax--;\
  364. for (nidx = nmin; nidx <= nmax; nidx++) {\
  365. const int nibble = nidx < 0 ? 7 - nidx : nidx;\
  366. int dec_sample = predictor +\
  367. (STEP_TABLE *\
  368. ff_adpcm_yamaha_difflookup[nibble]) / 8;\
  369. STORE_NODE(NAME, STEP_INDEX);\
  370. }
  371. LOOP_NODES(ima, ff_adpcm_step_table[step],
  372. av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
  373. } else { //AV_CODEC_ID_ADPCM_YAMAHA
  374. LOOP_NODES(yamaha, step,
  375. av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
  376. 127, 24567));
  377. #undef LOOP_NODES
  378. #undef STORE_NODE
  379. }
  380. }
  381. u = nodes;
  382. nodes = nodes_next;
  383. nodes_next = u;
  384. generation++;
  385. if (generation == 255) {
  386. memset(hash, 0xff, 65536 * sizeof(*hash));
  387. generation = 0;
  388. }
  389. // prevent overflow
  390. if (nodes[0]->ssd > (1 << 28)) {
  391. for (j = 1; j < frontier && nodes[j]; j++)
  392. nodes[j]->ssd -= nodes[0]->ssd;
  393. nodes[0]->ssd = 0;
  394. }
  395. // merge old paths to save memory
  396. if (i == froze + FREEZE_INTERVAL) {
  397. p = &paths[nodes[0]->path];
  398. for (k = i; k > froze; k--) {
  399. dst[k] = p->nibble;
  400. p = &paths[p->prev];
  401. }
  402. froze = i;
  403. pathn = 0;
  404. // other nodes might use paths that don't coincide with the frozen one.
  405. // checking which nodes do so is too slow, so just kill them all.
  406. // this also slightly improves quality, but I don't know why.
  407. memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
  408. }
  409. }
  410. p = &paths[nodes[0]->path];
  411. for (i = n - 1; i > froze; i--) {
  412. dst[i] = p->nibble;
  413. p = &paths[p->prev];
  414. }
  415. c->predictor = nodes[0]->sample1;
  416. c->sample1 = nodes[0]->sample1;
  417. c->sample2 = nodes[0]->sample2;
  418. c->step_index = nodes[0]->step;
  419. c->step = nodes[0]->step;
  420. c->idelta = nodes[0]->step;
  421. }
  422. static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  423. const AVFrame *frame, int *got_packet_ptr)
  424. {
  425. int n, i, ch, st, pkt_size, ret;
  426. const int16_t *samples;
  427. int16_t **samples_p;
  428. uint8_t *dst;
  429. ADPCMEncodeContext *c = avctx->priv_data;
  430. uint8_t *buf;
  431. samples = (const int16_t *)frame->data[0];
  432. samples_p = (int16_t **)frame->extended_data;
  433. st = avctx->channels == 2;
  434. if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
  435. pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
  436. else
  437. pkt_size = avctx->block_align;
  438. if ((ret = ff_alloc_packet(avpkt, pkt_size))) {
  439. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  440. return ret;
  441. }
  442. dst = avpkt->data;
  443. switch(avctx->codec->id) {
  444. case AV_CODEC_ID_ADPCM_IMA_WAV:
  445. {
  446. int blocks, j;
  447. blocks = (frame->nb_samples - 1) / 8;
  448. for (ch = 0; ch < avctx->channels; ch++) {
  449. ADPCMChannelStatus *status = &c->status[ch];
  450. status->prev_sample = samples_p[ch][0];
  451. /* status->step_index = 0;
  452. XXX: not sure how to init the state machine */
  453. bytestream_put_le16(&dst, status->prev_sample);
  454. *dst++ = status->step_index;
  455. *dst++ = 0; /* unknown */
  456. }
  457. /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
  458. if (avctx->trellis > 0) {
  459. FF_ALLOC_OR_GOTO(avctx, buf, avctx->channels * blocks * 8, error);
  460. for (ch = 0; ch < avctx->channels; ch++) {
  461. adpcm_compress_trellis(avctx, &samples_p[ch][1],
  462. buf + ch * blocks * 8, &c->status[ch],
  463. blocks * 8, 1);
  464. }
  465. for (i = 0; i < blocks; i++) {
  466. for (ch = 0; ch < avctx->channels; ch++) {
  467. uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
  468. for (j = 0; j < 8; j += 2)
  469. *dst++ = buf1[j] | (buf1[j + 1] << 4);
  470. }
  471. }
  472. av_free(buf);
  473. } else {
  474. for (i = 0; i < blocks; i++) {
  475. for (ch = 0; ch < avctx->channels; ch++) {
  476. ADPCMChannelStatus *status = &c->status[ch];
  477. const int16_t *smp = &samples_p[ch][1 + i * 8];
  478. for (j = 0; j < 8; j += 2) {
  479. uint8_t v = adpcm_ima_compress_sample(status, smp[j ]);
  480. v |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
  481. *dst++ = v;
  482. }
  483. }
  484. }
  485. }
  486. break;
  487. }
  488. case AV_CODEC_ID_ADPCM_IMA_QT:
  489. {
  490. PutBitContext pb;
  491. init_put_bits(&pb, dst, pkt_size * 8);
  492. for (ch = 0; ch < avctx->channels; ch++) {
  493. ADPCMChannelStatus *status = &c->status[ch];
  494. put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
  495. put_bits(&pb, 7, status->step_index);
  496. if (avctx->trellis > 0) {
  497. uint8_t buf[64];
  498. adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
  499. 64, 1);
  500. for (i = 0; i < 64; i++)
  501. put_bits(&pb, 4, buf[i ^ 1]);
  502. status->prev_sample = status->predictor;
  503. } else {
  504. for (i = 0; i < 64; i += 2) {
  505. int t1, t2;
  506. t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i ]);
  507. t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
  508. put_bits(&pb, 4, t2);
  509. put_bits(&pb, 4, t1);
  510. }
  511. }
  512. }
  513. flush_put_bits(&pb);
  514. break;
  515. }
  516. case AV_CODEC_ID_ADPCM_SWF:
  517. {
  518. PutBitContext pb;
  519. init_put_bits(&pb, dst, pkt_size * 8);
  520. n = frame->nb_samples - 1;
  521. // store AdpcmCodeSize
  522. put_bits(&pb, 2, 2); // set 4-bit flash adpcm format
  523. // init the encoder state
  524. for (i = 0; i < avctx->channels; i++) {
  525. // clip step so it fits 6 bits
  526. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
  527. put_sbits(&pb, 16, samples[i]);
  528. put_bits(&pb, 6, c->status[i].step_index);
  529. c->status[i].prev_sample = samples[i];
  530. }
  531. if (avctx->trellis > 0) {
  532. FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
  533. adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
  534. &c->status[0], n, avctx->channels);
  535. if (avctx->channels == 2)
  536. adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
  537. buf + n, &c->status[1], n,
  538. avctx->channels);
  539. for (i = 0; i < n; i++) {
  540. put_bits(&pb, 4, buf[i]);
  541. if (avctx->channels == 2)
  542. put_bits(&pb, 4, buf[n + i]);
  543. }
  544. av_free(buf);
  545. } else {
  546. for (i = 1; i < frame->nb_samples; i++) {
  547. put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
  548. samples[avctx->channels * i]));
  549. if (avctx->channels == 2)
  550. put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
  551. samples[2 * i + 1]));
  552. }
  553. }
  554. flush_put_bits(&pb);
  555. break;
  556. }
  557. case AV_CODEC_ID_ADPCM_MS:
  558. for (i = 0; i < avctx->channels; i++) {
  559. int predictor = 0;
  560. *dst++ = predictor;
  561. c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
  562. c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
  563. }
  564. for (i = 0; i < avctx->channels; i++) {
  565. if (c->status[i].idelta < 16)
  566. c->status[i].idelta = 16;
  567. bytestream_put_le16(&dst, c->status[i].idelta);
  568. }
  569. for (i = 0; i < avctx->channels; i++)
  570. c->status[i].sample2= *samples++;
  571. for (i = 0; i < avctx->channels; i++) {
  572. c->status[i].sample1 = *samples++;
  573. bytestream_put_le16(&dst, c->status[i].sample1);
  574. }
  575. for (i = 0; i < avctx->channels; i++)
  576. bytestream_put_le16(&dst, c->status[i].sample2);
  577. if (avctx->trellis > 0) {
  578. n = avctx->block_align - 7 * avctx->channels;
  579. FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
  580. if (avctx->channels == 1) {
  581. adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
  582. avctx->channels);
  583. for (i = 0; i < n; i += 2)
  584. *dst++ = (buf[i] << 4) | buf[i + 1];
  585. } else {
  586. adpcm_compress_trellis(avctx, samples, buf,
  587. &c->status[0], n, avctx->channels);
  588. adpcm_compress_trellis(avctx, samples + 1, buf + n,
  589. &c->status[1], n, avctx->channels);
  590. for (i = 0; i < n; i++)
  591. *dst++ = (buf[i] << 4) | buf[n + i];
  592. }
  593. av_free(buf);
  594. } else {
  595. for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
  596. int nibble;
  597. nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
  598. nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
  599. *dst++ = nibble;
  600. }
  601. }
  602. break;
  603. case AV_CODEC_ID_ADPCM_YAMAHA:
  604. n = frame->nb_samples / 2;
  605. if (avctx->trellis > 0) {
  606. FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
  607. n *= 2;
  608. if (avctx->channels == 1) {
  609. adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
  610. avctx->channels);
  611. for (i = 0; i < n; i += 2)
  612. *dst++ = buf[i] | (buf[i + 1] << 4);
  613. } else {
  614. adpcm_compress_trellis(avctx, samples, buf,
  615. &c->status[0], n, avctx->channels);
  616. adpcm_compress_trellis(avctx, samples + 1, buf + n,
  617. &c->status[1], n, avctx->channels);
  618. for (i = 0; i < n; i++)
  619. *dst++ = buf[i] | (buf[n + i] << 4);
  620. }
  621. av_free(buf);
  622. } else
  623. for (n *= avctx->channels; n > 0; n--) {
  624. int nibble;
  625. nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
  626. nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
  627. *dst++ = nibble;
  628. }
  629. break;
  630. default:
  631. return AVERROR(EINVAL);
  632. }
  633. avpkt->size = pkt_size;
  634. *got_packet_ptr = 1;
  635. return 0;
  636. error:
  637. return AVERROR(ENOMEM);
  638. }
  639. static const enum AVSampleFormat sample_fmts[] = {
  640. AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
  641. };
  642. static const enum AVSampleFormat sample_fmts_p[] = {
  643. AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
  644. };
  645. #define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \
  646. AVCodec ff_ ## name_ ## _encoder = { \
  647. .name = #name_, \
  648. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  649. .type = AVMEDIA_TYPE_AUDIO, \
  650. .id = id_, \
  651. .priv_data_size = sizeof(ADPCMEncodeContext), \
  652. .init = adpcm_encode_init, \
  653. .encode2 = adpcm_encode_frame, \
  654. .close = adpcm_encode_close, \
  655. .sample_fmts = sample_fmts_, \
  656. }
  657. ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, sample_fmts_p, "ADPCM IMA QuickTime");
  658. ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, "ADPCM IMA WAV");
  659. ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS, adpcm_ms, sample_fmts, "ADPCM Microsoft");
  660. ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF, adpcm_swf, sample_fmts, "ADPCM Shockwave Flash");
  661. ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, sample_fmts, "ADPCM Yamaha");