You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

369 lines
9.1KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * FFT/IFFT transforms.
  26. */
  27. #include <stdlib.h>
  28. #include <string.h>
  29. #include "libavutil/mathematics.h"
  30. #include "fft.h"
  31. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  32. #if !CONFIG_HARDCODED_TABLES
  33. COSTABLE(16);
  34. COSTABLE(32);
  35. COSTABLE(64);
  36. COSTABLE(128);
  37. COSTABLE(256);
  38. COSTABLE(512);
  39. COSTABLE(1024);
  40. COSTABLE(2048);
  41. COSTABLE(4096);
  42. COSTABLE(8192);
  43. COSTABLE(16384);
  44. COSTABLE(32768);
  45. COSTABLE(65536);
  46. #endif
  47. COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
  48. NULL, NULL, NULL, NULL,
  49. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  50. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  51. };
  52. static int split_radix_permutation(int i, int n, int inverse)
  53. {
  54. int m;
  55. if(n <= 2) return i&1;
  56. m = n >> 1;
  57. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  58. m >>= 1;
  59. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  60. else return split_radix_permutation(i, m, inverse)*4 - 1;
  61. }
  62. av_cold void ff_init_ff_cos_tabs(int index)
  63. {
  64. #if !CONFIG_HARDCODED_TABLES
  65. int i;
  66. int m = 1<<index;
  67. double freq = 2*M_PI/m;
  68. FFTSample *tab = ff_cos_tabs[index];
  69. for(i=0; i<=m/4; i++)
  70. tab[i] = cos(i*freq);
  71. for(i=1; i<m/4; i++)
  72. tab[m/2-i] = tab[i];
  73. #endif
  74. }
  75. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  76. {
  77. int i, j, m, n;
  78. float alpha, c1, s1, s2;
  79. int av_unused has_vectors;
  80. if (nbits < 2 || nbits > 16)
  81. goto fail;
  82. s->nbits = nbits;
  83. n = 1 << nbits;
  84. s->tmp_buf = NULL;
  85. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  86. if (!s->exptab)
  87. goto fail;
  88. s->revtab = av_malloc(n * sizeof(uint16_t));
  89. if (!s->revtab)
  90. goto fail;
  91. s->inverse = inverse;
  92. s2 = inverse ? 1.0 : -1.0;
  93. s->fft_permute = ff_fft_permute_c;
  94. s->fft_calc = ff_fft_calc_c;
  95. #if CONFIG_MDCT
  96. s->imdct_calc = ff_imdct_calc_c;
  97. s->imdct_half = ff_imdct_half_c;
  98. s->mdct_calc = ff_mdct_calc_c;
  99. #endif
  100. s->exptab1 = NULL;
  101. s->split_radix = 1;
  102. if (ARCH_ARM) ff_fft_init_arm(s);
  103. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  104. if (HAVE_MMX) ff_fft_init_mmx(s);
  105. if (s->split_radix) {
  106. for(j=4; j<=nbits; j++) {
  107. ff_init_ff_cos_tabs(j);
  108. }
  109. for(i=0; i<n; i++)
  110. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  111. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  112. } else {
  113. int np, nblocks, np2, l;
  114. FFTComplex *q;
  115. for(i=0; i<(n/2); i++) {
  116. alpha = 2 * M_PI * (float)i / (float)n;
  117. c1 = cos(alpha);
  118. s1 = sin(alpha) * s2;
  119. s->exptab[i].re = c1;
  120. s->exptab[i].im = s1;
  121. }
  122. np = 1 << nbits;
  123. nblocks = np >> 3;
  124. np2 = np >> 1;
  125. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  126. if (!s->exptab1)
  127. goto fail;
  128. q = s->exptab1;
  129. do {
  130. for(l = 0; l < np2; l += 2 * nblocks) {
  131. *q++ = s->exptab[l];
  132. *q++ = s->exptab[l + nblocks];
  133. q->re = -s->exptab[l].im;
  134. q->im = s->exptab[l].re;
  135. q++;
  136. q->re = -s->exptab[l + nblocks].im;
  137. q->im = s->exptab[l + nblocks].re;
  138. q++;
  139. }
  140. nblocks = nblocks >> 1;
  141. } while (nblocks != 0);
  142. av_freep(&s->exptab);
  143. /* compute bit reverse table */
  144. for(i=0;i<n;i++) {
  145. m=0;
  146. for(j=0;j<nbits;j++) {
  147. m |= ((i >> j) & 1) << (nbits-j-1);
  148. }
  149. s->revtab[i]=m;
  150. }
  151. }
  152. return 0;
  153. fail:
  154. av_freep(&s->revtab);
  155. av_freep(&s->exptab);
  156. av_freep(&s->exptab1);
  157. av_freep(&s->tmp_buf);
  158. return -1;
  159. }
  160. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  161. {
  162. int j, k, np;
  163. FFTComplex tmp;
  164. const uint16_t *revtab = s->revtab;
  165. np = 1 << s->nbits;
  166. if (s->tmp_buf) {
  167. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  168. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  169. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  170. return;
  171. }
  172. /* reverse */
  173. for(j=0;j<np;j++) {
  174. k = revtab[j];
  175. if (k < j) {
  176. tmp = z[k];
  177. z[k] = z[j];
  178. z[j] = tmp;
  179. }
  180. }
  181. }
  182. av_cold void ff_fft_end(FFTContext *s)
  183. {
  184. av_freep(&s->revtab);
  185. av_freep(&s->exptab);
  186. av_freep(&s->exptab1);
  187. av_freep(&s->tmp_buf);
  188. }
  189. #define sqrthalf (float)M_SQRT1_2
  190. #define BF(x,y,a,b) {\
  191. x = a - b;\
  192. y = a + b;\
  193. }
  194. #define BUTTERFLIES(a0,a1,a2,a3) {\
  195. BF(t3, t5, t5, t1);\
  196. BF(a2.re, a0.re, a0.re, t5);\
  197. BF(a3.im, a1.im, a1.im, t3);\
  198. BF(t4, t6, t2, t6);\
  199. BF(a3.re, a1.re, a1.re, t4);\
  200. BF(a2.im, a0.im, a0.im, t6);\
  201. }
  202. // force loading all the inputs before storing any.
  203. // this is slightly slower for small data, but avoids store->load aliasing
  204. // for addresses separated by large powers of 2.
  205. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  206. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  207. BF(t3, t5, t5, t1);\
  208. BF(a2.re, a0.re, r0, t5);\
  209. BF(a3.im, a1.im, i1, t3);\
  210. BF(t4, t6, t2, t6);\
  211. BF(a3.re, a1.re, r1, t4);\
  212. BF(a2.im, a0.im, i0, t6);\
  213. }
  214. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  215. t1 = a2.re * wre + a2.im * wim;\
  216. t2 = a2.im * wre - a2.re * wim;\
  217. t5 = a3.re * wre - a3.im * wim;\
  218. t6 = a3.im * wre + a3.re * wim;\
  219. BUTTERFLIES(a0,a1,a2,a3)\
  220. }
  221. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  222. t1 = a2.re;\
  223. t2 = a2.im;\
  224. t5 = a3.re;\
  225. t6 = a3.im;\
  226. BUTTERFLIES(a0,a1,a2,a3)\
  227. }
  228. /* z[0...8n-1], w[1...2n-1] */
  229. #define PASS(name)\
  230. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  231. {\
  232. FFTSample t1, t2, t3, t4, t5, t6;\
  233. int o1 = 2*n;\
  234. int o2 = 4*n;\
  235. int o3 = 6*n;\
  236. const FFTSample *wim = wre+o1;\
  237. n--;\
  238. \
  239. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  240. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  241. do {\
  242. z += 2;\
  243. wre += 2;\
  244. wim -= 2;\
  245. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  246. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  247. } while(--n);\
  248. }
  249. PASS(pass)
  250. #undef BUTTERFLIES
  251. #define BUTTERFLIES BUTTERFLIES_BIG
  252. PASS(pass_big)
  253. #define DECL_FFT(n,n2,n4)\
  254. static void fft##n(FFTComplex *z)\
  255. {\
  256. fft##n2(z);\
  257. fft##n4(z+n4*2);\
  258. fft##n4(z+n4*3);\
  259. pass(z,ff_cos_##n,n4/2);\
  260. }
  261. static void fft4(FFTComplex *z)
  262. {
  263. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  264. BF(t3, t1, z[0].re, z[1].re);
  265. BF(t8, t6, z[3].re, z[2].re);
  266. BF(z[2].re, z[0].re, t1, t6);
  267. BF(t4, t2, z[0].im, z[1].im);
  268. BF(t7, t5, z[2].im, z[3].im);
  269. BF(z[3].im, z[1].im, t4, t8);
  270. BF(z[3].re, z[1].re, t3, t7);
  271. BF(z[2].im, z[0].im, t2, t5);
  272. }
  273. static void fft8(FFTComplex *z)
  274. {
  275. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  276. fft4(z);
  277. BF(t1, z[5].re, z[4].re, -z[5].re);
  278. BF(t2, z[5].im, z[4].im, -z[5].im);
  279. BF(t3, z[7].re, z[6].re, -z[7].re);
  280. BF(t4, z[7].im, z[6].im, -z[7].im);
  281. BF(t8, t1, t3, t1);
  282. BF(t7, t2, t2, t4);
  283. BF(z[4].re, z[0].re, z[0].re, t1);
  284. BF(z[4].im, z[0].im, z[0].im, t2);
  285. BF(z[6].re, z[2].re, z[2].re, t7);
  286. BF(z[6].im, z[2].im, z[2].im, t8);
  287. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  288. }
  289. #if !CONFIG_SMALL
  290. static void fft16(FFTComplex *z)
  291. {
  292. FFTSample t1, t2, t3, t4, t5, t6;
  293. fft8(z);
  294. fft4(z+8);
  295. fft4(z+12);
  296. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  297. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  298. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  299. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  300. }
  301. #else
  302. DECL_FFT(16,8,4)
  303. #endif
  304. DECL_FFT(32,16,8)
  305. DECL_FFT(64,32,16)
  306. DECL_FFT(128,64,32)
  307. DECL_FFT(256,128,64)
  308. DECL_FFT(512,256,128)
  309. #if !CONFIG_SMALL
  310. #define pass pass_big
  311. #endif
  312. DECL_FFT(1024,512,256)
  313. DECL_FFT(2048,1024,512)
  314. DECL_FFT(4096,2048,1024)
  315. DECL_FFT(8192,4096,2048)
  316. DECL_FFT(16384,8192,4096)
  317. DECL_FFT(32768,16384,8192)
  318. DECL_FFT(65536,32768,16384)
  319. static void (* const fft_dispatch[])(FFTComplex*) = {
  320. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  321. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  322. };
  323. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  324. {
  325. fft_dispatch[s->nbits-2](z);
  326. }