You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1476 lines
48KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #if HAVE_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #define A 0
  39. #else
  40. #define B 0
  41. #define G 1
  42. #define R 2
  43. #define A 3
  44. #endif
  45. typedef enum Predictor{
  46. LEFT= 0,
  47. PLANE,
  48. MEDIAN,
  49. } Predictor;
  50. typedef struct HYuvContext{
  51. AVCodecContext *avctx;
  52. Predictor predictor;
  53. GetBitContext gb;
  54. PutBitContext pb;
  55. int interlaced;
  56. int decorrelate;
  57. int bitstream_bpp;
  58. int version;
  59. int yuy2; //use yuy2 instead of 422P
  60. int bgr32; //use bgr32 instead of bgr24
  61. int width, height;
  62. int flags;
  63. int context;
  64. int picture_number;
  65. int last_slice_end;
  66. uint8_t *temp[3];
  67. uint64_t stats[3][256];
  68. uint8_t len[3][256];
  69. uint32_t bits[3][256];
  70. uint32_t pix_bgr_map[1<<VLC_BITS];
  71. VLC vlc[6]; //Y,U,V,YY,YU,YV
  72. AVFrame picture;
  73. uint8_t *bitstream_buffer;
  74. unsigned int bitstream_buffer_size;
  75. DSPContext dsp;
  76. }HYuvContext;
  77. static const unsigned char classic_shift_luma[] = {
  78. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  79. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  80. 69,68, 0
  81. };
  82. static const unsigned char classic_shift_chroma[] = {
  83. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  84. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  85. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  86. };
  87. static const unsigned char classic_add_luma[256] = {
  88. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  89. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  90. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  91. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  92. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  93. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  94. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  95. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  96. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  97. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  98. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  99. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  100. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  101. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  102. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  103. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  104. };
  105. static const unsigned char classic_add_chroma[256] = {
  106. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  107. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  108. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  109. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  110. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  111. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  112. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  113. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  114. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  115. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  116. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  117. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  118. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  119. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  120. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  121. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  122. };
  123. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  124. int i;
  125. if(w<32){
  126. for(i=0; i<w; i++){
  127. const int temp= src[i];
  128. dst[i]= temp - left;
  129. left= temp;
  130. }
  131. return left;
  132. }else{
  133. for(i=0; i<16; i++){
  134. const int temp= src[i];
  135. dst[i]= temp - left;
  136. left= temp;
  137. }
  138. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  139. return src[w-1];
  140. }
  141. }
  142. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  143. int i;
  144. int r,g,b;
  145. r= *red;
  146. g= *green;
  147. b= *blue;
  148. for(i=0; i<FFMIN(w,4); i++){
  149. const int rt= src[i*4+R];
  150. const int gt= src[i*4+G];
  151. const int bt= src[i*4+B];
  152. dst[i*4+R]= rt - r;
  153. dst[i*4+G]= gt - g;
  154. dst[i*4+B]= bt - b;
  155. r = rt;
  156. g = gt;
  157. b = bt;
  158. }
  159. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  160. *red= src[(w-1)*4+R];
  161. *green= src[(w-1)*4+G];
  162. *blue= src[(w-1)*4+B];
  163. }
  164. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  165. int i, val, repeat;
  166. for(i=0; i<256;){
  167. repeat= get_bits(gb, 3);
  168. val = get_bits(gb, 5);
  169. if(repeat==0)
  170. repeat= get_bits(gb, 8);
  171. //printf("%d %d\n", val, repeat);
  172. if(i+repeat > 256) {
  173. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  174. return -1;
  175. }
  176. while (repeat--)
  177. dst[i++] = val;
  178. }
  179. return 0;
  180. }
  181. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  182. int len, index;
  183. uint32_t bits=0;
  184. for(len=32; len>0; len--){
  185. for(index=0; index<256; index++){
  186. if(len_table[index]==len)
  187. dst[index]= bits++;
  188. }
  189. if(bits & 1){
  190. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  191. return -1;
  192. }
  193. bits >>= 1;
  194. }
  195. return 0;
  196. }
  197. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  198. typedef struct {
  199. uint64_t val;
  200. int name;
  201. } HeapElem;
  202. static void heap_sift(HeapElem *h, int root, int size)
  203. {
  204. while(root*2+1 < size) {
  205. int child = root*2+1;
  206. if(child < size-1 && h[child].val > h[child+1].val)
  207. child++;
  208. if(h[root].val > h[child].val) {
  209. FFSWAP(HeapElem, h[root], h[child]);
  210. root = child;
  211. } else
  212. break;
  213. }
  214. }
  215. static void generate_len_table(uint8_t *dst, const uint64_t *stats, int size){
  216. HeapElem h[size];
  217. int up[2*size];
  218. int len[2*size];
  219. int offset, i, next;
  220. for(offset=1; ; offset<<=1){
  221. for(i=0; i<size; i++){
  222. h[i].name = i;
  223. h[i].val = (stats[i] << 8) + offset;
  224. }
  225. for(i=size/2-1; i>=0; i--)
  226. heap_sift(h, i, size);
  227. for(next=size; next<size*2-1; next++){
  228. // merge the two smallest entries, and put it back in the heap
  229. uint64_t min1v = h[0].val;
  230. up[h[0].name] = next;
  231. h[0].val = INT64_MAX;
  232. heap_sift(h, 0, size);
  233. up[h[0].name] = next;
  234. h[0].name = next;
  235. h[0].val += min1v;
  236. heap_sift(h, 0, size);
  237. }
  238. len[2*size-2] = 0;
  239. for(i=2*size-3; i>=size; i--)
  240. len[i] = len[up[i]] + 1;
  241. for(i=0; i<size; i++) {
  242. dst[i] = len[up[i]] + 1;
  243. if(dst[i] >= 32) break;
  244. }
  245. if(i==size) break;
  246. }
  247. }
  248. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  249. static void generate_joint_tables(HYuvContext *s){
  250. uint16_t symbols[1<<VLC_BITS];
  251. uint16_t bits[1<<VLC_BITS];
  252. uint8_t len[1<<VLC_BITS];
  253. if(s->bitstream_bpp < 24){
  254. int p, i, y, u;
  255. for(p=0; p<3; p++){
  256. for(i=y=0; y<256; y++){
  257. int len0 = s->len[0][y];
  258. int limit = VLC_BITS - len0;
  259. if(limit <= 0)
  260. continue;
  261. for(u=0; u<256; u++){
  262. int len1 = s->len[p][u];
  263. if(len1 > limit)
  264. continue;
  265. len[i] = len0 + len1;
  266. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  267. symbols[i] = (y<<8) + u;
  268. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  269. i++;
  270. }
  271. }
  272. free_vlc(&s->vlc[3+p]);
  273. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  274. }
  275. }else{
  276. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  277. int i, b, g, r, code;
  278. int p0 = s->decorrelate;
  279. int p1 = !s->decorrelate;
  280. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  281. // cover all the combinations that fit in 11 bits total, and it doesn't
  282. // matter if we miss a few rare codes.
  283. for(i=0, g=-16; g<16; g++){
  284. int len0 = s->len[p0][g&255];
  285. int limit0 = VLC_BITS - len0;
  286. if(limit0 < 2)
  287. continue;
  288. for(b=-16; b<16; b++){
  289. int len1 = s->len[p1][b&255];
  290. int limit1 = limit0 - len1;
  291. if(limit1 < 1)
  292. continue;
  293. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  294. for(r=-16; r<16; r++){
  295. int len2 = s->len[2][r&255];
  296. if(len2 > limit1)
  297. continue;
  298. len[i] = len0 + len1 + len2;
  299. bits[i] = (code << len2) + s->bits[2][r&255];
  300. if(s->decorrelate){
  301. map[i][G] = g;
  302. map[i][B] = g+b;
  303. map[i][R] = g+r;
  304. }else{
  305. map[i][B] = g;
  306. map[i][G] = b;
  307. map[i][R] = r;
  308. }
  309. i++;
  310. }
  311. }
  312. }
  313. free_vlc(&s->vlc[3]);
  314. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  315. }
  316. }
  317. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  318. GetBitContext gb;
  319. int i;
  320. init_get_bits(&gb, src, length*8);
  321. for(i=0; i<3; i++){
  322. if(read_len_table(s->len[i], &gb)<0)
  323. return -1;
  324. if(generate_bits_table(s->bits[i], s->len[i])<0){
  325. return -1;
  326. }
  327. #if 0
  328. for(j=0; j<256; j++){
  329. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  330. }
  331. #endif
  332. free_vlc(&s->vlc[i]);
  333. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  334. }
  335. generate_joint_tables(s);
  336. return (get_bits_count(&gb)+7)/8;
  337. }
  338. static int read_old_huffman_tables(HYuvContext *s){
  339. #if 1
  340. GetBitContext gb;
  341. int i;
  342. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  343. if(read_len_table(s->len[0], &gb)<0)
  344. return -1;
  345. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  346. if(read_len_table(s->len[1], &gb)<0)
  347. return -1;
  348. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  349. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  350. if(s->bitstream_bpp >= 24){
  351. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  352. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  353. }
  354. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  355. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  356. for(i=0; i<3; i++){
  357. free_vlc(&s->vlc[i]);
  358. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  359. }
  360. generate_joint_tables(s);
  361. return 0;
  362. #else
  363. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  364. return -1;
  365. #endif
  366. }
  367. static av_cold void alloc_temp(HYuvContext *s){
  368. int i;
  369. if(s->bitstream_bpp<24){
  370. for(i=0; i<3; i++){
  371. s->temp[i]= av_malloc(s->width + 16);
  372. }
  373. }else{
  374. s->temp[0]= av_mallocz(4*s->width + 16);
  375. }
  376. }
  377. static av_cold int common_init(AVCodecContext *avctx){
  378. HYuvContext *s = avctx->priv_data;
  379. s->avctx= avctx;
  380. s->flags= avctx->flags;
  381. dsputil_init(&s->dsp, avctx);
  382. s->width= avctx->width;
  383. s->height= avctx->height;
  384. assert(s->width>0 && s->height>0);
  385. return 0;
  386. }
  387. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  388. static av_cold int decode_init(AVCodecContext *avctx)
  389. {
  390. HYuvContext *s = avctx->priv_data;
  391. common_init(avctx);
  392. memset(s->vlc, 0, 3*sizeof(VLC));
  393. avctx->coded_frame= &s->picture;
  394. s->interlaced= s->height > 288;
  395. s->bgr32=1;
  396. //if(avctx->extradata)
  397. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  398. if(avctx->extradata_size){
  399. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  400. s->version=1; // do such files exist at all?
  401. else
  402. s->version=2;
  403. }else
  404. s->version=0;
  405. if(s->version==2){
  406. int method, interlace;
  407. if (avctx->extradata_size < 4)
  408. return -1;
  409. method= ((uint8_t*)avctx->extradata)[0];
  410. s->decorrelate= method&64 ? 1 : 0;
  411. s->predictor= method&63;
  412. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  413. if(s->bitstream_bpp==0)
  414. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  415. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  416. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  417. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  418. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  419. return -1;
  420. }else{
  421. switch(avctx->bits_per_coded_sample&7){
  422. case 1:
  423. s->predictor= LEFT;
  424. s->decorrelate= 0;
  425. break;
  426. case 2:
  427. s->predictor= LEFT;
  428. s->decorrelate= 1;
  429. break;
  430. case 3:
  431. s->predictor= PLANE;
  432. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  433. break;
  434. case 4:
  435. s->predictor= MEDIAN;
  436. s->decorrelate= 0;
  437. break;
  438. default:
  439. s->predictor= LEFT; //OLD
  440. s->decorrelate= 0;
  441. break;
  442. }
  443. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  444. s->context= 0;
  445. if(read_old_huffman_tables(s) < 0)
  446. return -1;
  447. }
  448. switch(s->bitstream_bpp){
  449. case 12:
  450. avctx->pix_fmt = PIX_FMT_YUV420P;
  451. break;
  452. case 16:
  453. if(s->yuy2){
  454. avctx->pix_fmt = PIX_FMT_YUYV422;
  455. }else{
  456. avctx->pix_fmt = PIX_FMT_YUV422P;
  457. }
  458. break;
  459. case 24:
  460. case 32:
  461. if(s->bgr32){
  462. avctx->pix_fmt = PIX_FMT_RGB32;
  463. }else{
  464. avctx->pix_fmt = PIX_FMT_BGR24;
  465. }
  466. break;
  467. default:
  468. assert(0);
  469. }
  470. alloc_temp(s);
  471. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  472. return 0;
  473. }
  474. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  475. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  476. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  477. int i;
  478. int index= 0;
  479. for(i=0; i<256;){
  480. int val= len[i];
  481. int repeat=0;
  482. for(; i<256 && len[i]==val && repeat<255; i++)
  483. repeat++;
  484. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  485. if(repeat>7){
  486. buf[index++]= val;
  487. buf[index++]= repeat;
  488. }else{
  489. buf[index++]= val | (repeat<<5);
  490. }
  491. }
  492. return index;
  493. }
  494. static av_cold int encode_init(AVCodecContext *avctx)
  495. {
  496. HYuvContext *s = avctx->priv_data;
  497. int i, j;
  498. common_init(avctx);
  499. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  500. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  501. s->version=2;
  502. avctx->coded_frame= &s->picture;
  503. switch(avctx->pix_fmt){
  504. case PIX_FMT_YUV420P:
  505. s->bitstream_bpp= 12;
  506. break;
  507. case PIX_FMT_YUV422P:
  508. s->bitstream_bpp= 16;
  509. break;
  510. case PIX_FMT_RGB32:
  511. s->bitstream_bpp= 24;
  512. break;
  513. default:
  514. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  515. return -1;
  516. }
  517. avctx->bits_per_coded_sample= s->bitstream_bpp;
  518. s->decorrelate= s->bitstream_bpp >= 24;
  519. s->predictor= avctx->prediction_method;
  520. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  521. if(avctx->context_model==1){
  522. s->context= avctx->context_model;
  523. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  524. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  525. return -1;
  526. }
  527. }else s->context= 0;
  528. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  529. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  530. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  531. return -1;
  532. }
  533. if(avctx->context_model){
  534. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  535. return -1;
  536. }
  537. if(s->interlaced != ( s->height > 288 ))
  538. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  539. }
  540. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  541. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  542. return -1;
  543. }
  544. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  545. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  546. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  547. if(s->context)
  548. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  549. ((uint8_t*)avctx->extradata)[3]= 0;
  550. s->avctx->extradata_size= 4;
  551. if(avctx->stats_in){
  552. char *p= avctx->stats_in;
  553. for(i=0; i<3; i++)
  554. for(j=0; j<256; j++)
  555. s->stats[i][j]= 1;
  556. for(;;){
  557. for(i=0; i<3; i++){
  558. char *next;
  559. for(j=0; j<256; j++){
  560. s->stats[i][j]+= strtol(p, &next, 0);
  561. if(next==p) return -1;
  562. p=next;
  563. }
  564. }
  565. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  566. }
  567. }else{
  568. for(i=0; i<3; i++)
  569. for(j=0; j<256; j++){
  570. int d= FFMIN(j, 256-j);
  571. s->stats[i][j]= 100000000/(d+1);
  572. }
  573. }
  574. for(i=0; i<3; i++){
  575. generate_len_table(s->len[i], s->stats[i], 256);
  576. if(generate_bits_table(s->bits[i], s->len[i])<0){
  577. return -1;
  578. }
  579. s->avctx->extradata_size+=
  580. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  581. }
  582. if(s->context){
  583. for(i=0; i<3; i++){
  584. int pels = s->width*s->height / (i?40:10);
  585. for(j=0; j<256; j++){
  586. int d= FFMIN(j, 256-j);
  587. s->stats[i][j]= pels/(d+1);
  588. }
  589. }
  590. }else{
  591. for(i=0; i<3; i++)
  592. for(j=0; j<256; j++)
  593. s->stats[i][j]= 0;
  594. }
  595. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  596. alloc_temp(s);
  597. s->picture_number=0;
  598. return 0;
  599. }
  600. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  601. /* TODO instead of restarting the read when the code isn't in the first level
  602. * of the joint table, jump into the 2nd level of the individual table. */
  603. #define READ_2PIX(dst0, dst1, plane1){\
  604. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  605. if(code != 0xffff){\
  606. dst0 = code>>8;\
  607. dst1 = code;\
  608. }else{\
  609. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  610. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  611. }\
  612. }
  613. static void decode_422_bitstream(HYuvContext *s, int count){
  614. int i;
  615. count/=2;
  616. if(count >= (get_bits_left(&s->gb))/(31*4)){
  617. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  618. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  619. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  620. }
  621. }else{
  622. for(i=0; i<count; i++){
  623. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  624. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  625. }
  626. }
  627. }
  628. static void decode_gray_bitstream(HYuvContext *s, int count){
  629. int i;
  630. count/=2;
  631. if(count >= (get_bits_left(&s->gb))/(31*2)){
  632. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  633. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  634. }
  635. }else{
  636. for(i=0; i<count; i++){
  637. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  638. }
  639. }
  640. }
  641. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  642. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  643. int i;
  644. const uint8_t *y = s->temp[0] + offset;
  645. const uint8_t *u = s->temp[1] + offset/2;
  646. const uint8_t *v = s->temp[2] + offset/2;
  647. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  648. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  649. return -1;
  650. }
  651. #define LOAD4\
  652. int y0 = y[2*i];\
  653. int y1 = y[2*i+1];\
  654. int u0 = u[i];\
  655. int v0 = v[i];
  656. count/=2;
  657. if(s->flags&CODEC_FLAG_PASS1){
  658. for(i=0; i<count; i++){
  659. LOAD4;
  660. s->stats[0][y0]++;
  661. s->stats[1][u0]++;
  662. s->stats[0][y1]++;
  663. s->stats[2][v0]++;
  664. }
  665. }
  666. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  667. return 0;
  668. if(s->context){
  669. for(i=0; i<count; i++){
  670. LOAD4;
  671. s->stats[0][y0]++;
  672. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  673. s->stats[1][u0]++;
  674. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  675. s->stats[0][y1]++;
  676. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  677. s->stats[2][v0]++;
  678. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  679. }
  680. }else{
  681. for(i=0; i<count; i++){
  682. LOAD4;
  683. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  684. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  685. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  686. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  687. }
  688. }
  689. return 0;
  690. }
  691. static int encode_gray_bitstream(HYuvContext *s, int count){
  692. int i;
  693. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  694. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  695. return -1;
  696. }
  697. #define LOAD2\
  698. int y0 = s->temp[0][2*i];\
  699. int y1 = s->temp[0][2*i+1];
  700. #define STAT2\
  701. s->stats[0][y0]++;\
  702. s->stats[0][y1]++;
  703. #define WRITE2\
  704. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  705. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  706. count/=2;
  707. if(s->flags&CODEC_FLAG_PASS1){
  708. for(i=0; i<count; i++){
  709. LOAD2;
  710. STAT2;
  711. }
  712. }
  713. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  714. return 0;
  715. if(s->context){
  716. for(i=0; i<count; i++){
  717. LOAD2;
  718. STAT2;
  719. WRITE2;
  720. }
  721. }else{
  722. for(i=0; i<count; i++){
  723. LOAD2;
  724. WRITE2;
  725. }
  726. }
  727. return 0;
  728. }
  729. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  730. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  731. int i;
  732. for(i=0; i<count; i++){
  733. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  734. if(code != -1){
  735. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  736. }else if(decorrelate){
  737. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  738. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  739. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  740. }else{
  741. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  742. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  743. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  744. }
  745. if(alpha)
  746. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  747. }
  748. }
  749. static void decode_bgr_bitstream(HYuvContext *s, int count){
  750. if(s->decorrelate){
  751. if(s->bitstream_bpp==24)
  752. decode_bgr_1(s, count, 1, 0);
  753. else
  754. decode_bgr_1(s, count, 1, 1);
  755. }else{
  756. if(s->bitstream_bpp==24)
  757. decode_bgr_1(s, count, 0, 0);
  758. else
  759. decode_bgr_1(s, count, 0, 1);
  760. }
  761. }
  762. static int encode_bgr_bitstream(HYuvContext *s, int count){
  763. int i;
  764. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  765. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  766. return -1;
  767. }
  768. #define LOAD3\
  769. int g= s->temp[0][4*i+G];\
  770. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  771. int r= (s->temp[0][4*i+R] - g) & 0xff;
  772. #define STAT3\
  773. s->stats[0][b]++;\
  774. s->stats[1][g]++;\
  775. s->stats[2][r]++;
  776. #define WRITE3\
  777. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  778. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  779. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  780. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  781. for(i=0; i<count; i++){
  782. LOAD3;
  783. STAT3;
  784. }
  785. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  786. for(i=0; i<count; i++){
  787. LOAD3;
  788. STAT3;
  789. WRITE3;
  790. }
  791. }else{
  792. for(i=0; i<count; i++){
  793. LOAD3;
  794. WRITE3;
  795. }
  796. }
  797. return 0;
  798. }
  799. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  800. static void draw_slice(HYuvContext *s, int y){
  801. int h, cy;
  802. int offset[4];
  803. if(s->avctx->draw_horiz_band==NULL)
  804. return;
  805. h= y - s->last_slice_end;
  806. y -= h;
  807. if(s->bitstream_bpp==12){
  808. cy= y>>1;
  809. }else{
  810. cy= y;
  811. }
  812. offset[0] = s->picture.linesize[0]*y;
  813. offset[1] = s->picture.linesize[1]*cy;
  814. offset[2] = s->picture.linesize[2]*cy;
  815. offset[3] = 0;
  816. emms_c();
  817. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  818. s->last_slice_end= y + h;
  819. }
  820. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  821. const uint8_t *buf = avpkt->data;
  822. int buf_size = avpkt->size;
  823. HYuvContext *s = avctx->priv_data;
  824. const int width= s->width;
  825. const int width2= s->width>>1;
  826. const int height= s->height;
  827. int fake_ystride, fake_ustride, fake_vstride;
  828. AVFrame * const p= &s->picture;
  829. int table_size= 0;
  830. AVFrame *picture = data;
  831. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  832. if (!s->bitstream_buffer)
  833. return AVERROR(ENOMEM);
  834. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  835. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  836. if(p->data[0])
  837. avctx->release_buffer(avctx, p);
  838. p->reference= 0;
  839. if(avctx->get_buffer(avctx, p) < 0){
  840. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  841. return -1;
  842. }
  843. if(s->context){
  844. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  845. if(table_size < 0)
  846. return -1;
  847. }
  848. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  849. return -1;
  850. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  851. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  852. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  853. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  854. s->last_slice_end= 0;
  855. if(s->bitstream_bpp<24){
  856. int y, cy;
  857. int lefty, leftu, leftv;
  858. int lefttopy, lefttopu, lefttopv;
  859. if(s->yuy2){
  860. p->data[0][3]= get_bits(&s->gb, 8);
  861. p->data[0][2]= get_bits(&s->gb, 8);
  862. p->data[0][1]= get_bits(&s->gb, 8);
  863. p->data[0][0]= get_bits(&s->gb, 8);
  864. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  865. return -1;
  866. }else{
  867. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  868. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  869. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  870. p->data[0][0]= get_bits(&s->gb, 8);
  871. switch(s->predictor){
  872. case LEFT:
  873. case PLANE:
  874. decode_422_bitstream(s, width-2);
  875. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  876. if(!(s->flags&CODEC_FLAG_GRAY)){
  877. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  878. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  879. }
  880. for(cy=y=1; y<s->height; y++,cy++){
  881. uint8_t *ydst, *udst, *vdst;
  882. if(s->bitstream_bpp==12){
  883. decode_gray_bitstream(s, width);
  884. ydst= p->data[0] + p->linesize[0]*y;
  885. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  886. if(s->predictor == PLANE){
  887. if(y>s->interlaced)
  888. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  889. }
  890. y++;
  891. if(y>=s->height) break;
  892. }
  893. draw_slice(s, y);
  894. ydst= p->data[0] + p->linesize[0]*y;
  895. udst= p->data[1] + p->linesize[1]*cy;
  896. vdst= p->data[2] + p->linesize[2]*cy;
  897. decode_422_bitstream(s, width);
  898. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  899. if(!(s->flags&CODEC_FLAG_GRAY)){
  900. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  901. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  902. }
  903. if(s->predictor == PLANE){
  904. if(cy>s->interlaced){
  905. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  906. if(!(s->flags&CODEC_FLAG_GRAY)){
  907. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  908. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  909. }
  910. }
  911. }
  912. }
  913. draw_slice(s, height);
  914. break;
  915. case MEDIAN:
  916. /* first line except first 2 pixels is left predicted */
  917. decode_422_bitstream(s, width-2);
  918. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  919. if(!(s->flags&CODEC_FLAG_GRAY)){
  920. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  921. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  922. }
  923. cy=y=1;
  924. /* second line is left predicted for interlaced case */
  925. if(s->interlaced){
  926. decode_422_bitstream(s, width);
  927. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  928. if(!(s->flags&CODEC_FLAG_GRAY)){
  929. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  930. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  931. }
  932. y++; cy++;
  933. }
  934. /* next 4 pixels are left predicted too */
  935. decode_422_bitstream(s, 4);
  936. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  937. if(!(s->flags&CODEC_FLAG_GRAY)){
  938. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  939. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  940. }
  941. /* next line except the first 4 pixels is median predicted */
  942. lefttopy= p->data[0][3];
  943. decode_422_bitstream(s, width-4);
  944. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  945. if(!(s->flags&CODEC_FLAG_GRAY)){
  946. lefttopu= p->data[1][1];
  947. lefttopv= p->data[2][1];
  948. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  949. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  950. }
  951. y++; cy++;
  952. for(; y<height; y++,cy++){
  953. uint8_t *ydst, *udst, *vdst;
  954. if(s->bitstream_bpp==12){
  955. while(2*cy > y){
  956. decode_gray_bitstream(s, width);
  957. ydst= p->data[0] + p->linesize[0]*y;
  958. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  959. y++;
  960. }
  961. if(y>=height) break;
  962. }
  963. draw_slice(s, y);
  964. decode_422_bitstream(s, width);
  965. ydst= p->data[0] + p->linesize[0]*y;
  966. udst= p->data[1] + p->linesize[1]*cy;
  967. vdst= p->data[2] + p->linesize[2]*cy;
  968. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  969. if(!(s->flags&CODEC_FLAG_GRAY)){
  970. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  971. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  972. }
  973. }
  974. draw_slice(s, height);
  975. break;
  976. }
  977. }
  978. }else{
  979. int y;
  980. int leftr, leftg, leftb, lefta;
  981. const int last_line= (height-1)*p->linesize[0];
  982. if(s->bitstream_bpp==32){
  983. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  984. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  985. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  986. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  987. }else{
  988. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  989. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  990. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  991. lefta= p->data[0][last_line+A]= 255;
  992. skip_bits(&s->gb, 8);
  993. }
  994. if(s->bgr32){
  995. switch(s->predictor){
  996. case LEFT:
  997. case PLANE:
  998. decode_bgr_bitstream(s, width-1);
  999. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1000. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1001. decode_bgr_bitstream(s, width);
  1002. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1003. if(s->predictor == PLANE){
  1004. if(s->bitstream_bpp!=32) lefta=0;
  1005. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1006. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1007. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1008. }
  1009. }
  1010. }
  1011. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1012. break;
  1013. default:
  1014. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1015. }
  1016. }else{
  1017. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1018. return -1;
  1019. }
  1020. }
  1021. emms_c();
  1022. *picture= *p;
  1023. *data_size = sizeof(AVFrame);
  1024. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1025. }
  1026. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1027. static int common_end(HYuvContext *s){
  1028. int i;
  1029. for(i=0; i<3; i++){
  1030. av_freep(&s->temp[i]);
  1031. }
  1032. return 0;
  1033. }
  1034. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1035. static av_cold int decode_end(AVCodecContext *avctx)
  1036. {
  1037. HYuvContext *s = avctx->priv_data;
  1038. int i;
  1039. if (s->picture.data[0])
  1040. avctx->release_buffer(avctx, &s->picture);
  1041. common_end(s);
  1042. av_freep(&s->bitstream_buffer);
  1043. for(i=0; i<6; i++){
  1044. free_vlc(&s->vlc[i]);
  1045. }
  1046. return 0;
  1047. }
  1048. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1049. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1050. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1051. HYuvContext *s = avctx->priv_data;
  1052. AVFrame *pict = data;
  1053. const int width= s->width;
  1054. const int width2= s->width>>1;
  1055. const int height= s->height;
  1056. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1057. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1058. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1059. AVFrame * const p= &s->picture;
  1060. int i, j, size=0;
  1061. *p = *pict;
  1062. p->pict_type= FF_I_TYPE;
  1063. p->key_frame= 1;
  1064. if(s->context){
  1065. for(i=0; i<3; i++){
  1066. generate_len_table(s->len[i], s->stats[i], 256);
  1067. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1068. return -1;
  1069. size+= store_table(s, s->len[i], &buf[size]);
  1070. }
  1071. for(i=0; i<3; i++)
  1072. for(j=0; j<256; j++)
  1073. s->stats[i][j] >>= 1;
  1074. }
  1075. init_put_bits(&s->pb, buf+size, buf_size-size);
  1076. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1077. int lefty, leftu, leftv, y, cy;
  1078. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1079. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1080. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1081. put_bits(&s->pb, 8, p->data[0][0]);
  1082. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1083. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1084. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1085. encode_422_bitstream(s, 2, width-2);
  1086. if(s->predictor==MEDIAN){
  1087. int lefttopy, lefttopu, lefttopv;
  1088. cy=y=1;
  1089. if(s->interlaced){
  1090. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1091. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1092. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1093. encode_422_bitstream(s, 0, width);
  1094. y++; cy++;
  1095. }
  1096. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1097. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1098. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1099. encode_422_bitstream(s, 0, 4);
  1100. lefttopy= p->data[0][3];
  1101. lefttopu= p->data[1][1];
  1102. lefttopv= p->data[2][1];
  1103. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1104. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1105. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1106. encode_422_bitstream(s, 0, width-4);
  1107. y++; cy++;
  1108. for(; y<height; y++,cy++){
  1109. uint8_t *ydst, *udst, *vdst;
  1110. if(s->bitstream_bpp==12){
  1111. while(2*cy > y){
  1112. ydst= p->data[0] + p->linesize[0]*y;
  1113. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1114. encode_gray_bitstream(s, width);
  1115. y++;
  1116. }
  1117. if(y>=height) break;
  1118. }
  1119. ydst= p->data[0] + p->linesize[0]*y;
  1120. udst= p->data[1] + p->linesize[1]*cy;
  1121. vdst= p->data[2] + p->linesize[2]*cy;
  1122. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1123. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1124. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1125. encode_422_bitstream(s, 0, width);
  1126. }
  1127. }else{
  1128. for(cy=y=1; y<height; y++,cy++){
  1129. uint8_t *ydst, *udst, *vdst;
  1130. /* encode a luma only line & y++ */
  1131. if(s->bitstream_bpp==12){
  1132. ydst= p->data[0] + p->linesize[0]*y;
  1133. if(s->predictor == PLANE && s->interlaced < y){
  1134. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1135. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1136. }else{
  1137. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1138. }
  1139. encode_gray_bitstream(s, width);
  1140. y++;
  1141. if(y>=height) break;
  1142. }
  1143. ydst= p->data[0] + p->linesize[0]*y;
  1144. udst= p->data[1] + p->linesize[1]*cy;
  1145. vdst= p->data[2] + p->linesize[2]*cy;
  1146. if(s->predictor == PLANE && s->interlaced < cy){
  1147. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1148. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1149. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1150. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1151. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1152. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1153. }else{
  1154. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1155. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1156. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1157. }
  1158. encode_422_bitstream(s, 0, width);
  1159. }
  1160. }
  1161. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1162. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1163. const int stride = -p->linesize[0];
  1164. const int fake_stride = -fake_ystride;
  1165. int y;
  1166. int leftr, leftg, leftb;
  1167. put_bits(&s->pb, 8, leftr= data[R]);
  1168. put_bits(&s->pb, 8, leftg= data[G]);
  1169. put_bits(&s->pb, 8, leftb= data[B]);
  1170. put_bits(&s->pb, 8, 0);
  1171. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1172. encode_bgr_bitstream(s, width-1);
  1173. for(y=1; y<s->height; y++){
  1174. uint8_t *dst = data + y*stride;
  1175. if(s->predictor == PLANE && s->interlaced < y){
  1176. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1177. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1178. }else{
  1179. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1180. }
  1181. encode_bgr_bitstream(s, width);
  1182. }
  1183. }else{
  1184. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1185. }
  1186. emms_c();
  1187. size+= (put_bits_count(&s->pb)+31)/8;
  1188. put_bits(&s->pb, 16, 0);
  1189. put_bits(&s->pb, 15, 0);
  1190. size/= 4;
  1191. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1192. int j;
  1193. char *p= avctx->stats_out;
  1194. char *end= p + 1024*30;
  1195. for(i=0; i<3; i++){
  1196. for(j=0; j<256; j++){
  1197. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1198. p+= strlen(p);
  1199. s->stats[i][j]= 0;
  1200. }
  1201. snprintf(p, end-p, "\n");
  1202. p++;
  1203. }
  1204. } else
  1205. avctx->stats_out[0] = '\0';
  1206. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1207. flush_put_bits(&s->pb);
  1208. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1209. }
  1210. s->picture_number++;
  1211. return size*4;
  1212. }
  1213. static av_cold int encode_end(AVCodecContext *avctx)
  1214. {
  1215. HYuvContext *s = avctx->priv_data;
  1216. common_end(s);
  1217. av_freep(&avctx->extradata);
  1218. av_freep(&avctx->stats_out);
  1219. return 0;
  1220. }
  1221. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1222. #if CONFIG_HUFFYUV_DECODER
  1223. AVCodec huffyuv_decoder = {
  1224. "huffyuv",
  1225. AVMEDIA_TYPE_VIDEO,
  1226. CODEC_ID_HUFFYUV,
  1227. sizeof(HYuvContext),
  1228. decode_init,
  1229. NULL,
  1230. decode_end,
  1231. decode_frame,
  1232. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1233. NULL,
  1234. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1235. };
  1236. #endif
  1237. #if CONFIG_FFVHUFF_DECODER
  1238. AVCodec ffvhuff_decoder = {
  1239. "ffvhuff",
  1240. AVMEDIA_TYPE_VIDEO,
  1241. CODEC_ID_FFVHUFF,
  1242. sizeof(HYuvContext),
  1243. decode_init,
  1244. NULL,
  1245. decode_end,
  1246. decode_frame,
  1247. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1248. NULL,
  1249. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1250. };
  1251. #endif
  1252. #if CONFIG_HUFFYUV_ENCODER
  1253. AVCodec huffyuv_encoder = {
  1254. "huffyuv",
  1255. AVMEDIA_TYPE_VIDEO,
  1256. CODEC_ID_HUFFYUV,
  1257. sizeof(HYuvContext),
  1258. encode_init,
  1259. encode_frame,
  1260. encode_end,
  1261. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1262. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1263. };
  1264. #endif
  1265. #if CONFIG_FFVHUFF_ENCODER
  1266. AVCodec ffvhuff_encoder = {
  1267. "ffvhuff",
  1268. AVMEDIA_TYPE_VIDEO,
  1269. CODEC_ID_FFVHUFF,
  1270. sizeof(HYuvContext),
  1271. encode_init,
  1272. encode_frame,
  1273. encode_end,
  1274. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1275. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1276. };
  1277. #endif