You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

519 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "wma.h"
  23. #include "wmadata.h"
  24. #undef NDEBUG
  25. #include <assert.h>
  26. /* XXX: use same run/length optimization as mpeg decoders */
  27. //FIXME maybe split decode / encode or pass flag
  28. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  29. uint16_t **plevel_table, uint16_t **pint_table,
  30. const CoefVLCTable *vlc_table)
  31. {
  32. int n = vlc_table->n;
  33. const uint8_t *table_bits = vlc_table->huffbits;
  34. const uint32_t *table_codes = vlc_table->huffcodes;
  35. const uint16_t *levels_table = vlc_table->levels;
  36. uint16_t *run_table, *level_table, *int_table;
  37. int i, l, j, k, level;
  38. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  39. run_table = av_malloc(n * sizeof(uint16_t));
  40. level_table = av_malloc(n * sizeof(uint16_t));
  41. int_table = av_malloc(n * sizeof(uint16_t));
  42. i = 2;
  43. level = 1;
  44. k = 0;
  45. while (i < n) {
  46. int_table[k] = i;
  47. l = levels_table[k++];
  48. for (j = 0; j < l; j++) {
  49. run_table[i] = j;
  50. level_table[i] = level;
  51. i++;
  52. }
  53. level++;
  54. }
  55. *prun_table = run_table;
  56. *plevel_table = level_table;
  57. *pint_table = int_table;
  58. }
  59. /**
  60. *@brief Get the samples per frame for this stream.
  61. *@param sample_rate output sample_rate
  62. *@param version wma version
  63. *@param decode_flags codec compression features
  64. *@return log2 of the number of output samples per frame
  65. */
  66. int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
  67. unsigned int decode_flags)
  68. {
  69. int frame_len_bits;
  70. if (sample_rate <= 16000) {
  71. frame_len_bits = 9;
  72. } else if (sample_rate <= 22050 ||
  73. (sample_rate <= 32000 && version == 1)) {
  74. frame_len_bits = 10;
  75. } else if (sample_rate <= 48000) {
  76. frame_len_bits = 11;
  77. } else if (sample_rate <= 96000) {
  78. frame_len_bits = 12;
  79. } else {
  80. frame_len_bits = 13;
  81. }
  82. if (version == 3) {
  83. int tmp = decode_flags & 0x6;
  84. if (tmp == 0x2) {
  85. ++frame_len_bits;
  86. } else if (tmp == 0x4) {
  87. --frame_len_bits;
  88. } else if (tmp == 0x6) {
  89. frame_len_bits -= 2;
  90. }
  91. }
  92. return frame_len_bits;
  93. }
  94. int ff_wma_init(AVCodecContext *avctx, int flags2)
  95. {
  96. WMACodecContext *s = avctx->priv_data;
  97. int i;
  98. float bps1, high_freq;
  99. volatile float bps;
  100. int sample_rate1;
  101. int coef_vlc_table;
  102. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  103. || avctx->channels <= 0 || avctx->channels > 8
  104. || avctx->bit_rate <= 0)
  105. return -1;
  106. s->sample_rate = avctx->sample_rate;
  107. s->nb_channels = avctx->channels;
  108. s->bit_rate = avctx->bit_rate;
  109. s->block_align = avctx->block_align;
  110. dsputil_init(&s->dsp, avctx);
  111. if (avctx->codec->id == CODEC_ID_WMAV1) {
  112. s->version = 1;
  113. } else {
  114. s->version = 2;
  115. }
  116. /* compute MDCT block size */
  117. s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
  118. s->frame_len = 1 << s->frame_len_bits;
  119. if (s->use_variable_block_len) {
  120. int nb_max, nb;
  121. nb = ((flags2 >> 3) & 3) + 1;
  122. if ((s->bit_rate / s->nb_channels) >= 32000)
  123. nb += 2;
  124. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  125. if (nb > nb_max)
  126. nb = nb_max;
  127. s->nb_block_sizes = nb + 1;
  128. } else {
  129. s->nb_block_sizes = 1;
  130. }
  131. /* init rate dependent parameters */
  132. s->use_noise_coding = 1;
  133. high_freq = s->sample_rate * 0.5;
  134. /* if version 2, then the rates are normalized */
  135. sample_rate1 = s->sample_rate;
  136. if (s->version == 2) {
  137. if (sample_rate1 >= 44100) {
  138. sample_rate1 = 44100;
  139. } else if (sample_rate1 >= 22050) {
  140. sample_rate1 = 22050;
  141. } else if (sample_rate1 >= 16000) {
  142. sample_rate1 = 16000;
  143. } else if (sample_rate1 >= 11025) {
  144. sample_rate1 = 11025;
  145. } else if (sample_rate1 >= 8000) {
  146. sample_rate1 = 8000;
  147. }
  148. }
  149. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  150. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  151. /* compute high frequency value and choose if noise coding should
  152. be activated */
  153. bps1 = bps;
  154. if (s->nb_channels == 2)
  155. bps1 = bps * 1.6;
  156. if (sample_rate1 == 44100) {
  157. if (bps1 >= 0.61) {
  158. s->use_noise_coding = 0;
  159. } else {
  160. high_freq = high_freq * 0.4;
  161. }
  162. } else if (sample_rate1 == 22050) {
  163. if (bps1 >= 1.16) {
  164. s->use_noise_coding = 0;
  165. } else if (bps1 >= 0.72) {
  166. high_freq = high_freq * 0.7;
  167. } else {
  168. high_freq = high_freq * 0.6;
  169. }
  170. } else if (sample_rate1 == 16000) {
  171. if (bps > 0.5) {
  172. high_freq = high_freq * 0.5;
  173. } else {
  174. high_freq = high_freq * 0.3;
  175. }
  176. } else if (sample_rate1 == 11025) {
  177. high_freq = high_freq * 0.7;
  178. } else if (sample_rate1 == 8000) {
  179. if (bps <= 0.625) {
  180. high_freq = high_freq * 0.5;
  181. } else if (bps > 0.75) {
  182. s->use_noise_coding = 0;
  183. } else {
  184. high_freq = high_freq * 0.65;
  185. }
  186. } else {
  187. if (bps >= 0.8) {
  188. high_freq = high_freq * 0.75;
  189. } else if (bps >= 0.6) {
  190. high_freq = high_freq * 0.6;
  191. } else {
  192. high_freq = high_freq * 0.5;
  193. }
  194. }
  195. dprintf(s->avctx, "flags2=0x%x\n", flags2);
  196. dprintf(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  197. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  198. s->block_align);
  199. dprintf(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  200. bps, bps1, high_freq, s->byte_offset_bits);
  201. dprintf(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  202. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  203. /* compute the scale factor band sizes for each MDCT block size */
  204. {
  205. int a, b, pos, lpos, k, block_len, i, j, n;
  206. const uint8_t *table;
  207. if (s->version == 1) {
  208. s->coefs_start = 3;
  209. } else {
  210. s->coefs_start = 0;
  211. }
  212. for (k = 0; k < s->nb_block_sizes; k++) {
  213. block_len = s->frame_len >> k;
  214. if (s->version == 1) {
  215. lpos = 0;
  216. for (i = 0; i < 25; i++) {
  217. a = wma_critical_freqs[i];
  218. b = s->sample_rate;
  219. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  220. if (pos > block_len)
  221. pos = block_len;
  222. s->exponent_bands[0][i] = pos - lpos;
  223. if (pos >= block_len) {
  224. i++;
  225. break;
  226. }
  227. lpos = pos;
  228. }
  229. s->exponent_sizes[0] = i;
  230. } else {
  231. /* hardcoded tables */
  232. table = NULL;
  233. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  234. if (a < 3) {
  235. if (s->sample_rate >= 44100) {
  236. table = exponent_band_44100[a];
  237. } else if (s->sample_rate >= 32000) {
  238. table = exponent_band_32000[a];
  239. } else if (s->sample_rate >= 22050) {
  240. table = exponent_band_22050[a];
  241. }
  242. }
  243. if (table) {
  244. n = *table++;
  245. for (i = 0; i < n; i++)
  246. s->exponent_bands[k][i] = table[i];
  247. s->exponent_sizes[k] = n;
  248. } else {
  249. j = 0;
  250. lpos = 0;
  251. for (i = 0; i < 25; i++) {
  252. a = wma_critical_freqs[i];
  253. b = s->sample_rate;
  254. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  255. pos <<= 2;
  256. if (pos > block_len)
  257. pos = block_len;
  258. if (pos > lpos)
  259. s->exponent_bands[k][j++] = pos - lpos;
  260. if (pos >= block_len)
  261. break;
  262. lpos = pos;
  263. }
  264. s->exponent_sizes[k] = j;
  265. }
  266. }
  267. /* max number of coefs */
  268. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  269. /* high freq computation */
  270. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  271. s->sample_rate + 0.5);
  272. n = s->exponent_sizes[k];
  273. j = 0;
  274. pos = 0;
  275. for (i = 0; i < n; i++) {
  276. int start, end;
  277. start = pos;
  278. pos += s->exponent_bands[k][i];
  279. end = pos;
  280. if (start < s->high_band_start[k])
  281. start = s->high_band_start[k];
  282. if (end > s->coefs_end[k])
  283. end = s->coefs_end[k];
  284. if (end > start)
  285. s->exponent_high_bands[k][j++] = end - start;
  286. }
  287. s->exponent_high_sizes[k] = j;
  288. #if 0
  289. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  290. s->frame_len >> k,
  291. s->coefs_end[k],
  292. s->high_band_start[k],
  293. s->exponent_high_sizes[k]);
  294. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  295. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  296. tprintf(s->avctx, "\n");
  297. #endif
  298. }
  299. }
  300. #ifdef TRACE
  301. {
  302. int i, j;
  303. for (i = 0; i < s->nb_block_sizes; i++) {
  304. tprintf(s->avctx, "%5d: n=%2d:",
  305. s->frame_len >> i,
  306. s->exponent_sizes[i]);
  307. for (j = 0; j < s->exponent_sizes[i]; j++)
  308. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  309. tprintf(s->avctx, "\n");
  310. }
  311. }
  312. #endif
  313. /* init MDCT windows : simple sinus window */
  314. for (i = 0; i < s->nb_block_sizes; i++) {
  315. int n;
  316. n = 1 << (s->frame_len_bits - i);
  317. ff_sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
  318. s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
  319. }
  320. s->reset_block_lengths = 1;
  321. if (s->use_noise_coding) {
  322. /* init the noise generator */
  323. if (s->use_exp_vlc) {
  324. s->noise_mult = 0.02;
  325. } else {
  326. s->noise_mult = 0.04;
  327. }
  328. #ifdef TRACE
  329. for (i = 0; i < NOISE_TAB_SIZE; i++)
  330. s->noise_table[i] = 1.0 * s->noise_mult;
  331. #else
  332. {
  333. unsigned int seed;
  334. float norm;
  335. seed = 1;
  336. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  337. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  338. seed = seed * 314159 + 1;
  339. s->noise_table[i] = (float)((int)seed) * norm;
  340. }
  341. }
  342. #endif
  343. }
  344. /* choose the VLC tables for the coefficients */
  345. coef_vlc_table = 2;
  346. if (s->sample_rate >= 32000) {
  347. if (bps1 < 0.72) {
  348. coef_vlc_table = 0;
  349. } else if (bps1 < 1.16) {
  350. coef_vlc_table = 1;
  351. }
  352. }
  353. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  354. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  355. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  356. s->coef_vlcs[0]);
  357. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  358. s->coef_vlcs[1]);
  359. return 0;
  360. }
  361. int ff_wma_total_gain_to_bits(int total_gain)
  362. {
  363. if (total_gain < 15) return 13;
  364. else if (total_gain < 32) return 12;
  365. else if (total_gain < 40) return 11;
  366. else if (total_gain < 45) return 10;
  367. else return 9;
  368. }
  369. int ff_wma_end(AVCodecContext *avctx)
  370. {
  371. WMACodecContext *s = avctx->priv_data;
  372. int i;
  373. for (i = 0; i < s->nb_block_sizes; i++)
  374. ff_mdct_end(&s->mdct_ctx[i]);
  375. if (s->use_exp_vlc) {
  376. free_vlc(&s->exp_vlc);
  377. }
  378. if (s->use_noise_coding) {
  379. free_vlc(&s->hgain_vlc);
  380. }
  381. for (i = 0; i < 2; i++) {
  382. free_vlc(&s->coef_vlc[i]);
  383. av_free(s->run_table[i]);
  384. av_free(s->level_table[i]);
  385. av_free(s->int_table[i]);
  386. }
  387. return 0;
  388. }
  389. /**
  390. * Decode an uncompressed coefficient.
  391. * @param s codec context
  392. * @return the decoded coefficient
  393. */
  394. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  395. {
  396. /** consumes up to 34 bits */
  397. int n_bits = 8;
  398. /** decode length */
  399. if (get_bits1(gb)) {
  400. n_bits += 8;
  401. if (get_bits1(gb)) {
  402. n_bits += 8;
  403. if (get_bits1(gb)) {
  404. n_bits += 7;
  405. }
  406. }
  407. }
  408. return get_bits_long(gb, n_bits);
  409. }
  410. /**
  411. * Decode run level compressed coefficients.
  412. * @param avctx codec context
  413. * @param gb bitstream reader context
  414. * @param vlc vlc table for get_vlc2
  415. * @param level_table level codes
  416. * @param run_table run codes
  417. * @param version 0 for wma1,2 1 for wmapro
  418. * @param ptr output buffer
  419. * @param offset offset in the output buffer
  420. * @param num_coefs number of input coefficents
  421. * @param block_len input buffer length (2^n)
  422. * @param frame_len_bits number of bits for escaped run codes
  423. * @param coef_nb_bits number of bits for escaped level codes
  424. * @return 0 on success, -1 otherwise
  425. */
  426. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  427. VLC *vlc,
  428. const uint16_t *level_table, const uint16_t *run_table,
  429. int version, WMACoef *ptr, int offset,
  430. int num_coefs, int block_len, int frame_len_bits,
  431. int coef_nb_bits)
  432. {
  433. int code, level, sign;
  434. const unsigned int coef_mask = block_len - 1;
  435. for (; offset < num_coefs; offset++) {
  436. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  437. if (code > 1) {
  438. /** normal code */
  439. offset += run_table[code];
  440. level = level_table[code];
  441. } else if (code == 1) {
  442. /** EOB */
  443. break;
  444. } else {
  445. /** escape */
  446. if (!version) {
  447. level = get_bits(gb, coef_nb_bits);
  448. /** NOTE: this is rather suboptimal. reading
  449. block_len_bits would be better */
  450. offset += get_bits(gb, frame_len_bits);
  451. } else {
  452. level = ff_wma_get_large_val(gb);
  453. /** escape decode */
  454. if (get_bits1(gb)) {
  455. if (get_bits1(gb)) {
  456. if (get_bits1(gb)) {
  457. av_log(avctx,AV_LOG_ERROR,
  458. "broken escape sequence\n");
  459. return -1;
  460. } else
  461. offset += get_bits(gb, frame_len_bits) + 4;
  462. } else
  463. offset += get_bits(gb, 2) + 1;
  464. }
  465. }
  466. }
  467. sign = get_bits1(gb) - 1;
  468. ptr[offset & coef_mask] = (level^sign) - sign;
  469. }
  470. /** NOTE: EOB can be omitted */
  471. if (offset > num_coefs) {
  472. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  473. return -1;
  474. }
  475. return 0;
  476. }