You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

292 lines
9.5KB

  1. /*
  2. * Common code between the AC-3 encoder and decoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/ac3.c
  23. * Common code between the AC-3 encoder and decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "ac3.h"
  27. #include "get_bits.h"
  28. #if CONFIG_HARDCODED_TABLES
  29. /**
  30. * Starting frequency coefficient bin for each critical band.
  31. */
  32. static const uint8_t band_start_tab[51] = {
  33. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
  34. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
  35. 20, 21, 22, 23, 24, 25, 26, 27, 28, 31,
  36. 34, 37, 40, 43, 46, 49, 55, 61, 67, 73,
  37. 79, 85, 97, 109, 121, 133, 157, 181, 205, 229, 253
  38. };
  39. /**
  40. * Maps each frequency coefficient bin to the critical band that contains it.
  41. */
  42. static const uint8_t bin_to_band_tab[253] = {
  43. 0,
  44. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
  45. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
  46. 25, 26, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30,
  47. 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34,
  48. 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36,
  49. 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38,
  50. 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40,
  51. 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
  52. 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
  53. 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43,
  54. 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44,
  55. 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45,
  56. 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45,
  57. 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,
  58. 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,
  59. 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
  60. 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
  61. 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
  62. 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
  63. 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49,
  64. 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49
  65. };
  66. #else /* CONFIG_HARDCODED_TABLES */
  67. static uint8_t band_start_tab[51];
  68. static uint8_t bin_to_band_tab[253];
  69. #endif
  70. static inline int calc_lowcomp1(int a, int b0, int b1, int c)
  71. {
  72. if ((b0 + 256) == b1) {
  73. a = c;
  74. } else if (b0 > b1) {
  75. a = FFMAX(a - 64, 0);
  76. }
  77. return a;
  78. }
  79. static inline int calc_lowcomp(int a, int b0, int b1, int bin)
  80. {
  81. if (bin < 7) {
  82. return calc_lowcomp1(a, b0, b1, 384);
  83. } else if (bin < 20) {
  84. return calc_lowcomp1(a, b0, b1, 320);
  85. } else {
  86. return FFMAX(a - 128, 0);
  87. }
  88. }
  89. void ff_ac3_bit_alloc_calc_psd(int8_t *exp, int start, int end, int16_t *psd,
  90. int16_t *band_psd)
  91. {
  92. int bin, i, j, k, end1, v;
  93. /* exponent mapping to PSD */
  94. for(bin=start;bin<end;bin++) {
  95. psd[bin]=(3072 - (exp[bin] << 7));
  96. }
  97. /* PSD integration */
  98. j=start;
  99. k=bin_to_band_tab[start];
  100. do {
  101. v=psd[j];
  102. j++;
  103. end1 = FFMIN(band_start_tab[k+1], end);
  104. for(i=j;i<end1;i++) {
  105. /* logadd */
  106. int adr = FFMIN(FFABS(v - psd[j]) >> 1, 255);
  107. v = FFMAX(v, psd[j]) + ff_ac3_log_add_tab[adr];
  108. j++;
  109. }
  110. band_psd[k]=v;
  111. k++;
  112. } while (end > band_start_tab[k]);
  113. }
  114. int ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd,
  115. int start, int end, int fast_gain, int is_lfe,
  116. int dba_mode, int dba_nsegs, uint8_t *dba_offsets,
  117. uint8_t *dba_lengths, uint8_t *dba_values,
  118. int16_t *mask)
  119. {
  120. int16_t excite[50]; /* excitation */
  121. int bin, k;
  122. int bndstrt, bndend, begin, end1, tmp;
  123. int lowcomp, fastleak, slowleak;
  124. /* excitation function */
  125. bndstrt = bin_to_band_tab[start];
  126. bndend = bin_to_band_tab[end-1] + 1;
  127. if (bndstrt == 0) {
  128. lowcomp = 0;
  129. lowcomp = calc_lowcomp1(lowcomp, band_psd[0], band_psd[1], 384);
  130. excite[0] = band_psd[0] - fast_gain - lowcomp;
  131. lowcomp = calc_lowcomp1(lowcomp, band_psd[1], band_psd[2], 384);
  132. excite[1] = band_psd[1] - fast_gain - lowcomp;
  133. begin = 7;
  134. for (bin = 2; bin < 7; bin++) {
  135. if (!(is_lfe && bin == 6))
  136. lowcomp = calc_lowcomp1(lowcomp, band_psd[bin], band_psd[bin+1], 384);
  137. fastleak = band_psd[bin] - fast_gain;
  138. slowleak = band_psd[bin] - s->slow_gain;
  139. excite[bin] = fastleak - lowcomp;
  140. if (!(is_lfe && bin == 6)) {
  141. if (band_psd[bin] <= band_psd[bin+1]) {
  142. begin = bin + 1;
  143. break;
  144. }
  145. }
  146. }
  147. end1=bndend;
  148. if (end1 > 22) end1=22;
  149. for (bin = begin; bin < end1; bin++) {
  150. if (!(is_lfe && bin == 6))
  151. lowcomp = calc_lowcomp(lowcomp, band_psd[bin], band_psd[bin+1], bin);
  152. fastleak = FFMAX(fastleak - s->fast_decay, band_psd[bin] - fast_gain);
  153. slowleak = FFMAX(slowleak - s->slow_decay, band_psd[bin] - s->slow_gain);
  154. excite[bin] = FFMAX(fastleak - lowcomp, slowleak);
  155. }
  156. begin = 22;
  157. } else {
  158. /* coupling channel */
  159. begin = bndstrt;
  160. fastleak = (s->cpl_fast_leak << 8) + 768;
  161. slowleak = (s->cpl_slow_leak << 8) + 768;
  162. }
  163. for (bin = begin; bin < bndend; bin++) {
  164. fastleak = FFMAX(fastleak - s->fast_decay, band_psd[bin] - fast_gain);
  165. slowleak = FFMAX(slowleak - s->slow_decay, band_psd[bin] - s->slow_gain);
  166. excite[bin] = FFMAX(fastleak, slowleak);
  167. }
  168. /* compute masking curve */
  169. for (bin = bndstrt; bin < bndend; bin++) {
  170. tmp = s->db_per_bit - band_psd[bin];
  171. if (tmp > 0) {
  172. excite[bin] += tmp >> 2;
  173. }
  174. mask[bin] = FFMAX(ff_ac3_hearing_threshold_tab[bin >> s->sr_shift][s->sr_code], excite[bin]);
  175. }
  176. /* delta bit allocation */
  177. if (dba_mode == DBA_REUSE || dba_mode == DBA_NEW) {
  178. int band, seg, delta;
  179. if (dba_nsegs >= 8)
  180. return -1;
  181. band = 0;
  182. for (seg = 0; seg < dba_nsegs; seg++) {
  183. band += dba_offsets[seg];
  184. if (band >= 50 || dba_lengths[seg] > 50-band)
  185. return -1;
  186. if (dba_values[seg] >= 4) {
  187. delta = (dba_values[seg] - 3) << 7;
  188. } else {
  189. delta = (dba_values[seg] - 4) << 7;
  190. }
  191. for (k = 0; k < dba_lengths[seg]; k++) {
  192. mask[band] += delta;
  193. band++;
  194. }
  195. }
  196. }
  197. return 0;
  198. }
  199. void ff_ac3_bit_alloc_calc_bap(int16_t *mask, int16_t *psd, int start, int end,
  200. int snr_offset, int floor,
  201. const uint8_t *bap_tab, uint8_t *bap)
  202. {
  203. int i, j, k, end1, v, address;
  204. /* special case, if snr offset is -960, set all bap's to zero */
  205. if(snr_offset == -960) {
  206. memset(bap, 0, 256);
  207. return;
  208. }
  209. i = start;
  210. j = bin_to_band_tab[start];
  211. do {
  212. v = (FFMAX(mask[j] - snr_offset - floor, 0) & 0x1FE0) + floor;
  213. end1 = FFMIN(band_start_tab[j] + ff_ac3_critical_band_size_tab[j], end);
  214. for (k = i; k < end1; k++) {
  215. address = av_clip((psd[i] - v) >> 5, 0, 63);
  216. bap[i] = bap_tab[address];
  217. i++;
  218. }
  219. } while (end > band_start_tab[j++]);
  220. }
  221. /* AC-3 bit allocation. The algorithm is the one described in the AC-3
  222. spec. */
  223. void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, uint8_t *bap,
  224. int8_t *exp, int start, int end,
  225. int snr_offset, int fast_gain, int is_lfe,
  226. int dba_mode, int dba_nsegs,
  227. uint8_t *dba_offsets, uint8_t *dba_lengths,
  228. uint8_t *dba_values)
  229. {
  230. int16_t psd[256]; /* scaled exponents */
  231. int16_t band_psd[50]; /* interpolated exponents */
  232. int16_t mask[50]; /* masking value */
  233. ff_ac3_bit_alloc_calc_psd(exp, start, end, psd, band_psd);
  234. ff_ac3_bit_alloc_calc_mask(s, band_psd, start, end, fast_gain, is_lfe,
  235. dba_mode, dba_nsegs, dba_offsets, dba_lengths, dba_values,
  236. mask);
  237. ff_ac3_bit_alloc_calc_bap(mask, psd, start, end, snr_offset, s->floor,
  238. ff_ac3_bap_tab, bap);
  239. }
  240. /**
  241. * Initializes some tables.
  242. * note: This function must remain thread safe because it is called by the
  243. * AVParser init code.
  244. */
  245. av_cold void ac3_common_init(void)
  246. {
  247. #if !CONFIG_HARDCODED_TABLES
  248. int i, j, k, l, v;
  249. /* compute bndtab and masktab from bandsz */
  250. k = 0;
  251. l = 0;
  252. for(i=0;i<50;i++) {
  253. band_start_tab[i] = l;
  254. v = ff_ac3_critical_band_size_tab[i];
  255. for(j=0;j<v;j++) bin_to_band_tab[k++]=i;
  256. l += v;
  257. }
  258. band_start_tab[50] = l;
  259. #endif /* !CONFIG_HARDCODED_TABLES */
  260. }