You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3368 lines
121KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1dec.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. static const uint16_t vlc_offs[] = {
  46. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  47. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  48. 9262, 10202, 10756, 11310, 12228, 15078
  49. };
  50. /**
  51. * Init VC-1 specific tables and VC1Context members
  52. * @param v The VC1Context to initialize
  53. * @return Status
  54. */
  55. static int vc1_init_common(VC1Context *v)
  56. {
  57. static int done = 0;
  58. int i = 0;
  59. static VLC_TYPE vlc_table[15078][2];
  60. v->hrd_rate = v->hrd_buffer = NULL;
  61. /* VLC tables */
  62. if(!done)
  63. {
  64. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  65. ff_vc1_bfraction_bits, 1, 1,
  66. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  67. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  68. ff_vc1_norm2_bits, 1, 1,
  69. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  70. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  71. ff_vc1_norm6_bits, 1, 1,
  72. ff_vc1_norm6_codes, 2, 2, 556);
  73. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  74. ff_vc1_imode_bits, 1, 1,
  75. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  76. for (i=0; i<3; i++)
  77. {
  78. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  79. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  80. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  81. ff_vc1_ttmb_bits[i], 1, 1,
  82. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  83. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  84. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  85. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  86. ff_vc1_ttblk_bits[i], 1, 1,
  87. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  88. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  89. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  90. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  91. ff_vc1_subblkpat_bits[i], 1, 1,
  92. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  93. }
  94. for(i=0; i<4; i++)
  95. {
  96. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  97. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  98. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  99. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  100. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  101. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  102. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  103. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  104. ff_vc1_cbpcy_p_bits[i], 1, 1,
  105. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  106. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  107. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  108. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  109. ff_vc1_mv_diff_bits[i], 1, 1,
  110. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  111. }
  112. for(i=0; i<8; i++){
  113. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  114. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  115. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  116. &vc1_ac_tables[i][0][1], 8, 4,
  117. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. //FIXME: switching to INIT_VLC_STATIC() results in incorrect decoding
  120. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  121. &ff_msmp4_mb_i_table[0][1], 4, 2,
  122. &ff_msmp4_mb_i_table[0][0], 4, 2, INIT_VLC_USE_STATIC);
  123. done = 1;
  124. }
  125. /* Other defaults */
  126. v->pq = -1;
  127. v->mvrange = 0; /* 7.1.1.18, p80 */
  128. return 0;
  129. }
  130. /***********************************************************************/
  131. /**
  132. * @defgroup vc1bitplane VC-1 Bitplane decoding
  133. * @see 8.7, p56
  134. * @{
  135. */
  136. /**
  137. * Imode types
  138. * @{
  139. */
  140. enum Imode {
  141. IMODE_RAW,
  142. IMODE_NORM2,
  143. IMODE_DIFF2,
  144. IMODE_NORM6,
  145. IMODE_DIFF6,
  146. IMODE_ROWSKIP,
  147. IMODE_COLSKIP
  148. };
  149. /** @} */ //imode defines
  150. /** @} */ //Bitplane group
  151. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  152. {
  153. int i, j;
  154. if(!s->first_slice_line)
  155. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  156. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  157. for(i = !s->mb_x*8; i < 16; i += 8)
  158. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  159. for(j = 0; j < 2; j++){
  160. if(!s->first_slice_line)
  161. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  162. if(s->mb_x)
  163. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  164. }
  165. }
  166. /** Put block onto picture
  167. */
  168. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  169. {
  170. uint8_t *Y;
  171. int ys, us, vs;
  172. DSPContext *dsp = &v->s.dsp;
  173. if(v->rangeredfrm) {
  174. int i, j, k;
  175. for(k = 0; k < 6; k++)
  176. for(j = 0; j < 8; j++)
  177. for(i = 0; i < 8; i++)
  178. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  179. }
  180. ys = v->s.current_picture.linesize[0];
  181. us = v->s.current_picture.linesize[1];
  182. vs = v->s.current_picture.linesize[2];
  183. Y = v->s.dest[0];
  184. dsp->put_pixels_clamped(block[0], Y, ys);
  185. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  186. Y += ys * 8;
  187. dsp->put_pixels_clamped(block[2], Y, ys);
  188. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  189. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  190. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  191. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  192. }
  193. }
  194. /** Do motion compensation over 1 macroblock
  195. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  196. */
  197. static void vc1_mc_1mv(VC1Context *v, int dir)
  198. {
  199. MpegEncContext *s = &v->s;
  200. DSPContext *dsp = &v->s.dsp;
  201. uint8_t *srcY, *srcU, *srcV;
  202. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  203. if(!v->s.last_picture.data[0])return;
  204. mx = s->mv[dir][0][0];
  205. my = s->mv[dir][0][1];
  206. // store motion vectors for further use in B frames
  207. if(s->pict_type == FF_P_TYPE) {
  208. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  209. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  210. }
  211. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  212. uvmy = (my + ((my & 3) == 3)) >> 1;
  213. if(v->fastuvmc) {
  214. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  215. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  216. }
  217. if(!dir) {
  218. srcY = s->last_picture.data[0];
  219. srcU = s->last_picture.data[1];
  220. srcV = s->last_picture.data[2];
  221. } else {
  222. srcY = s->next_picture.data[0];
  223. srcU = s->next_picture.data[1];
  224. srcV = s->next_picture.data[2];
  225. }
  226. src_x = s->mb_x * 16 + (mx >> 2);
  227. src_y = s->mb_y * 16 + (my >> 2);
  228. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  229. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  230. if(v->profile != PROFILE_ADVANCED){
  231. src_x = av_clip( src_x, -16, s->mb_width * 16);
  232. src_y = av_clip( src_y, -16, s->mb_height * 16);
  233. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  234. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  235. }else{
  236. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  237. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  238. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  239. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  240. }
  241. srcY += src_y * s->linesize + src_x;
  242. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  243. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  244. /* for grayscale we should not try to read from unknown area */
  245. if(s->flags & CODEC_FLAG_GRAY) {
  246. srcU = s->edge_emu_buffer + 18 * s->linesize;
  247. srcV = s->edge_emu_buffer + 18 * s->linesize;
  248. }
  249. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  250. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  251. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  252. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  253. srcY -= s->mspel * (1 + s->linesize);
  254. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  255. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  256. srcY = s->edge_emu_buffer;
  257. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  258. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  259. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  260. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  261. srcU = uvbuf;
  262. srcV = uvbuf + 16;
  263. /* if we deal with range reduction we need to scale source blocks */
  264. if(v->rangeredfrm) {
  265. int i, j;
  266. uint8_t *src, *src2;
  267. src = srcY;
  268. for(j = 0; j < 17 + s->mspel*2; j++) {
  269. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  270. src += s->linesize;
  271. }
  272. src = srcU; src2 = srcV;
  273. for(j = 0; j < 9; j++) {
  274. for(i = 0; i < 9; i++) {
  275. src[i] = ((src[i] - 128) >> 1) + 128;
  276. src2[i] = ((src2[i] - 128) >> 1) + 128;
  277. }
  278. src += s->uvlinesize;
  279. src2 += s->uvlinesize;
  280. }
  281. }
  282. /* if we deal with intensity compensation we need to scale source blocks */
  283. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  284. int i, j;
  285. uint8_t *src, *src2;
  286. src = srcY;
  287. for(j = 0; j < 17 + s->mspel*2; j++) {
  288. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  289. src += s->linesize;
  290. }
  291. src = srcU; src2 = srcV;
  292. for(j = 0; j < 9; j++) {
  293. for(i = 0; i < 9; i++) {
  294. src[i] = v->lutuv[src[i]];
  295. src2[i] = v->lutuv[src2[i]];
  296. }
  297. src += s->uvlinesize;
  298. src2 += s->uvlinesize;
  299. }
  300. }
  301. srcY += s->mspel * (1 + s->linesize);
  302. }
  303. if(s->mspel) {
  304. dxy = ((my & 3) << 2) | (mx & 3);
  305. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  306. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  307. srcY += s->linesize * 8;
  308. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  309. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  310. } else { // hpel mc - always used for luma
  311. dxy = (my & 2) | ((mx & 2) >> 1);
  312. if(!v->rnd)
  313. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  314. else
  315. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  316. }
  317. if(s->flags & CODEC_FLAG_GRAY) return;
  318. /* Chroma MC always uses qpel bilinear */
  319. uvmx = (uvmx&3)<<1;
  320. uvmy = (uvmy&3)<<1;
  321. if(!v->rnd){
  322. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  323. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  324. }else{
  325. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  326. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  327. }
  328. }
  329. /** Do motion compensation for 4-MV macroblock - luminance block
  330. */
  331. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  332. {
  333. MpegEncContext *s = &v->s;
  334. DSPContext *dsp = &v->s.dsp;
  335. uint8_t *srcY;
  336. int dxy, mx, my, src_x, src_y;
  337. int off;
  338. if(!v->s.last_picture.data[0])return;
  339. mx = s->mv[0][n][0];
  340. my = s->mv[0][n][1];
  341. srcY = s->last_picture.data[0];
  342. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  343. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  344. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  345. if(v->profile != PROFILE_ADVANCED){
  346. src_x = av_clip( src_x, -16, s->mb_width * 16);
  347. src_y = av_clip( src_y, -16, s->mb_height * 16);
  348. }else{
  349. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  350. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  351. }
  352. srcY += src_y * s->linesize + src_x;
  353. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  354. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  355. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  356. srcY -= s->mspel * (1 + s->linesize);
  357. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  358. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  359. srcY = s->edge_emu_buffer;
  360. /* if we deal with range reduction we need to scale source blocks */
  361. if(v->rangeredfrm) {
  362. int i, j;
  363. uint8_t *src;
  364. src = srcY;
  365. for(j = 0; j < 9 + s->mspel*2; j++) {
  366. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  367. src += s->linesize;
  368. }
  369. }
  370. /* if we deal with intensity compensation we need to scale source blocks */
  371. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  372. int i, j;
  373. uint8_t *src;
  374. src = srcY;
  375. for(j = 0; j < 9 + s->mspel*2; j++) {
  376. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  377. src += s->linesize;
  378. }
  379. }
  380. srcY += s->mspel * (1 + s->linesize);
  381. }
  382. if(s->mspel) {
  383. dxy = ((my & 3) << 2) | (mx & 3);
  384. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  385. } else { // hpel mc - always used for luma
  386. dxy = (my & 2) | ((mx & 2) >> 1);
  387. if(!v->rnd)
  388. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  389. else
  390. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  391. }
  392. }
  393. static inline int median4(int a, int b, int c, int d)
  394. {
  395. if(a < b) {
  396. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  397. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  398. } else {
  399. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  400. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  401. }
  402. }
  403. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  404. */
  405. static void vc1_mc_4mv_chroma(VC1Context *v)
  406. {
  407. MpegEncContext *s = &v->s;
  408. DSPContext *dsp = &v->s.dsp;
  409. uint8_t *srcU, *srcV;
  410. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  411. int i, idx, tx = 0, ty = 0;
  412. int mvx[4], mvy[4], intra[4];
  413. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  414. if(!v->s.last_picture.data[0])return;
  415. if(s->flags & CODEC_FLAG_GRAY) return;
  416. for(i = 0; i < 4; i++) {
  417. mvx[i] = s->mv[0][i][0];
  418. mvy[i] = s->mv[0][i][1];
  419. intra[i] = v->mb_type[0][s->block_index[i]];
  420. }
  421. /* calculate chroma MV vector from four luma MVs */
  422. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  423. if(!idx) { // all blocks are inter
  424. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  425. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  426. } else if(count[idx] == 1) { // 3 inter blocks
  427. switch(idx) {
  428. case 0x1:
  429. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  430. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  431. break;
  432. case 0x2:
  433. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  434. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  435. break;
  436. case 0x4:
  437. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  438. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  439. break;
  440. case 0x8:
  441. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  442. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  443. break;
  444. }
  445. } else if(count[idx] == 2) {
  446. int t1 = 0, t2 = 0;
  447. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  448. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  449. tx = (mvx[t1] + mvx[t2]) / 2;
  450. ty = (mvy[t1] + mvy[t2]) / 2;
  451. } else {
  452. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  453. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  454. return; //no need to do MC for inter blocks
  455. }
  456. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  457. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  458. uvmx = (tx + ((tx&3) == 3)) >> 1;
  459. uvmy = (ty + ((ty&3) == 3)) >> 1;
  460. if(v->fastuvmc) {
  461. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  462. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  463. }
  464. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  465. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  466. if(v->profile != PROFILE_ADVANCED){
  467. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  468. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  469. }else{
  470. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  471. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  472. }
  473. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  474. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  475. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  476. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  477. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  478. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  479. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  480. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  481. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  482. srcU = s->edge_emu_buffer;
  483. srcV = s->edge_emu_buffer + 16;
  484. /* if we deal with range reduction we need to scale source blocks */
  485. if(v->rangeredfrm) {
  486. int i, j;
  487. uint8_t *src, *src2;
  488. src = srcU; src2 = srcV;
  489. for(j = 0; j < 9; j++) {
  490. for(i = 0; i < 9; i++) {
  491. src[i] = ((src[i] - 128) >> 1) + 128;
  492. src2[i] = ((src2[i] - 128) >> 1) + 128;
  493. }
  494. src += s->uvlinesize;
  495. src2 += s->uvlinesize;
  496. }
  497. }
  498. /* if we deal with intensity compensation we need to scale source blocks */
  499. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  500. int i, j;
  501. uint8_t *src, *src2;
  502. src = srcU; src2 = srcV;
  503. for(j = 0; j < 9; j++) {
  504. for(i = 0; i < 9; i++) {
  505. src[i] = v->lutuv[src[i]];
  506. src2[i] = v->lutuv[src2[i]];
  507. }
  508. src += s->uvlinesize;
  509. src2 += s->uvlinesize;
  510. }
  511. }
  512. }
  513. /* Chroma MC always uses qpel bilinear */
  514. uvmx = (uvmx&3)<<1;
  515. uvmy = (uvmy&3)<<1;
  516. if(!v->rnd){
  517. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  518. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  519. }else{
  520. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  521. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  522. }
  523. }
  524. /***********************************************************************/
  525. /**
  526. * @defgroup vc1block VC-1 Block-level functions
  527. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  528. * @{
  529. */
  530. /**
  531. * @def GET_MQUANT
  532. * @brief Get macroblock-level quantizer scale
  533. */
  534. #define GET_MQUANT() \
  535. if (v->dquantfrm) \
  536. { \
  537. int edges = 0; \
  538. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  539. { \
  540. if (v->dqbilevel) \
  541. { \
  542. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  543. } \
  544. else \
  545. { \
  546. mqdiff = get_bits(gb, 3); \
  547. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  548. else mquant = get_bits(gb, 5); \
  549. } \
  550. } \
  551. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  552. edges = 1 << v->dqsbedge; \
  553. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  554. edges = (3 << v->dqsbedge) % 15; \
  555. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  556. edges = 15; \
  557. if((edges&1) && !s->mb_x) \
  558. mquant = v->altpq; \
  559. if((edges&2) && s->first_slice_line) \
  560. mquant = v->altpq; \
  561. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  562. mquant = v->altpq; \
  563. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  564. mquant = v->altpq; \
  565. }
  566. /**
  567. * @def GET_MVDATA(_dmv_x, _dmv_y)
  568. * @brief Get MV differentials
  569. * @see MVDATA decoding from 8.3.5.2, p(1)20
  570. * @param _dmv_x Horizontal differential for decoded MV
  571. * @param _dmv_y Vertical differential for decoded MV
  572. */
  573. #define GET_MVDATA(_dmv_x, _dmv_y) \
  574. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  575. VC1_MV_DIFF_VLC_BITS, 2); \
  576. if (index > 36) \
  577. { \
  578. mb_has_coeffs = 1; \
  579. index -= 37; \
  580. } \
  581. else mb_has_coeffs = 0; \
  582. s->mb_intra = 0; \
  583. if (!index) { _dmv_x = _dmv_y = 0; } \
  584. else if (index == 35) \
  585. { \
  586. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  587. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  588. } \
  589. else if (index == 36) \
  590. { \
  591. _dmv_x = 0; \
  592. _dmv_y = 0; \
  593. s->mb_intra = 1; \
  594. } \
  595. else \
  596. { \
  597. index1 = index%6; \
  598. if (!s->quarter_sample && index1 == 5) val = 1; \
  599. else val = 0; \
  600. if(size_table[index1] - val > 0) \
  601. val = get_bits(gb, size_table[index1] - val); \
  602. else val = 0; \
  603. sign = 0 - (val&1); \
  604. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  605. \
  606. index1 = index/6; \
  607. if (!s->quarter_sample && index1 == 5) val = 1; \
  608. else val = 0; \
  609. if(size_table[index1] - val > 0) \
  610. val = get_bits(gb, size_table[index1] - val); \
  611. else val = 0; \
  612. sign = 0 - (val&1); \
  613. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  614. }
  615. /** Predict and set motion vector
  616. */
  617. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  618. {
  619. int xy, wrap, off = 0;
  620. int16_t *A, *B, *C;
  621. int px, py;
  622. int sum;
  623. /* scale MV difference to be quad-pel */
  624. dmv_x <<= 1 - s->quarter_sample;
  625. dmv_y <<= 1 - s->quarter_sample;
  626. wrap = s->b8_stride;
  627. xy = s->block_index[n];
  628. if(s->mb_intra){
  629. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  630. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  631. s->current_picture.motion_val[1][xy][0] = 0;
  632. s->current_picture.motion_val[1][xy][1] = 0;
  633. if(mv1) { /* duplicate motion data for 1-MV block */
  634. s->current_picture.motion_val[0][xy + 1][0] = 0;
  635. s->current_picture.motion_val[0][xy + 1][1] = 0;
  636. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  637. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  638. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  639. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  640. s->current_picture.motion_val[1][xy + 1][0] = 0;
  641. s->current_picture.motion_val[1][xy + 1][1] = 0;
  642. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  643. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  644. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  645. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  646. }
  647. return;
  648. }
  649. C = s->current_picture.motion_val[0][xy - 1];
  650. A = s->current_picture.motion_val[0][xy - wrap];
  651. if(mv1)
  652. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  653. else {
  654. //in 4-MV mode different blocks have different B predictor position
  655. switch(n){
  656. case 0:
  657. off = (s->mb_x > 0) ? -1 : 1;
  658. break;
  659. case 1:
  660. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  661. break;
  662. case 2:
  663. off = 1;
  664. break;
  665. case 3:
  666. off = -1;
  667. }
  668. }
  669. B = s->current_picture.motion_val[0][xy - wrap + off];
  670. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  671. if(s->mb_width == 1) {
  672. px = A[0];
  673. py = A[1];
  674. } else {
  675. px = mid_pred(A[0], B[0], C[0]);
  676. py = mid_pred(A[1], B[1], C[1]);
  677. }
  678. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  679. px = C[0];
  680. py = C[1];
  681. } else {
  682. px = py = 0;
  683. }
  684. /* Pullback MV as specified in 8.3.5.3.4 */
  685. {
  686. int qx, qy, X, Y;
  687. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  688. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  689. X = (s->mb_width << 6) - 4;
  690. Y = (s->mb_height << 6) - 4;
  691. if(mv1) {
  692. if(qx + px < -60) px = -60 - qx;
  693. if(qy + py < -60) py = -60 - qy;
  694. } else {
  695. if(qx + px < -28) px = -28 - qx;
  696. if(qy + py < -28) py = -28 - qy;
  697. }
  698. if(qx + px > X) px = X - qx;
  699. if(qy + py > Y) py = Y - qy;
  700. }
  701. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  702. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  703. if(is_intra[xy - wrap])
  704. sum = FFABS(px) + FFABS(py);
  705. else
  706. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  707. if(sum > 32) {
  708. if(get_bits1(&s->gb)) {
  709. px = A[0];
  710. py = A[1];
  711. } else {
  712. px = C[0];
  713. py = C[1];
  714. }
  715. } else {
  716. if(is_intra[xy - 1])
  717. sum = FFABS(px) + FFABS(py);
  718. else
  719. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  720. if(sum > 32) {
  721. if(get_bits1(&s->gb)) {
  722. px = A[0];
  723. py = A[1];
  724. } else {
  725. px = C[0];
  726. py = C[1];
  727. }
  728. }
  729. }
  730. }
  731. /* store MV using signed modulus of MV range defined in 4.11 */
  732. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  733. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  734. if(mv1) { /* duplicate motion data for 1-MV block */
  735. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  736. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  737. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  738. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  739. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  740. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  741. }
  742. }
  743. /** Motion compensation for direct or interpolated blocks in B-frames
  744. */
  745. static void vc1_interp_mc(VC1Context *v)
  746. {
  747. MpegEncContext *s = &v->s;
  748. DSPContext *dsp = &v->s.dsp;
  749. uint8_t *srcY, *srcU, *srcV;
  750. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  751. if(!v->s.next_picture.data[0])return;
  752. mx = s->mv[1][0][0];
  753. my = s->mv[1][0][1];
  754. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  755. uvmy = (my + ((my & 3) == 3)) >> 1;
  756. if(v->fastuvmc) {
  757. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  758. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  759. }
  760. srcY = s->next_picture.data[0];
  761. srcU = s->next_picture.data[1];
  762. srcV = s->next_picture.data[2];
  763. src_x = s->mb_x * 16 + (mx >> 2);
  764. src_y = s->mb_y * 16 + (my >> 2);
  765. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  766. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  767. if(v->profile != PROFILE_ADVANCED){
  768. src_x = av_clip( src_x, -16, s->mb_width * 16);
  769. src_y = av_clip( src_y, -16, s->mb_height * 16);
  770. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  771. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  772. }else{
  773. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  774. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  775. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  776. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  777. }
  778. srcY += src_y * s->linesize + src_x;
  779. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  780. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  781. /* for grayscale we should not try to read from unknown area */
  782. if(s->flags & CODEC_FLAG_GRAY) {
  783. srcU = s->edge_emu_buffer + 18 * s->linesize;
  784. srcV = s->edge_emu_buffer + 18 * s->linesize;
  785. }
  786. if(v->rangeredfrm
  787. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  788. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  789. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  790. srcY -= s->mspel * (1 + s->linesize);
  791. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  792. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  793. srcY = s->edge_emu_buffer;
  794. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  795. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  796. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  797. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  798. srcU = uvbuf;
  799. srcV = uvbuf + 16;
  800. /* if we deal with range reduction we need to scale source blocks */
  801. if(v->rangeredfrm) {
  802. int i, j;
  803. uint8_t *src, *src2;
  804. src = srcY;
  805. for(j = 0; j < 17 + s->mspel*2; j++) {
  806. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  807. src += s->linesize;
  808. }
  809. src = srcU; src2 = srcV;
  810. for(j = 0; j < 9; j++) {
  811. for(i = 0; i < 9; i++) {
  812. src[i] = ((src[i] - 128) >> 1) + 128;
  813. src2[i] = ((src2[i] - 128) >> 1) + 128;
  814. }
  815. src += s->uvlinesize;
  816. src2 += s->uvlinesize;
  817. }
  818. }
  819. srcY += s->mspel * (1 + s->linesize);
  820. }
  821. if(s->mspel) {
  822. dxy = ((my & 3) << 2) | (mx & 3);
  823. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  824. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  825. srcY += s->linesize * 8;
  826. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  827. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  828. } else { // hpel mc
  829. dxy = (my & 2) | ((mx & 2) >> 1);
  830. if(!v->rnd)
  831. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  832. else
  833. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  834. }
  835. if(s->flags & CODEC_FLAG_GRAY) return;
  836. /* Chroma MC always uses qpel blilinear */
  837. uvmx = (uvmx&3)<<1;
  838. uvmy = (uvmy&3)<<1;
  839. if(!v->rnd){
  840. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  841. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  842. }else{
  843. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  844. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  845. }
  846. }
  847. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  848. {
  849. int n = bfrac;
  850. #if B_FRACTION_DEN==256
  851. if(inv)
  852. n -= 256;
  853. if(!qs)
  854. return 2 * ((value * n + 255) >> 9);
  855. return (value * n + 128) >> 8;
  856. #else
  857. if(inv)
  858. n -= B_FRACTION_DEN;
  859. if(!qs)
  860. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  861. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  862. #endif
  863. }
  864. /** Reconstruct motion vector for B-frame and do motion compensation
  865. */
  866. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  867. {
  868. if(v->use_ic) {
  869. v->mv_mode2 = v->mv_mode;
  870. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  871. }
  872. if(direct) {
  873. vc1_mc_1mv(v, 0);
  874. vc1_interp_mc(v);
  875. if(v->use_ic) v->mv_mode = v->mv_mode2;
  876. return;
  877. }
  878. if(mode == BMV_TYPE_INTERPOLATED) {
  879. vc1_mc_1mv(v, 0);
  880. vc1_interp_mc(v);
  881. if(v->use_ic) v->mv_mode = v->mv_mode2;
  882. return;
  883. }
  884. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  885. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  886. if(v->use_ic) v->mv_mode = v->mv_mode2;
  887. }
  888. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  889. {
  890. MpegEncContext *s = &v->s;
  891. int xy, wrap, off = 0;
  892. int16_t *A, *B, *C;
  893. int px, py;
  894. int sum;
  895. int r_x, r_y;
  896. const uint8_t *is_intra = v->mb_type[0];
  897. r_x = v->range_x;
  898. r_y = v->range_y;
  899. /* scale MV difference to be quad-pel */
  900. dmv_x[0] <<= 1 - s->quarter_sample;
  901. dmv_y[0] <<= 1 - s->quarter_sample;
  902. dmv_x[1] <<= 1 - s->quarter_sample;
  903. dmv_y[1] <<= 1 - s->quarter_sample;
  904. wrap = s->b8_stride;
  905. xy = s->block_index[0];
  906. if(s->mb_intra) {
  907. s->current_picture.motion_val[0][xy][0] =
  908. s->current_picture.motion_val[0][xy][1] =
  909. s->current_picture.motion_val[1][xy][0] =
  910. s->current_picture.motion_val[1][xy][1] = 0;
  911. return;
  912. }
  913. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  914. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  915. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  916. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  917. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  918. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  919. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  920. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  921. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  922. if(direct) {
  923. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  924. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  925. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  926. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  927. return;
  928. }
  929. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  930. C = s->current_picture.motion_val[0][xy - 2];
  931. A = s->current_picture.motion_val[0][xy - wrap*2];
  932. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  933. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  934. if(!s->mb_x) C[0] = C[1] = 0;
  935. if(!s->first_slice_line) { // predictor A is not out of bounds
  936. if(s->mb_width == 1) {
  937. px = A[0];
  938. py = A[1];
  939. } else {
  940. px = mid_pred(A[0], B[0], C[0]);
  941. py = mid_pred(A[1], B[1], C[1]);
  942. }
  943. } else if(s->mb_x) { // predictor C is not out of bounds
  944. px = C[0];
  945. py = C[1];
  946. } else {
  947. px = py = 0;
  948. }
  949. /* Pullback MV as specified in 8.3.5.3.4 */
  950. {
  951. int qx, qy, X, Y;
  952. if(v->profile < PROFILE_ADVANCED) {
  953. qx = (s->mb_x << 5);
  954. qy = (s->mb_y << 5);
  955. X = (s->mb_width << 5) - 4;
  956. Y = (s->mb_height << 5) - 4;
  957. if(qx + px < -28) px = -28 - qx;
  958. if(qy + py < -28) py = -28 - qy;
  959. if(qx + px > X) px = X - qx;
  960. if(qy + py > Y) py = Y - qy;
  961. } else {
  962. qx = (s->mb_x << 6);
  963. qy = (s->mb_y << 6);
  964. X = (s->mb_width << 6) - 4;
  965. Y = (s->mb_height << 6) - 4;
  966. if(qx + px < -60) px = -60 - qx;
  967. if(qy + py < -60) py = -60 - qy;
  968. if(qx + px > X) px = X - qx;
  969. if(qy + py > Y) py = Y - qy;
  970. }
  971. }
  972. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  973. if(0 && !s->first_slice_line && s->mb_x) {
  974. if(is_intra[xy - wrap])
  975. sum = FFABS(px) + FFABS(py);
  976. else
  977. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  978. if(sum > 32) {
  979. if(get_bits1(&s->gb)) {
  980. px = A[0];
  981. py = A[1];
  982. } else {
  983. px = C[0];
  984. py = C[1];
  985. }
  986. } else {
  987. if(is_intra[xy - 2])
  988. sum = FFABS(px) + FFABS(py);
  989. else
  990. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  991. if(sum > 32) {
  992. if(get_bits1(&s->gb)) {
  993. px = A[0];
  994. py = A[1];
  995. } else {
  996. px = C[0];
  997. py = C[1];
  998. }
  999. }
  1000. }
  1001. }
  1002. /* store MV using signed modulus of MV range defined in 4.11 */
  1003. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1004. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1005. }
  1006. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1007. C = s->current_picture.motion_val[1][xy - 2];
  1008. A = s->current_picture.motion_val[1][xy - wrap*2];
  1009. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1010. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1011. if(!s->mb_x) C[0] = C[1] = 0;
  1012. if(!s->first_slice_line) { // predictor A is not out of bounds
  1013. if(s->mb_width == 1) {
  1014. px = A[0];
  1015. py = A[1];
  1016. } else {
  1017. px = mid_pred(A[0], B[0], C[0]);
  1018. py = mid_pred(A[1], B[1], C[1]);
  1019. }
  1020. } else if(s->mb_x) { // predictor C is not out of bounds
  1021. px = C[0];
  1022. py = C[1];
  1023. } else {
  1024. px = py = 0;
  1025. }
  1026. /* Pullback MV as specified in 8.3.5.3.4 */
  1027. {
  1028. int qx, qy, X, Y;
  1029. if(v->profile < PROFILE_ADVANCED) {
  1030. qx = (s->mb_x << 5);
  1031. qy = (s->mb_y << 5);
  1032. X = (s->mb_width << 5) - 4;
  1033. Y = (s->mb_height << 5) - 4;
  1034. if(qx + px < -28) px = -28 - qx;
  1035. if(qy + py < -28) py = -28 - qy;
  1036. if(qx + px > X) px = X - qx;
  1037. if(qy + py > Y) py = Y - qy;
  1038. } else {
  1039. qx = (s->mb_x << 6);
  1040. qy = (s->mb_y << 6);
  1041. X = (s->mb_width << 6) - 4;
  1042. Y = (s->mb_height << 6) - 4;
  1043. if(qx + px < -60) px = -60 - qx;
  1044. if(qy + py < -60) py = -60 - qy;
  1045. if(qx + px > X) px = X - qx;
  1046. if(qy + py > Y) py = Y - qy;
  1047. }
  1048. }
  1049. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1050. if(0 && !s->first_slice_line && s->mb_x) {
  1051. if(is_intra[xy - wrap])
  1052. sum = FFABS(px) + FFABS(py);
  1053. else
  1054. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1055. if(sum > 32) {
  1056. if(get_bits1(&s->gb)) {
  1057. px = A[0];
  1058. py = A[1];
  1059. } else {
  1060. px = C[0];
  1061. py = C[1];
  1062. }
  1063. } else {
  1064. if(is_intra[xy - 2])
  1065. sum = FFABS(px) + FFABS(py);
  1066. else
  1067. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1068. if(sum > 32) {
  1069. if(get_bits1(&s->gb)) {
  1070. px = A[0];
  1071. py = A[1];
  1072. } else {
  1073. px = C[0];
  1074. py = C[1];
  1075. }
  1076. }
  1077. }
  1078. }
  1079. /* store MV using signed modulus of MV range defined in 4.11 */
  1080. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1081. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1082. }
  1083. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1084. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1085. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1086. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1087. }
  1088. /** Get predicted DC value for I-frames only
  1089. * prediction dir: left=0, top=1
  1090. * @param s MpegEncContext
  1091. * @param overlap flag indicating that overlap filtering is used
  1092. * @param pq integer part of picture quantizer
  1093. * @param[in] n block index in the current MB
  1094. * @param dc_val_ptr Pointer to DC predictor
  1095. * @param dir_ptr Prediction direction for use in AC prediction
  1096. */
  1097. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1098. int16_t **dc_val_ptr, int *dir_ptr)
  1099. {
  1100. int a, b, c, wrap, pred, scale;
  1101. int16_t *dc_val;
  1102. static const uint16_t dcpred[32] = {
  1103. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1104. 114, 102, 93, 85, 79, 73, 68, 64,
  1105. 60, 57, 54, 51, 49, 47, 45, 43,
  1106. 41, 39, 38, 37, 35, 34, 33
  1107. };
  1108. /* find prediction - wmv3_dc_scale always used here in fact */
  1109. if (n < 4) scale = s->y_dc_scale;
  1110. else scale = s->c_dc_scale;
  1111. wrap = s->block_wrap[n];
  1112. dc_val= s->dc_val[0] + s->block_index[n];
  1113. /* B A
  1114. * C X
  1115. */
  1116. c = dc_val[ - 1];
  1117. b = dc_val[ - 1 - wrap];
  1118. a = dc_val[ - wrap];
  1119. if (pq < 9 || !overlap)
  1120. {
  1121. /* Set outer values */
  1122. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1123. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1124. }
  1125. else
  1126. {
  1127. /* Set outer values */
  1128. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1129. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1130. }
  1131. if (abs(a - b) <= abs(b - c)) {
  1132. pred = c;
  1133. *dir_ptr = 1;//left
  1134. } else {
  1135. pred = a;
  1136. *dir_ptr = 0;//top
  1137. }
  1138. /* update predictor */
  1139. *dc_val_ptr = &dc_val[0];
  1140. return pred;
  1141. }
  1142. /** Get predicted DC value
  1143. * prediction dir: left=0, top=1
  1144. * @param s MpegEncContext
  1145. * @param overlap flag indicating that overlap filtering is used
  1146. * @param pq integer part of picture quantizer
  1147. * @param[in] n block index in the current MB
  1148. * @param a_avail flag indicating top block availability
  1149. * @param c_avail flag indicating left block availability
  1150. * @param dc_val_ptr Pointer to DC predictor
  1151. * @param dir_ptr Prediction direction for use in AC prediction
  1152. */
  1153. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1154. int a_avail, int c_avail,
  1155. int16_t **dc_val_ptr, int *dir_ptr)
  1156. {
  1157. int a, b, c, wrap, pred;
  1158. int16_t *dc_val;
  1159. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1160. int q1, q2 = 0;
  1161. wrap = s->block_wrap[n];
  1162. dc_val= s->dc_val[0] + s->block_index[n];
  1163. /* B A
  1164. * C X
  1165. */
  1166. c = dc_val[ - 1];
  1167. b = dc_val[ - 1 - wrap];
  1168. a = dc_val[ - wrap];
  1169. /* scale predictors if needed */
  1170. q1 = s->current_picture.qscale_table[mb_pos];
  1171. if(c_avail && (n!= 1 && n!=3)) {
  1172. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1173. if(q2 && q2 != q1)
  1174. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1175. }
  1176. if(a_avail && (n!= 2 && n!=3)) {
  1177. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1178. if(q2 && q2 != q1)
  1179. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1180. }
  1181. if(a_avail && c_avail && (n!=3)) {
  1182. int off = mb_pos;
  1183. if(n != 1) off--;
  1184. if(n != 2) off -= s->mb_stride;
  1185. q2 = s->current_picture.qscale_table[off];
  1186. if(q2 && q2 != q1)
  1187. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1188. }
  1189. if(a_avail && c_avail) {
  1190. if(abs(a - b) <= abs(b - c)) {
  1191. pred = c;
  1192. *dir_ptr = 1;//left
  1193. } else {
  1194. pred = a;
  1195. *dir_ptr = 0;//top
  1196. }
  1197. } else if(a_avail) {
  1198. pred = a;
  1199. *dir_ptr = 0;//top
  1200. } else if(c_avail) {
  1201. pred = c;
  1202. *dir_ptr = 1;//left
  1203. } else {
  1204. pred = 0;
  1205. *dir_ptr = 1;//left
  1206. }
  1207. /* update predictor */
  1208. *dc_val_ptr = &dc_val[0];
  1209. return pred;
  1210. }
  1211. /** @} */ // Block group
  1212. /**
  1213. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1214. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1215. * @{
  1216. */
  1217. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1218. {
  1219. int xy, wrap, pred, a, b, c;
  1220. xy = s->block_index[n];
  1221. wrap = s->b8_stride;
  1222. /* B C
  1223. * A X
  1224. */
  1225. a = s->coded_block[xy - 1 ];
  1226. b = s->coded_block[xy - 1 - wrap];
  1227. c = s->coded_block[xy - wrap];
  1228. if (b == c) {
  1229. pred = a;
  1230. } else {
  1231. pred = c;
  1232. }
  1233. /* store value */
  1234. *coded_block_ptr = &s->coded_block[xy];
  1235. return pred;
  1236. }
  1237. /**
  1238. * Decode one AC coefficient
  1239. * @param v The VC1 context
  1240. * @param last Last coefficient
  1241. * @param skip How much zero coefficients to skip
  1242. * @param value Decoded AC coefficient value
  1243. * @param codingset set of VLC to decode data
  1244. * @see 8.1.3.4
  1245. */
  1246. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1247. {
  1248. GetBitContext *gb = &v->s.gb;
  1249. int index, escape, run = 0, level = 0, lst = 0;
  1250. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1251. if (index != vc1_ac_sizes[codingset] - 1) {
  1252. run = vc1_index_decode_table[codingset][index][0];
  1253. level = vc1_index_decode_table[codingset][index][1];
  1254. lst = index >= vc1_last_decode_table[codingset];
  1255. if(get_bits1(gb))
  1256. level = -level;
  1257. } else {
  1258. escape = decode210(gb);
  1259. if (escape != 2) {
  1260. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1261. run = vc1_index_decode_table[codingset][index][0];
  1262. level = vc1_index_decode_table[codingset][index][1];
  1263. lst = index >= vc1_last_decode_table[codingset];
  1264. if(escape == 0) {
  1265. if(lst)
  1266. level += vc1_last_delta_level_table[codingset][run];
  1267. else
  1268. level += vc1_delta_level_table[codingset][run];
  1269. } else {
  1270. if(lst)
  1271. run += vc1_last_delta_run_table[codingset][level] + 1;
  1272. else
  1273. run += vc1_delta_run_table[codingset][level] + 1;
  1274. }
  1275. if(get_bits1(gb))
  1276. level = -level;
  1277. } else {
  1278. int sign;
  1279. lst = get_bits1(gb);
  1280. if(v->s.esc3_level_length == 0) {
  1281. if(v->pq < 8 || v->dquantfrm) { // table 59
  1282. v->s.esc3_level_length = get_bits(gb, 3);
  1283. if(!v->s.esc3_level_length)
  1284. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1285. } else { //table 60
  1286. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1287. }
  1288. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1289. }
  1290. run = get_bits(gb, v->s.esc3_run_length);
  1291. sign = get_bits1(gb);
  1292. level = get_bits(gb, v->s.esc3_level_length);
  1293. if(sign)
  1294. level = -level;
  1295. }
  1296. }
  1297. *last = lst;
  1298. *skip = run;
  1299. *value = level;
  1300. }
  1301. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1302. * @param v VC1Context
  1303. * @param block block to decode
  1304. * @param[in] n subblock index
  1305. * @param coded are AC coeffs present or not
  1306. * @param codingset set of VLC to decode data
  1307. */
  1308. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1309. {
  1310. GetBitContext *gb = &v->s.gb;
  1311. MpegEncContext *s = &v->s;
  1312. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1313. int i;
  1314. int16_t *dc_val;
  1315. int16_t *ac_val, *ac_val2;
  1316. int dcdiff;
  1317. /* Get DC differential */
  1318. if (n < 4) {
  1319. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1320. } else {
  1321. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1322. }
  1323. if (dcdiff < 0){
  1324. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1325. return -1;
  1326. }
  1327. if (dcdiff)
  1328. {
  1329. if (dcdiff == 119 /* ESC index value */)
  1330. {
  1331. /* TODO: Optimize */
  1332. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1333. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1334. else dcdiff = get_bits(gb, 8);
  1335. }
  1336. else
  1337. {
  1338. if (v->pq == 1)
  1339. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1340. else if (v->pq == 2)
  1341. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1342. }
  1343. if (get_bits1(gb))
  1344. dcdiff = -dcdiff;
  1345. }
  1346. /* Prediction */
  1347. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1348. *dc_val = dcdiff;
  1349. /* Store the quantized DC coeff, used for prediction */
  1350. if (n < 4) {
  1351. block[0] = dcdiff * s->y_dc_scale;
  1352. } else {
  1353. block[0] = dcdiff * s->c_dc_scale;
  1354. }
  1355. /* Skip ? */
  1356. if (!coded) {
  1357. goto not_coded;
  1358. }
  1359. //AC Decoding
  1360. i = 1;
  1361. {
  1362. int last = 0, skip, value;
  1363. const int8_t *zz_table;
  1364. int scale;
  1365. int k;
  1366. scale = v->pq * 2 + v->halfpq;
  1367. if(v->s.ac_pred) {
  1368. if(!dc_pred_dir)
  1369. zz_table = wmv1_scantable[2];
  1370. else
  1371. zz_table = wmv1_scantable[3];
  1372. } else
  1373. zz_table = wmv1_scantable[1];
  1374. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1375. ac_val2 = ac_val;
  1376. if(dc_pred_dir) //left
  1377. ac_val -= 16;
  1378. else //top
  1379. ac_val -= 16 * s->block_wrap[n];
  1380. while (!last) {
  1381. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1382. i += skip;
  1383. if(i > 63)
  1384. break;
  1385. block[zz_table[i++]] = value;
  1386. }
  1387. /* apply AC prediction if needed */
  1388. if(s->ac_pred) {
  1389. if(dc_pred_dir) { //left
  1390. for(k = 1; k < 8; k++)
  1391. block[k << 3] += ac_val[k];
  1392. } else { //top
  1393. for(k = 1; k < 8; k++)
  1394. block[k] += ac_val[k + 8];
  1395. }
  1396. }
  1397. /* save AC coeffs for further prediction */
  1398. for(k = 1; k < 8; k++) {
  1399. ac_val2[k] = block[k << 3];
  1400. ac_val2[k + 8] = block[k];
  1401. }
  1402. /* scale AC coeffs */
  1403. for(k = 1; k < 64; k++)
  1404. if(block[k]) {
  1405. block[k] *= scale;
  1406. if(!v->pquantizer)
  1407. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1408. }
  1409. if(s->ac_pred) i = 63;
  1410. }
  1411. not_coded:
  1412. if(!coded) {
  1413. int k, scale;
  1414. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1415. ac_val2 = ac_val;
  1416. i = 0;
  1417. scale = v->pq * 2 + v->halfpq;
  1418. memset(ac_val2, 0, 16 * 2);
  1419. if(dc_pred_dir) {//left
  1420. ac_val -= 16;
  1421. if(s->ac_pred)
  1422. memcpy(ac_val2, ac_val, 8 * 2);
  1423. } else {//top
  1424. ac_val -= 16 * s->block_wrap[n];
  1425. if(s->ac_pred)
  1426. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1427. }
  1428. /* apply AC prediction if needed */
  1429. if(s->ac_pred) {
  1430. if(dc_pred_dir) { //left
  1431. for(k = 1; k < 8; k++) {
  1432. block[k << 3] = ac_val[k] * scale;
  1433. if(!v->pquantizer && block[k << 3])
  1434. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1435. }
  1436. } else { //top
  1437. for(k = 1; k < 8; k++) {
  1438. block[k] = ac_val[k + 8] * scale;
  1439. if(!v->pquantizer && block[k])
  1440. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1441. }
  1442. }
  1443. i = 63;
  1444. }
  1445. }
  1446. s->block_last_index[n] = i;
  1447. return 0;
  1448. }
  1449. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1450. * @param v VC1Context
  1451. * @param block block to decode
  1452. * @param[in] n subblock number
  1453. * @param coded are AC coeffs present or not
  1454. * @param codingset set of VLC to decode data
  1455. * @param mquant quantizer value for this macroblock
  1456. */
  1457. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1458. {
  1459. GetBitContext *gb = &v->s.gb;
  1460. MpegEncContext *s = &v->s;
  1461. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1462. int i;
  1463. int16_t *dc_val;
  1464. int16_t *ac_val, *ac_val2;
  1465. int dcdiff;
  1466. int a_avail = v->a_avail, c_avail = v->c_avail;
  1467. int use_pred = s->ac_pred;
  1468. int scale;
  1469. int q1, q2 = 0;
  1470. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1471. /* Get DC differential */
  1472. if (n < 4) {
  1473. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1474. } else {
  1475. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1476. }
  1477. if (dcdiff < 0){
  1478. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1479. return -1;
  1480. }
  1481. if (dcdiff)
  1482. {
  1483. if (dcdiff == 119 /* ESC index value */)
  1484. {
  1485. /* TODO: Optimize */
  1486. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1487. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1488. else dcdiff = get_bits(gb, 8);
  1489. }
  1490. else
  1491. {
  1492. if (mquant == 1)
  1493. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1494. else if (mquant == 2)
  1495. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1496. }
  1497. if (get_bits1(gb))
  1498. dcdiff = -dcdiff;
  1499. }
  1500. /* Prediction */
  1501. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1502. *dc_val = dcdiff;
  1503. /* Store the quantized DC coeff, used for prediction */
  1504. if (n < 4) {
  1505. block[0] = dcdiff * s->y_dc_scale;
  1506. } else {
  1507. block[0] = dcdiff * s->c_dc_scale;
  1508. }
  1509. //AC Decoding
  1510. i = 1;
  1511. /* check if AC is needed at all */
  1512. if(!a_avail && !c_avail) use_pred = 0;
  1513. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1514. ac_val2 = ac_val;
  1515. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1516. if(dc_pred_dir) //left
  1517. ac_val -= 16;
  1518. else //top
  1519. ac_val -= 16 * s->block_wrap[n];
  1520. q1 = s->current_picture.qscale_table[mb_pos];
  1521. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1522. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1523. if(dc_pred_dir && n==1) q2 = q1;
  1524. if(!dc_pred_dir && n==2) q2 = q1;
  1525. if(n==3) q2 = q1;
  1526. if(coded) {
  1527. int last = 0, skip, value;
  1528. const int8_t *zz_table;
  1529. int k;
  1530. if(v->s.ac_pred) {
  1531. if(!dc_pred_dir)
  1532. zz_table = wmv1_scantable[2];
  1533. else
  1534. zz_table = wmv1_scantable[3];
  1535. } else
  1536. zz_table = wmv1_scantable[1];
  1537. while (!last) {
  1538. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1539. i += skip;
  1540. if(i > 63)
  1541. break;
  1542. block[zz_table[i++]] = value;
  1543. }
  1544. /* apply AC prediction if needed */
  1545. if(use_pred) {
  1546. /* scale predictors if needed*/
  1547. if(q2 && q1!=q2) {
  1548. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1549. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1550. if(dc_pred_dir) { //left
  1551. for(k = 1; k < 8; k++)
  1552. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1553. } else { //top
  1554. for(k = 1; k < 8; k++)
  1555. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1556. }
  1557. } else {
  1558. if(dc_pred_dir) { //left
  1559. for(k = 1; k < 8; k++)
  1560. block[k << 3] += ac_val[k];
  1561. } else { //top
  1562. for(k = 1; k < 8; k++)
  1563. block[k] += ac_val[k + 8];
  1564. }
  1565. }
  1566. }
  1567. /* save AC coeffs for further prediction */
  1568. for(k = 1; k < 8; k++) {
  1569. ac_val2[k] = block[k << 3];
  1570. ac_val2[k + 8] = block[k];
  1571. }
  1572. /* scale AC coeffs */
  1573. for(k = 1; k < 64; k++)
  1574. if(block[k]) {
  1575. block[k] *= scale;
  1576. if(!v->pquantizer)
  1577. block[k] += (block[k] < 0) ? -mquant : mquant;
  1578. }
  1579. if(use_pred) i = 63;
  1580. } else { // no AC coeffs
  1581. int k;
  1582. memset(ac_val2, 0, 16 * 2);
  1583. if(dc_pred_dir) {//left
  1584. if(use_pred) {
  1585. memcpy(ac_val2, ac_val, 8 * 2);
  1586. if(q2 && q1!=q2) {
  1587. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1588. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1589. for(k = 1; k < 8; k++)
  1590. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1591. }
  1592. }
  1593. } else {//top
  1594. if(use_pred) {
  1595. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1596. if(q2 && q1!=q2) {
  1597. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1598. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1599. for(k = 1; k < 8; k++)
  1600. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1601. }
  1602. }
  1603. }
  1604. /* apply AC prediction if needed */
  1605. if(use_pred) {
  1606. if(dc_pred_dir) { //left
  1607. for(k = 1; k < 8; k++) {
  1608. block[k << 3] = ac_val2[k] * scale;
  1609. if(!v->pquantizer && block[k << 3])
  1610. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1611. }
  1612. } else { //top
  1613. for(k = 1; k < 8; k++) {
  1614. block[k] = ac_val2[k + 8] * scale;
  1615. if(!v->pquantizer && block[k])
  1616. block[k] += (block[k] < 0) ? -mquant : mquant;
  1617. }
  1618. }
  1619. i = 63;
  1620. }
  1621. }
  1622. s->block_last_index[n] = i;
  1623. return 0;
  1624. }
  1625. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1626. * @param v VC1Context
  1627. * @param block block to decode
  1628. * @param[in] n subblock index
  1629. * @param coded are AC coeffs present or not
  1630. * @param mquant block quantizer
  1631. * @param codingset set of VLC to decode data
  1632. */
  1633. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1634. {
  1635. GetBitContext *gb = &v->s.gb;
  1636. MpegEncContext *s = &v->s;
  1637. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1638. int i;
  1639. int16_t *dc_val;
  1640. int16_t *ac_val, *ac_val2;
  1641. int dcdiff;
  1642. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1643. int a_avail = v->a_avail, c_avail = v->c_avail;
  1644. int use_pred = s->ac_pred;
  1645. int scale;
  1646. int q1, q2 = 0;
  1647. /* XXX: Guard against dumb values of mquant */
  1648. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1649. /* Set DC scale - y and c use the same */
  1650. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1651. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1652. /* Get DC differential */
  1653. if (n < 4) {
  1654. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1655. } else {
  1656. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1657. }
  1658. if (dcdiff < 0){
  1659. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1660. return -1;
  1661. }
  1662. if (dcdiff)
  1663. {
  1664. if (dcdiff == 119 /* ESC index value */)
  1665. {
  1666. /* TODO: Optimize */
  1667. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1668. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1669. else dcdiff = get_bits(gb, 8);
  1670. }
  1671. else
  1672. {
  1673. if (mquant == 1)
  1674. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1675. else if (mquant == 2)
  1676. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1677. }
  1678. if (get_bits1(gb))
  1679. dcdiff = -dcdiff;
  1680. }
  1681. /* Prediction */
  1682. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1683. *dc_val = dcdiff;
  1684. /* Store the quantized DC coeff, used for prediction */
  1685. if (n < 4) {
  1686. block[0] = dcdiff * s->y_dc_scale;
  1687. } else {
  1688. block[0] = dcdiff * s->c_dc_scale;
  1689. }
  1690. //AC Decoding
  1691. i = 1;
  1692. /* check if AC is needed at all and adjust direction if needed */
  1693. if(!a_avail) dc_pred_dir = 1;
  1694. if(!c_avail) dc_pred_dir = 0;
  1695. if(!a_avail && !c_avail) use_pred = 0;
  1696. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1697. ac_val2 = ac_val;
  1698. scale = mquant * 2 + v->halfpq;
  1699. if(dc_pred_dir) //left
  1700. ac_val -= 16;
  1701. else //top
  1702. ac_val -= 16 * s->block_wrap[n];
  1703. q1 = s->current_picture.qscale_table[mb_pos];
  1704. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1705. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1706. if(dc_pred_dir && n==1) q2 = q1;
  1707. if(!dc_pred_dir && n==2) q2 = q1;
  1708. if(n==3) q2 = q1;
  1709. if(coded) {
  1710. int last = 0, skip, value;
  1711. const int8_t *zz_table;
  1712. int k;
  1713. zz_table = wmv1_scantable[0];
  1714. while (!last) {
  1715. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1716. i += skip;
  1717. if(i > 63)
  1718. break;
  1719. block[zz_table[i++]] = value;
  1720. }
  1721. /* apply AC prediction if needed */
  1722. if(use_pred) {
  1723. /* scale predictors if needed*/
  1724. if(q2 && q1!=q2) {
  1725. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1726. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1727. if(dc_pred_dir) { //left
  1728. for(k = 1; k < 8; k++)
  1729. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1730. } else { //top
  1731. for(k = 1; k < 8; k++)
  1732. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1733. }
  1734. } else {
  1735. if(dc_pred_dir) { //left
  1736. for(k = 1; k < 8; k++)
  1737. block[k << 3] += ac_val[k];
  1738. } else { //top
  1739. for(k = 1; k < 8; k++)
  1740. block[k] += ac_val[k + 8];
  1741. }
  1742. }
  1743. }
  1744. /* save AC coeffs for further prediction */
  1745. for(k = 1; k < 8; k++) {
  1746. ac_val2[k] = block[k << 3];
  1747. ac_val2[k + 8] = block[k];
  1748. }
  1749. /* scale AC coeffs */
  1750. for(k = 1; k < 64; k++)
  1751. if(block[k]) {
  1752. block[k] *= scale;
  1753. if(!v->pquantizer)
  1754. block[k] += (block[k] < 0) ? -mquant : mquant;
  1755. }
  1756. if(use_pred) i = 63;
  1757. } else { // no AC coeffs
  1758. int k;
  1759. memset(ac_val2, 0, 16 * 2);
  1760. if(dc_pred_dir) {//left
  1761. if(use_pred) {
  1762. memcpy(ac_val2, ac_val, 8 * 2);
  1763. if(q2 && q1!=q2) {
  1764. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1765. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1766. for(k = 1; k < 8; k++)
  1767. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1768. }
  1769. }
  1770. } else {//top
  1771. if(use_pred) {
  1772. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1773. if(q2 && q1!=q2) {
  1774. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1775. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1776. for(k = 1; k < 8; k++)
  1777. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1778. }
  1779. }
  1780. }
  1781. /* apply AC prediction if needed */
  1782. if(use_pred) {
  1783. if(dc_pred_dir) { //left
  1784. for(k = 1; k < 8; k++) {
  1785. block[k << 3] = ac_val2[k] * scale;
  1786. if(!v->pquantizer && block[k << 3])
  1787. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1788. }
  1789. } else { //top
  1790. for(k = 1; k < 8; k++) {
  1791. block[k] = ac_val2[k + 8] * scale;
  1792. if(!v->pquantizer && block[k])
  1793. block[k] += (block[k] < 0) ? -mquant : mquant;
  1794. }
  1795. }
  1796. i = 63;
  1797. }
  1798. }
  1799. s->block_last_index[n] = i;
  1800. return 0;
  1801. }
  1802. /** Decode P block
  1803. */
  1804. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1805. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  1806. {
  1807. MpegEncContext *s = &v->s;
  1808. GetBitContext *gb = &s->gb;
  1809. int i, j;
  1810. int subblkpat = 0;
  1811. int scale, off, idx, last, skip, value;
  1812. int ttblk = ttmb & 7;
  1813. int pat = 0;
  1814. if(ttmb == -1) {
  1815. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1816. }
  1817. if(ttblk == TT_4X4) {
  1818. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1819. }
  1820. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  1821. subblkpat = decode012(gb);
  1822. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1823. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1824. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1825. }
  1826. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1827. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1828. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1829. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1830. ttblk = TT_8X4;
  1831. }
  1832. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1833. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1834. ttblk = TT_4X8;
  1835. }
  1836. switch(ttblk) {
  1837. case TT_8X8:
  1838. pat = 0xF;
  1839. i = 0;
  1840. last = 0;
  1841. while (!last) {
  1842. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1843. i += skip;
  1844. if(i > 63)
  1845. break;
  1846. idx = wmv1_scantable[0][i++];
  1847. block[idx] = value * scale;
  1848. if(!v->pquantizer)
  1849. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1850. }
  1851. if(!skip_block){
  1852. s->dsp.vc1_inv_trans_8x8(block);
  1853. s->dsp.add_pixels_clamped(block, dst, linesize);
  1854. if(apply_filter && cbp_top & 0xC)
  1855. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1856. if(apply_filter && cbp_left & 0xA)
  1857. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  1858. }
  1859. break;
  1860. case TT_4X4:
  1861. pat = ~subblkpat & 0xF;
  1862. for(j = 0; j < 4; j++) {
  1863. last = subblkpat & (1 << (3 - j));
  1864. i = 0;
  1865. off = (j & 1) * 4 + (j & 2) * 16;
  1866. while (!last) {
  1867. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1868. i += skip;
  1869. if(i > 15)
  1870. break;
  1871. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1872. block[idx + off] = value * scale;
  1873. if(!v->pquantizer)
  1874. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1875. }
  1876. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1877. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1878. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  1879. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1880. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  1881. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1882. }
  1883. }
  1884. break;
  1885. case TT_8X4:
  1886. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1887. for(j = 0; j < 2; j++) {
  1888. last = subblkpat & (1 << (1 - j));
  1889. i = 0;
  1890. off = j * 32;
  1891. while (!last) {
  1892. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1893. i += skip;
  1894. if(i > 31)
  1895. break;
  1896. idx = v->zz_8x4[i++]+off;
  1897. block[idx] = value * scale;
  1898. if(!v->pquantizer)
  1899. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1900. }
  1901. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1902. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1903. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  1904. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  1905. if(apply_filter && cbp_left & (2 << j))
  1906. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  1907. }
  1908. }
  1909. break;
  1910. case TT_4X8:
  1911. pat = ~(subblkpat*5) & 0xF;
  1912. for(j = 0; j < 2; j++) {
  1913. last = subblkpat & (1 << (1 - j));
  1914. i = 0;
  1915. off = j * 4;
  1916. while (!last) {
  1917. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1918. i += skip;
  1919. if(i > 31)
  1920. break;
  1921. idx = v->zz_4x8[i++]+off;
  1922. block[idx] = value * scale;
  1923. if(!v->pquantizer)
  1924. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1925. }
  1926. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1927. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1928. if(apply_filter && cbp_top & (2 << j))
  1929. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  1930. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  1931. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  1932. }
  1933. }
  1934. break;
  1935. }
  1936. return pat;
  1937. }
  1938. /** @} */ // Macroblock group
  1939. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1940. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1941. /** Decode one P-frame MB (in Simple/Main profile)
  1942. */
  1943. static int vc1_decode_p_mb(VC1Context *v)
  1944. {
  1945. MpegEncContext *s = &v->s;
  1946. GetBitContext *gb = &s->gb;
  1947. int i, j;
  1948. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1949. int cbp; /* cbp decoding stuff */
  1950. int mqdiff, mquant; /* MB quantization */
  1951. int ttmb = v->ttfrm; /* MB Transform type */
  1952. int mb_has_coeffs = 1; /* last_flag */
  1953. int dmv_x, dmv_y; /* Differential MV components */
  1954. int index, index1; /* LUT indexes */
  1955. int val, sign; /* temp values */
  1956. int first_block = 1;
  1957. int dst_idx, off;
  1958. int skipped, fourmv;
  1959. int block_cbp = 0, pat;
  1960. int apply_loop_filter;
  1961. mquant = v->pq; /* Loosy initialization */
  1962. if (v->mv_type_is_raw)
  1963. fourmv = get_bits1(gb);
  1964. else
  1965. fourmv = v->mv_type_mb_plane[mb_pos];
  1966. if (v->skip_is_raw)
  1967. skipped = get_bits1(gb);
  1968. else
  1969. skipped = v->s.mbskip_table[mb_pos];
  1970. s->dsp.clear_blocks(s->block[0]);
  1971. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  1972. if (!fourmv) /* 1MV mode */
  1973. {
  1974. if (!skipped)
  1975. {
  1976. GET_MVDATA(dmv_x, dmv_y);
  1977. if (s->mb_intra) {
  1978. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1979. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1980. }
  1981. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1982. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  1983. /* FIXME Set DC val for inter block ? */
  1984. if (s->mb_intra && !mb_has_coeffs)
  1985. {
  1986. GET_MQUANT();
  1987. s->ac_pred = get_bits1(gb);
  1988. cbp = 0;
  1989. }
  1990. else if (mb_has_coeffs)
  1991. {
  1992. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  1993. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1994. GET_MQUANT();
  1995. }
  1996. else
  1997. {
  1998. mquant = v->pq;
  1999. cbp = 0;
  2000. }
  2001. s->current_picture.qscale_table[mb_pos] = mquant;
  2002. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2003. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2004. VC1_TTMB_VLC_BITS, 2);
  2005. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2006. dst_idx = 0;
  2007. for (i=0; i<6; i++)
  2008. {
  2009. s->dc_val[0][s->block_index[i]] = 0;
  2010. dst_idx += i >> 2;
  2011. val = ((cbp >> (5 - i)) & 1);
  2012. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2013. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2014. if(s->mb_intra) {
  2015. /* check if prediction blocks A and C are available */
  2016. v->a_avail = v->c_avail = 0;
  2017. if(i == 2 || i == 3 || !s->first_slice_line)
  2018. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2019. if(i == 1 || i == 3 || s->mb_x)
  2020. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2021. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2022. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2023. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2024. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2025. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2026. if(v->pq >= 9 && v->overlap) {
  2027. if(v->c_avail)
  2028. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2029. if(v->a_avail)
  2030. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2031. }
  2032. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2033. int left_cbp, top_cbp;
  2034. if(i & 4){
  2035. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2036. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2037. }else{
  2038. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2039. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2040. }
  2041. if(left_cbp & 0xC)
  2042. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2043. if(top_cbp & 0xA)
  2044. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2045. }
  2046. block_cbp |= 0xF << (i << 2);
  2047. } else if(val) {
  2048. int left_cbp = 0, top_cbp = 0, filter = 0;
  2049. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2050. filter = 1;
  2051. if(i & 4){
  2052. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2053. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2054. }else{
  2055. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2056. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2057. }
  2058. if(left_cbp & 0xC)
  2059. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2060. if(top_cbp & 0xA)
  2061. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2062. }
  2063. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2064. block_cbp |= pat << (i << 2);
  2065. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2066. first_block = 0;
  2067. }
  2068. }
  2069. }
  2070. else //Skipped
  2071. {
  2072. s->mb_intra = 0;
  2073. for(i = 0; i < 6; i++) {
  2074. v->mb_type[0][s->block_index[i]] = 0;
  2075. s->dc_val[0][s->block_index[i]] = 0;
  2076. }
  2077. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2078. s->current_picture.qscale_table[mb_pos] = 0;
  2079. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2080. vc1_mc_1mv(v, 0);
  2081. return 0;
  2082. }
  2083. } //1MV mode
  2084. else //4MV mode
  2085. {
  2086. if (!skipped /* unskipped MB */)
  2087. {
  2088. int intra_count = 0, coded_inter = 0;
  2089. int is_intra[6], is_coded[6];
  2090. /* Get CBPCY */
  2091. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2092. for (i=0; i<6; i++)
  2093. {
  2094. val = ((cbp >> (5 - i)) & 1);
  2095. s->dc_val[0][s->block_index[i]] = 0;
  2096. s->mb_intra = 0;
  2097. if(i < 4) {
  2098. dmv_x = dmv_y = 0;
  2099. s->mb_intra = 0;
  2100. mb_has_coeffs = 0;
  2101. if(val) {
  2102. GET_MVDATA(dmv_x, dmv_y);
  2103. }
  2104. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2105. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2106. intra_count += s->mb_intra;
  2107. is_intra[i] = s->mb_intra;
  2108. is_coded[i] = mb_has_coeffs;
  2109. }
  2110. if(i&4){
  2111. is_intra[i] = (intra_count >= 3);
  2112. is_coded[i] = val;
  2113. }
  2114. if(i == 4) vc1_mc_4mv_chroma(v);
  2115. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2116. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2117. }
  2118. // if there are no coded blocks then don't do anything more
  2119. if(!intra_count && !coded_inter) return 0;
  2120. dst_idx = 0;
  2121. GET_MQUANT();
  2122. s->current_picture.qscale_table[mb_pos] = mquant;
  2123. /* test if block is intra and has pred */
  2124. {
  2125. int intrapred = 0;
  2126. for(i=0; i<6; i++)
  2127. if(is_intra[i]) {
  2128. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2129. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2130. intrapred = 1;
  2131. break;
  2132. }
  2133. }
  2134. if(intrapred)s->ac_pred = get_bits1(gb);
  2135. else s->ac_pred = 0;
  2136. }
  2137. if (!v->ttmbf && coded_inter)
  2138. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2139. for (i=0; i<6; i++)
  2140. {
  2141. dst_idx += i >> 2;
  2142. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2143. s->mb_intra = is_intra[i];
  2144. if (is_intra[i]) {
  2145. /* check if prediction blocks A and C are available */
  2146. v->a_avail = v->c_avail = 0;
  2147. if(i == 2 || i == 3 || !s->first_slice_line)
  2148. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2149. if(i == 1 || i == 3 || s->mb_x)
  2150. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2151. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2152. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2153. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2154. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2155. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2156. if(v->pq >= 9 && v->overlap) {
  2157. if(v->c_avail)
  2158. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2159. if(v->a_avail)
  2160. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2161. }
  2162. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2163. int left_cbp, top_cbp;
  2164. if(i & 4){
  2165. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2166. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2167. }else{
  2168. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2169. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2170. }
  2171. if(left_cbp & 0xC)
  2172. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2173. if(top_cbp & 0xA)
  2174. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2175. }
  2176. block_cbp |= 0xF << (i << 2);
  2177. } else if(is_coded[i]) {
  2178. int left_cbp = 0, top_cbp = 0, filter = 0;
  2179. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2180. filter = 1;
  2181. if(i & 4){
  2182. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2183. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2184. }else{
  2185. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2186. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2187. }
  2188. if(left_cbp & 0xC)
  2189. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2190. if(top_cbp & 0xA)
  2191. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2192. }
  2193. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2194. block_cbp |= pat << (i << 2);
  2195. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2196. first_block = 0;
  2197. }
  2198. }
  2199. return 0;
  2200. }
  2201. else //Skipped MB
  2202. {
  2203. s->mb_intra = 0;
  2204. s->current_picture.qscale_table[mb_pos] = 0;
  2205. for (i=0; i<6; i++) {
  2206. v->mb_type[0][s->block_index[i]] = 0;
  2207. s->dc_val[0][s->block_index[i]] = 0;
  2208. }
  2209. for (i=0; i<4; i++)
  2210. {
  2211. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2212. vc1_mc_4mv_luma(v, i);
  2213. }
  2214. vc1_mc_4mv_chroma(v);
  2215. s->current_picture.qscale_table[mb_pos] = 0;
  2216. return 0;
  2217. }
  2218. }
  2219. v->cbp[s->mb_x] = block_cbp;
  2220. /* Should never happen */
  2221. return -1;
  2222. }
  2223. /** Decode one B-frame MB (in Main profile)
  2224. */
  2225. static void vc1_decode_b_mb(VC1Context *v)
  2226. {
  2227. MpegEncContext *s = &v->s;
  2228. GetBitContext *gb = &s->gb;
  2229. int i, j;
  2230. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2231. int cbp = 0; /* cbp decoding stuff */
  2232. int mqdiff, mquant; /* MB quantization */
  2233. int ttmb = v->ttfrm; /* MB Transform type */
  2234. int mb_has_coeffs = 0; /* last_flag */
  2235. int index, index1; /* LUT indexes */
  2236. int val, sign; /* temp values */
  2237. int first_block = 1;
  2238. int dst_idx, off;
  2239. int skipped, direct;
  2240. int dmv_x[2], dmv_y[2];
  2241. int bmvtype = BMV_TYPE_BACKWARD;
  2242. mquant = v->pq; /* Loosy initialization */
  2243. s->mb_intra = 0;
  2244. if (v->dmb_is_raw)
  2245. direct = get_bits1(gb);
  2246. else
  2247. direct = v->direct_mb_plane[mb_pos];
  2248. if (v->skip_is_raw)
  2249. skipped = get_bits1(gb);
  2250. else
  2251. skipped = v->s.mbskip_table[mb_pos];
  2252. s->dsp.clear_blocks(s->block[0]);
  2253. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2254. for(i = 0; i < 6; i++) {
  2255. v->mb_type[0][s->block_index[i]] = 0;
  2256. s->dc_val[0][s->block_index[i]] = 0;
  2257. }
  2258. s->current_picture.qscale_table[mb_pos] = 0;
  2259. if (!direct) {
  2260. if (!skipped) {
  2261. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2262. dmv_x[1] = dmv_x[0];
  2263. dmv_y[1] = dmv_y[0];
  2264. }
  2265. if(skipped || !s->mb_intra) {
  2266. bmvtype = decode012(gb);
  2267. switch(bmvtype) {
  2268. case 0:
  2269. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2270. break;
  2271. case 1:
  2272. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2273. break;
  2274. case 2:
  2275. bmvtype = BMV_TYPE_INTERPOLATED;
  2276. dmv_x[0] = dmv_y[0] = 0;
  2277. }
  2278. }
  2279. }
  2280. for(i = 0; i < 6; i++)
  2281. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2282. if (skipped) {
  2283. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2284. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2285. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2286. return;
  2287. }
  2288. if (direct) {
  2289. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2290. GET_MQUANT();
  2291. s->mb_intra = 0;
  2292. s->current_picture.qscale_table[mb_pos] = mquant;
  2293. if(!v->ttmbf)
  2294. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2295. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2296. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2297. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2298. } else {
  2299. if(!mb_has_coeffs && !s->mb_intra) {
  2300. /* no coded blocks - effectively skipped */
  2301. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2302. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2303. return;
  2304. }
  2305. if(s->mb_intra && !mb_has_coeffs) {
  2306. GET_MQUANT();
  2307. s->current_picture.qscale_table[mb_pos] = mquant;
  2308. s->ac_pred = get_bits1(gb);
  2309. cbp = 0;
  2310. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2311. } else {
  2312. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2313. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2314. if(!mb_has_coeffs) {
  2315. /* interpolated skipped block */
  2316. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2317. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2318. return;
  2319. }
  2320. }
  2321. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2322. if(!s->mb_intra) {
  2323. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2324. }
  2325. if(s->mb_intra)
  2326. s->ac_pred = get_bits1(gb);
  2327. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2328. GET_MQUANT();
  2329. s->current_picture.qscale_table[mb_pos] = mquant;
  2330. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2331. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2332. }
  2333. }
  2334. dst_idx = 0;
  2335. for (i=0; i<6; i++)
  2336. {
  2337. s->dc_val[0][s->block_index[i]] = 0;
  2338. dst_idx += i >> 2;
  2339. val = ((cbp >> (5 - i)) & 1);
  2340. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2341. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2342. if(s->mb_intra) {
  2343. /* check if prediction blocks A and C are available */
  2344. v->a_avail = v->c_avail = 0;
  2345. if(i == 2 || i == 3 || !s->first_slice_line)
  2346. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2347. if(i == 1 || i == 3 || s->mb_x)
  2348. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2349. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2350. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2351. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2352. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2353. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2354. } else if(val) {
  2355. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  2356. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2357. first_block = 0;
  2358. }
  2359. }
  2360. }
  2361. /** Decode blocks of I-frame
  2362. */
  2363. static void vc1_decode_i_blocks(VC1Context *v)
  2364. {
  2365. int k, j;
  2366. MpegEncContext *s = &v->s;
  2367. int cbp, val;
  2368. uint8_t *coded_val;
  2369. int mb_pos;
  2370. /* select codingmode used for VLC tables selection */
  2371. switch(v->y_ac_table_index){
  2372. case 0:
  2373. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2374. break;
  2375. case 1:
  2376. v->codingset = CS_HIGH_MOT_INTRA;
  2377. break;
  2378. case 2:
  2379. v->codingset = CS_MID_RATE_INTRA;
  2380. break;
  2381. }
  2382. switch(v->c_ac_table_index){
  2383. case 0:
  2384. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2385. break;
  2386. case 1:
  2387. v->codingset2 = CS_HIGH_MOT_INTER;
  2388. break;
  2389. case 2:
  2390. v->codingset2 = CS_MID_RATE_INTER;
  2391. break;
  2392. }
  2393. /* Set DC scale - y and c use the same */
  2394. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2395. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2396. //do frame decode
  2397. s->mb_x = s->mb_y = 0;
  2398. s->mb_intra = 1;
  2399. s->first_slice_line = 1;
  2400. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2401. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2402. ff_init_block_index(s);
  2403. ff_update_block_index(s);
  2404. s->dsp.clear_blocks(s->block[0]);
  2405. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2406. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2407. s->current_picture.qscale_table[mb_pos] = v->pq;
  2408. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2409. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2410. // do actual MB decoding and displaying
  2411. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2412. v->s.ac_pred = get_bits1(&v->s.gb);
  2413. for(k = 0; k < 6; k++) {
  2414. val = ((cbp >> (5 - k)) & 1);
  2415. if (k < 4) {
  2416. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2417. val = val ^ pred;
  2418. *coded_val = val;
  2419. }
  2420. cbp |= val << (5 - k);
  2421. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2422. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2423. if(v->pq >= 9 && v->overlap) {
  2424. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2425. }
  2426. }
  2427. vc1_put_block(v, s->block);
  2428. if(v->pq >= 9 && v->overlap) {
  2429. if(s->mb_x) {
  2430. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2431. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2432. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2433. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2434. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2435. }
  2436. }
  2437. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2438. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2439. if(!s->first_slice_line) {
  2440. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2441. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2442. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2443. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2444. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2445. }
  2446. }
  2447. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2448. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2449. }
  2450. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2451. if(get_bits_count(&s->gb) > v->bits) {
  2452. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2453. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2454. return;
  2455. }
  2456. }
  2457. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2458. s->first_slice_line = 0;
  2459. }
  2460. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2461. }
  2462. /** Decode blocks of I-frame for advanced profile
  2463. */
  2464. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2465. {
  2466. int k, j;
  2467. MpegEncContext *s = &v->s;
  2468. int cbp, val;
  2469. uint8_t *coded_val;
  2470. int mb_pos;
  2471. int mquant = v->pq;
  2472. int mqdiff;
  2473. int overlap;
  2474. GetBitContext *gb = &s->gb;
  2475. /* select codingmode used for VLC tables selection */
  2476. switch(v->y_ac_table_index){
  2477. case 0:
  2478. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2479. break;
  2480. case 1:
  2481. v->codingset = CS_HIGH_MOT_INTRA;
  2482. break;
  2483. case 2:
  2484. v->codingset = CS_MID_RATE_INTRA;
  2485. break;
  2486. }
  2487. switch(v->c_ac_table_index){
  2488. case 0:
  2489. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2490. break;
  2491. case 1:
  2492. v->codingset2 = CS_HIGH_MOT_INTER;
  2493. break;
  2494. case 2:
  2495. v->codingset2 = CS_MID_RATE_INTER;
  2496. break;
  2497. }
  2498. //do frame decode
  2499. s->mb_x = s->mb_y = 0;
  2500. s->mb_intra = 1;
  2501. s->first_slice_line = 1;
  2502. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2503. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2504. ff_init_block_index(s);
  2505. ff_update_block_index(s);
  2506. s->dsp.clear_blocks(s->block[0]);
  2507. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2508. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2509. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2510. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2511. // do actual MB decoding and displaying
  2512. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2513. if(v->acpred_is_raw)
  2514. v->s.ac_pred = get_bits1(&v->s.gb);
  2515. else
  2516. v->s.ac_pred = v->acpred_plane[mb_pos];
  2517. if(v->condover == CONDOVER_SELECT) {
  2518. if(v->overflg_is_raw)
  2519. overlap = get_bits1(&v->s.gb);
  2520. else
  2521. overlap = v->over_flags_plane[mb_pos];
  2522. } else
  2523. overlap = (v->condover == CONDOVER_ALL);
  2524. GET_MQUANT();
  2525. s->current_picture.qscale_table[mb_pos] = mquant;
  2526. /* Set DC scale - y and c use the same */
  2527. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2528. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2529. for(k = 0; k < 6; k++) {
  2530. val = ((cbp >> (5 - k)) & 1);
  2531. if (k < 4) {
  2532. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2533. val = val ^ pred;
  2534. *coded_val = val;
  2535. }
  2536. cbp |= val << (5 - k);
  2537. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2538. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2539. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2540. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2541. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2542. }
  2543. vc1_put_block(v, s->block);
  2544. if(overlap) {
  2545. if(s->mb_x) {
  2546. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2547. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2548. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2549. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2550. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2551. }
  2552. }
  2553. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2554. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2555. if(!s->first_slice_line) {
  2556. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2557. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2558. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2559. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2560. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2561. }
  2562. }
  2563. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2564. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2565. }
  2566. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2567. if(get_bits_count(&s->gb) > v->bits) {
  2568. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2569. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2570. return;
  2571. }
  2572. }
  2573. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2574. s->first_slice_line = 0;
  2575. }
  2576. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2577. }
  2578. static void vc1_decode_p_blocks(VC1Context *v)
  2579. {
  2580. MpegEncContext *s = &v->s;
  2581. /* select codingmode used for VLC tables selection */
  2582. switch(v->c_ac_table_index){
  2583. case 0:
  2584. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2585. break;
  2586. case 1:
  2587. v->codingset = CS_HIGH_MOT_INTRA;
  2588. break;
  2589. case 2:
  2590. v->codingset = CS_MID_RATE_INTRA;
  2591. break;
  2592. }
  2593. switch(v->c_ac_table_index){
  2594. case 0:
  2595. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2596. break;
  2597. case 1:
  2598. v->codingset2 = CS_HIGH_MOT_INTER;
  2599. break;
  2600. case 2:
  2601. v->codingset2 = CS_MID_RATE_INTER;
  2602. break;
  2603. }
  2604. s->first_slice_line = 1;
  2605. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2606. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2607. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2608. ff_init_block_index(s);
  2609. ff_update_block_index(s);
  2610. s->dsp.clear_blocks(s->block[0]);
  2611. vc1_decode_p_mb(v);
  2612. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2613. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2614. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2615. return;
  2616. }
  2617. }
  2618. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2619. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2620. s->first_slice_line = 0;
  2621. }
  2622. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2623. }
  2624. static void vc1_decode_b_blocks(VC1Context *v)
  2625. {
  2626. MpegEncContext *s = &v->s;
  2627. /* select codingmode used for VLC tables selection */
  2628. switch(v->c_ac_table_index){
  2629. case 0:
  2630. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2631. break;
  2632. case 1:
  2633. v->codingset = CS_HIGH_MOT_INTRA;
  2634. break;
  2635. case 2:
  2636. v->codingset = CS_MID_RATE_INTRA;
  2637. break;
  2638. }
  2639. switch(v->c_ac_table_index){
  2640. case 0:
  2641. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2642. break;
  2643. case 1:
  2644. v->codingset2 = CS_HIGH_MOT_INTER;
  2645. break;
  2646. case 2:
  2647. v->codingset2 = CS_MID_RATE_INTER;
  2648. break;
  2649. }
  2650. s->first_slice_line = 1;
  2651. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2652. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2653. ff_init_block_index(s);
  2654. ff_update_block_index(s);
  2655. s->dsp.clear_blocks(s->block[0]);
  2656. vc1_decode_b_mb(v);
  2657. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2658. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2659. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2660. return;
  2661. }
  2662. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2663. }
  2664. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2665. s->first_slice_line = 0;
  2666. }
  2667. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2668. }
  2669. static void vc1_decode_skip_blocks(VC1Context *v)
  2670. {
  2671. MpegEncContext *s = &v->s;
  2672. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2673. s->first_slice_line = 1;
  2674. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2675. s->mb_x = 0;
  2676. ff_init_block_index(s);
  2677. ff_update_block_index(s);
  2678. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2679. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2680. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2681. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2682. s->first_slice_line = 0;
  2683. }
  2684. s->pict_type = FF_P_TYPE;
  2685. }
  2686. static void vc1_decode_blocks(VC1Context *v)
  2687. {
  2688. v->s.esc3_level_length = 0;
  2689. if(v->x8_type){
  2690. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2691. }else{
  2692. switch(v->s.pict_type) {
  2693. case FF_I_TYPE:
  2694. if(v->profile == PROFILE_ADVANCED)
  2695. vc1_decode_i_blocks_adv(v);
  2696. else
  2697. vc1_decode_i_blocks(v);
  2698. break;
  2699. case FF_P_TYPE:
  2700. if(v->p_frame_skipped)
  2701. vc1_decode_skip_blocks(v);
  2702. else
  2703. vc1_decode_p_blocks(v);
  2704. break;
  2705. case FF_B_TYPE:
  2706. if(v->bi_type){
  2707. if(v->profile == PROFILE_ADVANCED)
  2708. vc1_decode_i_blocks_adv(v);
  2709. else
  2710. vc1_decode_i_blocks(v);
  2711. }else
  2712. vc1_decode_b_blocks(v);
  2713. break;
  2714. }
  2715. }
  2716. }
  2717. /** Initialize a VC1/WMV3 decoder
  2718. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2719. * @todo TODO: Decypher remaining bits in extra_data
  2720. */
  2721. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2722. {
  2723. VC1Context *v = avctx->priv_data;
  2724. MpegEncContext *s = &v->s;
  2725. GetBitContext gb;
  2726. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2727. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2728. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2729. else
  2730. avctx->pix_fmt = PIX_FMT_GRAY8;
  2731. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2732. v->s.avctx = avctx;
  2733. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2734. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2735. if(avctx->idct_algo==FF_IDCT_AUTO){
  2736. avctx->idct_algo=FF_IDCT_WMV2;
  2737. }
  2738. if(ff_h263_decode_init(avctx) < 0)
  2739. return -1;
  2740. if (vc1_init_common(v) < 0) return -1;
  2741. avctx->coded_width = avctx->width;
  2742. avctx->coded_height = avctx->height;
  2743. if (avctx->codec_id == CODEC_ID_WMV3)
  2744. {
  2745. int count = 0;
  2746. // looks like WMV3 has a sequence header stored in the extradata
  2747. // advanced sequence header may be before the first frame
  2748. // the last byte of the extradata is a version number, 1 for the
  2749. // samples we can decode
  2750. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2751. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2752. return -1;
  2753. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2754. if (count>0)
  2755. {
  2756. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2757. count, get_bits(&gb, count));
  2758. }
  2759. else if (count < 0)
  2760. {
  2761. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2762. }
  2763. } else { // VC1/WVC1
  2764. const uint8_t *start = avctx->extradata;
  2765. uint8_t *end = avctx->extradata + avctx->extradata_size;
  2766. const uint8_t *next;
  2767. int size, buf2_size;
  2768. uint8_t *buf2 = NULL;
  2769. int seq_initialized = 0, ep_initialized = 0;
  2770. if(avctx->extradata_size < 16) {
  2771. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  2772. return -1;
  2773. }
  2774. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2775. if(start[0]) start++; // in WVC1 extradata first byte is its size
  2776. next = start;
  2777. for(; next < end; start = next){
  2778. next = find_next_marker(start + 4, end);
  2779. size = next - start - 4;
  2780. if(size <= 0) continue;
  2781. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  2782. init_get_bits(&gb, buf2, buf2_size * 8);
  2783. switch(AV_RB32(start)){
  2784. case VC1_CODE_SEQHDR:
  2785. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  2786. av_free(buf2);
  2787. return -1;
  2788. }
  2789. seq_initialized = 1;
  2790. break;
  2791. case VC1_CODE_ENTRYPOINT:
  2792. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  2793. av_free(buf2);
  2794. return -1;
  2795. }
  2796. ep_initialized = 1;
  2797. break;
  2798. }
  2799. }
  2800. av_free(buf2);
  2801. if(!seq_initialized || !ep_initialized){
  2802. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  2803. return -1;
  2804. }
  2805. }
  2806. avctx->has_b_frames= !!(avctx->max_b_frames);
  2807. s->low_delay = !avctx->has_b_frames;
  2808. s->mb_width = (avctx->coded_width+15)>>4;
  2809. s->mb_height = (avctx->coded_height+15)>>4;
  2810. /* Allocate mb bitplanes */
  2811. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2812. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2813. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  2814. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  2815. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2816. v->cbp = v->cbp_base + s->mb_stride;
  2817. /* allocate block type info in that way so it could be used with s->block_index[] */
  2818. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2819. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2820. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2821. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2822. /* Init coded blocks info */
  2823. if (v->profile == PROFILE_ADVANCED)
  2824. {
  2825. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2826. // return -1;
  2827. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2828. // return -1;
  2829. }
  2830. ff_intrax8_common_init(&v->x8,s);
  2831. return 0;
  2832. }
  2833. /** Decode a VC1/WMV3 frame
  2834. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2835. */
  2836. static int vc1_decode_frame(AVCodecContext *avctx,
  2837. void *data, int *data_size,
  2838. AVPacket *avpkt)
  2839. {
  2840. const uint8_t *buf = avpkt->data;
  2841. int buf_size = avpkt->size;
  2842. VC1Context *v = avctx->priv_data;
  2843. MpegEncContext *s = &v->s;
  2844. AVFrame *pict = data;
  2845. uint8_t *buf2 = NULL;
  2846. const uint8_t *buf_start = buf;
  2847. /* no supplementary picture */
  2848. if (buf_size == 0) {
  2849. /* special case for last picture */
  2850. if (s->low_delay==0 && s->next_picture_ptr) {
  2851. *pict= *(AVFrame*)s->next_picture_ptr;
  2852. s->next_picture_ptr= NULL;
  2853. *data_size = sizeof(AVFrame);
  2854. }
  2855. return 0;
  2856. }
  2857. /* We need to set current_picture_ptr before reading the header,
  2858. * otherwise we cannot store anything in there. */
  2859. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2860. int i= ff_find_unused_picture(s, 0);
  2861. s->current_picture_ptr= &s->picture[i];
  2862. }
  2863. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2864. if (v->profile < PROFILE_ADVANCED)
  2865. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  2866. else
  2867. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  2868. }
  2869. //for advanced profile we may need to parse and unescape data
  2870. if (avctx->codec_id == CODEC_ID_VC1) {
  2871. int buf_size2 = 0;
  2872. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2873. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  2874. const uint8_t *start, *end, *next;
  2875. int size;
  2876. next = buf;
  2877. for(start = buf, end = buf + buf_size; next < end; start = next){
  2878. next = find_next_marker(start + 4, end);
  2879. size = next - start - 4;
  2880. if(size <= 0) continue;
  2881. switch(AV_RB32(start)){
  2882. case VC1_CODE_FRAME:
  2883. if (avctx->hwaccel ||
  2884. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2885. buf_start = start;
  2886. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2887. break;
  2888. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  2889. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2890. init_get_bits(&s->gb, buf2, buf_size2*8);
  2891. vc1_decode_entry_point(avctx, v, &s->gb);
  2892. break;
  2893. case VC1_CODE_SLICE:
  2894. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  2895. av_free(buf2);
  2896. return -1;
  2897. }
  2898. }
  2899. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  2900. const uint8_t *divider;
  2901. divider = find_next_marker(buf, buf + buf_size);
  2902. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  2903. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  2904. av_free(buf2);
  2905. return -1;
  2906. }
  2907. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  2908. // TODO
  2909. av_free(buf2);return -1;
  2910. }else{
  2911. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  2912. }
  2913. init_get_bits(&s->gb, buf2, buf_size2*8);
  2914. } else
  2915. init_get_bits(&s->gb, buf, buf_size*8);
  2916. // do parse frame header
  2917. if(v->profile < PROFILE_ADVANCED) {
  2918. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  2919. av_free(buf2);
  2920. return -1;
  2921. }
  2922. } else {
  2923. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  2924. av_free(buf2);
  2925. return -1;
  2926. }
  2927. }
  2928. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  2929. av_free(buf2);
  2930. return -1;
  2931. }
  2932. // for hurry_up==5
  2933. s->current_picture.pict_type= s->pict_type;
  2934. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  2935. /* skip B-frames if we don't have reference frames */
  2936. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  2937. av_free(buf2);
  2938. return -1;//buf_size;
  2939. }
  2940. /* skip b frames if we are in a hurry */
  2941. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  2942. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  2943. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  2944. || avctx->skip_frame >= AVDISCARD_ALL) {
  2945. av_free(buf2);
  2946. return buf_size;
  2947. }
  2948. /* skip everything if we are in a hurry>=5 */
  2949. if(avctx->hurry_up>=5) {
  2950. av_free(buf2);
  2951. return -1;//buf_size;
  2952. }
  2953. if(s->next_p_frame_damaged){
  2954. if(s->pict_type==FF_B_TYPE)
  2955. return buf_size;
  2956. else
  2957. s->next_p_frame_damaged=0;
  2958. }
  2959. if(MPV_frame_start(s, avctx) < 0) {
  2960. av_free(buf2);
  2961. return -1;
  2962. }
  2963. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  2964. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  2965. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  2966. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2967. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  2968. else if (avctx->hwaccel) {
  2969. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  2970. return -1;
  2971. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  2972. return -1;
  2973. if (avctx->hwaccel->end_frame(avctx) < 0)
  2974. return -1;
  2975. } else {
  2976. ff_er_frame_start(s);
  2977. v->bits = buf_size * 8;
  2978. vc1_decode_blocks(v);
  2979. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2980. // if(get_bits_count(&s->gb) > buf_size * 8)
  2981. // return -1;
  2982. ff_er_frame_end(s);
  2983. }
  2984. MPV_frame_end(s);
  2985. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2986. assert(s->current_picture.pict_type == s->pict_type);
  2987. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  2988. *pict= *(AVFrame*)s->current_picture_ptr;
  2989. } else if (s->last_picture_ptr != NULL) {
  2990. *pict= *(AVFrame*)s->last_picture_ptr;
  2991. }
  2992. if(s->last_picture_ptr || s->low_delay){
  2993. *data_size = sizeof(AVFrame);
  2994. ff_print_debug_info(s, pict);
  2995. }
  2996. av_free(buf2);
  2997. return buf_size;
  2998. }
  2999. /** Close a VC1/WMV3 decoder
  3000. * @warning Initial try at using MpegEncContext stuff
  3001. */
  3002. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3003. {
  3004. VC1Context *v = avctx->priv_data;
  3005. av_freep(&v->hrd_rate);
  3006. av_freep(&v->hrd_buffer);
  3007. MPV_common_end(&v->s);
  3008. av_freep(&v->mv_type_mb_plane);
  3009. av_freep(&v->direct_mb_plane);
  3010. av_freep(&v->acpred_plane);
  3011. av_freep(&v->over_flags_plane);
  3012. av_freep(&v->mb_type_base);
  3013. av_freep(&v->cbp_base);
  3014. ff_intrax8_common_end(&v->x8);
  3015. return 0;
  3016. }
  3017. AVCodec vc1_decoder = {
  3018. "vc1",
  3019. CODEC_TYPE_VIDEO,
  3020. CODEC_ID_VC1,
  3021. sizeof(VC1Context),
  3022. vc1_decode_init,
  3023. NULL,
  3024. vc1_decode_end,
  3025. vc1_decode_frame,
  3026. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3027. NULL,
  3028. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3029. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3030. };
  3031. AVCodec wmv3_decoder = {
  3032. "wmv3",
  3033. CODEC_TYPE_VIDEO,
  3034. CODEC_ID_WMV3,
  3035. sizeof(VC1Context),
  3036. vc1_decode_init,
  3037. NULL,
  3038. vc1_decode_end,
  3039. vc1_decode_frame,
  3040. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3041. NULL,
  3042. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3043. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3044. };
  3045. #if CONFIG_WMV3_VDPAU_DECODER
  3046. AVCodec wmv3_vdpau_decoder = {
  3047. "wmv3_vdpau",
  3048. CODEC_TYPE_VIDEO,
  3049. CODEC_ID_WMV3,
  3050. sizeof(VC1Context),
  3051. vc1_decode_init,
  3052. NULL,
  3053. vc1_decode_end,
  3054. vc1_decode_frame,
  3055. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3056. NULL,
  3057. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3058. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3059. };
  3060. #endif
  3061. #if CONFIG_VC1_VDPAU_DECODER
  3062. AVCodec vc1_vdpau_decoder = {
  3063. "vc1_vdpau",
  3064. CODEC_TYPE_VIDEO,
  3065. CODEC_ID_VC1,
  3066. sizeof(VC1Context),
  3067. vc1_decode_init,
  3068. NULL,
  3069. vc1_decode_end,
  3070. vc1_decode_frame,
  3071. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3072. NULL,
  3073. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3074. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3075. };
  3076. #endif