|
- /*
- * Wmapro compatible decoder
- * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
- * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file libavcodec/wmaprodec.c
- * @brief wmapro decoder implementation
- * Wmapro is an MDCT based codec comparable to wma standard or AAC.
- * The decoding therefore consists of the following steps:
- * - bitstream decoding
- * - reconstruction of per-channel data
- * - rescaling and inverse quantization
- * - IMDCT
- * - windowing and overlapp-add
- *
- * The compressed wmapro bitstream is split into individual packets.
- * Every such packet contains one or more wma frames.
- * The compressed frames may have a variable length and frames may
- * cross packet boundaries.
- * Common to all wmapro frames is the number of samples that are stored in
- * a frame.
- * The number of samples and a few other decode flags are stored
- * as extradata that has to be passed to the decoder.
- *
- * The wmapro frames themselves are again split into a variable number of
- * subframes. Every subframe contains the data for 2^N time domain samples
- * where N varies between 7 and 12.
- *
- * Example wmapro bitstream (in samples):
- *
- * || packet 0 || packet 1 || packet 2 packets
- * ---------------------------------------------------
- * || frame 0 || frame 1 || frame 2 || frames
- * ---------------------------------------------------
- * || | | || | | | || || subframes of channel 0
- * ---------------------------------------------------
- * || | | || | | | || || subframes of channel 1
- * ---------------------------------------------------
- *
- * The frame layouts for the individual channels of a wma frame does not need
- * to be the same.
- *
- * However, if the offsets and lengths of several subframes of a frame are the
- * same, the subframes of the channels can be grouped.
- * Every group may then use special coding techniques like M/S stereo coding
- * to improve the compression ratio. These channel transformations do not
- * need to be applied to a whole subframe. Instead, they can also work on
- * individual scale factor bands (see below).
- * The coefficients that carry the audio signal in the frequency domain
- * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
- * In addition to that, the encoder can switch to a runlevel coding scheme
- * by transmitting subframe_length / 128 zero coefficients.
- *
- * Before the audio signal can be converted to the time domain, the
- * coefficients have to be rescaled and inverse quantized.
- * A subframe is therefore split into several scale factor bands that get
- * scaled individually.
- * Scale factors are submitted for every frame but they might be shared
- * between the subframes of a channel. Scale factors are initially DPCM-coded.
- * Once scale factors are shared, the differences are transmitted as runlevel
- * codes.
- * Every subframe length and offset combination in the frame layout shares a
- * common quantization factor that can be adjusted for every channel by a
- * modifier.
- * After the inverse quantization, the coefficients get processed by an IMDCT.
- * The resulting values are then windowed with a sine window and the first half
- * of the values are added to the second half of the output from the previous
- * subframe in order to reconstruct the output samples.
- */
-
- /**
- *@brief Uninitialize the decoder and free all resources.
- *@param avctx codec context
- *@return 0 on success, < 0 otherwise
- */
- static av_cold int decode_end(AVCodecContext *avctx)
- {
- WMA3DecodeContext *s = avctx->priv_data;
- int i;
-
- for (i = 0 ; i < WMAPRO_BLOCK_SIZES ; i++)
- ff_mdct_end(&s->mdct_ctx[i]);
-
- return 0;
- }
-
- /**
- *@brief Calculate a decorrelation matrix from the bitstream parameters.
- *@param s codec context
- *@param chgroup channel group for which the matrix needs to be calculated
- */
- static void decode_decorrelation_matrix(WMA3DecodeContext *s,
- WMA3ChannelGroup *chgroup)
- {
- int i;
- int offset = 0;
- int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
- memset(chgroup->decorrelation_matrix,0,
- sizeof(float) *s->num_channels * s->num_channels);
-
- for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
- rotation_offset[i] = get_bits(&s->gb,6);
-
- for (i = 0; i < chgroup->num_channels; i++)
- chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
- get_bits1(&s->gb) ? 1.0 : -1.0;
-
- for (i = 1; i < chgroup->num_channels; i++) {
- int x;
- for (x = 0; x < i; x++) {
- int y;
- for (y = 0; y < i + 1 ; y++) {
- float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
- float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
- int n = rotation_offset[offset + x];
- float sinv;
- float cosv;
-
- if (n < 32) {
- sinv = sin64[n];
- cosv = sin64[32-n];
- } else {
- sinv = sin64[64-n];
- cosv = -sin64[n-32];
- }
-
- chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
- (v1 * sinv) - (v2 * cosv);
- chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
- (v1 * cosv) + (v2 * sinv);
- }
- }
- offset += i;
- }
- }
-
- /**
- *@brief Reconstruct the individual channel data.
- *@param s codec context
- */
- static void inverse_channel_transform(WMA3DecodeContext *s)
- {
- int i;
-
- for (i = 0; i < s->num_chgroups; i++) {
-
- if (s->chgroup[i].transform == 1) {
- /** M/S stereo decoding */
- int16_t* sfb_offsets = s->cur_sfb_offsets;
- float* ch0 = *sfb_offsets + s->channel[0].coeffs;
- float* ch1 = *sfb_offsets++ + s->channel[1].coeffs;
- const char* tb = s->chgroup[i].transform_band;
- const char* tb_end = tb + s->num_bands;
-
- while (tb < tb_end) {
- const float* ch0_end = s->channel[0].coeffs +
- FFMIN(*sfb_offsets,s->subframe_len);
- if (*tb++ == 1) {
- while (ch0 < ch0_end) {
- const float v1 = *ch0;
- const float v2 = *ch1;
- *ch0++ = v1 - v2;
- *ch1++ = v1 + v2;
- }
- } else {
- while (ch0 < ch0_end) {
- *ch0++ *= 181.0 / 128;
- *ch1++ *= 181.0 / 128;
- }
- }
- ++sfb_offsets;
- }
- } else if (s->chgroup[i].transform) {
- float data[WMAPRO_MAX_CHANNELS];
- const int num_channels = s->chgroup[i].num_channels;
- float** ch_data = s->chgroup[i].channel_data;
- float** ch_end = ch_data + num_channels;
- const int8_t* tb = s->chgroup[i].transform_band;
- int16_t* sfb;
-
- /** multichannel decorrelation */
- for (sfb = s->cur_sfb_offsets ;
- sfb < s->cur_sfb_offsets + s->num_bands;sfb++) {
- if (*tb++ == 1) {
- int y;
- /** multiply values with the decorrelation_matrix */
- for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
- const float* mat = s->chgroup[i].decorrelation_matrix;
- const float* data_end = data + num_channels;
- float* data_ptr = data;
- float** ch;
-
- for (ch = ch_data;ch < ch_end; ch++)
- *data_ptr++ = (*ch)[y];
-
- for (ch = ch_data; ch < ch_end; ch++) {
- float sum = 0;
- data_ptr = data;
- while (data_ptr < data_end)
- sum += *data_ptr++ * *mat++;
-
- (*ch)[y] = sum;
- }
- }
- }
- }
- }
- }
- }
|