You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1140 lines
37KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "get_bits.h"
  23. #include "dsputil.h"
  24. #include <math.h>
  25. #include <stdint.h>
  26. #include "twinvq_data.h"
  27. enum FrameType {
  28. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  29. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  30. FT_LONG, ///< Long frame (single sub-block + PPC)
  31. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  32. };
  33. /**
  34. * Parameters and tables that are different for each frame type
  35. */
  36. struct FrameMode {
  37. uint8_t sub; ///< Number subblocks in each frame
  38. const uint16_t *bark_tab;
  39. /** number of distinct bark scale envelope values */
  40. uint8_t bark_env_size;
  41. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  42. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  43. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  44. //@{
  45. /** main codebooks for spectrum data */
  46. const int16_t *cb0;
  47. const int16_t *cb1;
  48. //@}
  49. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  50. };
  51. /**
  52. * Parameters and tables that are different for every combination of
  53. * bitrate/sample rate
  54. */
  55. typedef struct {
  56. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  57. uint16_t size; ///< frame size in samples
  58. uint8_t n_lsp; ///< number of lsp coefficients
  59. const float *lspcodebook;
  60. /* number of bits of the different LSP CB coefficients */
  61. uint8_t lsp_bit0;
  62. uint8_t lsp_bit1;
  63. uint8_t lsp_bit2;
  64. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  65. const int16_t *ppc_shape_cb; ///< PPC shape CB
  66. /** number of the bits for the PPC period value */
  67. uint8_t ppc_period_bit;
  68. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  69. uint8_t ppc_shape_len; ///< size of PPC shape CB
  70. uint8_t pgain_bit; ///< bits for PPC gain
  71. /** constant for peak period to peak width conversion */
  72. uint16_t peak_per2wid;
  73. } ModeTab;
  74. static const ModeTab mode_08_08 = {
  75. {
  76. { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
  77. { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
  78. { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
  79. },
  80. 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
  81. };
  82. static const ModeTab mode_11_08 = {
  83. {
  84. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
  85. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
  86. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
  87. },
  88. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  89. };
  90. static const ModeTab mode_11_10 = {
  91. {
  92. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
  93. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
  94. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
  95. },
  96. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  97. };
  98. static const ModeTab mode_16_16 = {
  99. {
  100. { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
  101. { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
  102. { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
  103. },
  104. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
  105. };
  106. static const ModeTab mode_22_20 = {
  107. {
  108. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
  109. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
  110. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
  111. },
  112. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  113. };
  114. static const ModeTab mode_22_24 = {
  115. {
  116. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
  117. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
  118. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
  119. },
  120. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  121. };
  122. static const ModeTab mode_22_32 = {
  123. {
  124. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
  125. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
  126. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
  127. },
  128. 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  129. };
  130. static const ModeTab mode_44_40 = {
  131. {
  132. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
  133. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
  134. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
  135. },
  136. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  137. };
  138. static const ModeTab mode_44_48 = {
  139. {
  140. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
  141. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
  142. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
  143. },
  144. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  145. };
  146. typedef struct TwinContext {
  147. AVCodecContext *avctx;
  148. DSPContext dsp;
  149. MDCTContext mdct_ctx[3];
  150. const ModeTab *mtab;
  151. // history
  152. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  153. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  154. // bitstream parameters
  155. int16_t permut[4][4096];
  156. uint8_t length[4][2]; ///< main codebook stride
  157. uint8_t length_change[4];
  158. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  159. int bits_main_spec_change[4];
  160. int n_div[4];
  161. float *spectrum;
  162. float *curr_frame; ///< non-interleaved output
  163. float *prev_frame; ///< non-interleaved previous frame
  164. int last_block_pos[2];
  165. float *cos_tabs[3];
  166. // scratch buffers
  167. float *tmp_buf;
  168. } TwinContext;
  169. #define PPC_SHAPE_CB_SIZE 64
  170. #define SUB_AMP_MAX 4500.0
  171. #define MULAW_MU 100.0
  172. #define GAIN_BITS 8
  173. #define AMP_MAX 13000.0
  174. #define SUB_GAIN_BITS 5
  175. #define WINDOW_TYPE_BITS 4
  176. #define PGAIN_MU 200
  177. /** @note not speed critical, hence not optimized */
  178. static void memset_float(float *buf, float val, int size)
  179. {
  180. while (size--)
  181. *buf++ = val;
  182. }
  183. /**
  184. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  185. * spectrum pairs.
  186. *
  187. * @param lsp a vector of the cosinus of the LSP values
  188. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  189. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  190. * be a multiple of four.
  191. * @return the LPC value
  192. *
  193. * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
  194. */
  195. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  196. {
  197. int j;
  198. float p = 0.5f;
  199. float q = 0.5f;
  200. float two_cos_w = 2.0f*cos_val;
  201. for (j=0; j + 1 < order; j += 2*2) {
  202. // Unroll the loop once since order is a multiple of four
  203. q *= lsp[j ] - two_cos_w;
  204. p *= lsp[j+1] - two_cos_w;
  205. q *= lsp[j+2] - two_cos_w;
  206. p *= lsp[j+3] - two_cos_w;
  207. }
  208. p *= p * (2.0f - two_cos_w);
  209. q *= q * (2.0f + two_cos_w);
  210. return 0.5 / (p + q);
  211. }
  212. /**
  213. * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs.
  214. */
  215. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  216. {
  217. int i;
  218. const ModeTab *mtab = tctx->mtab;
  219. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  220. for (i=0; i < size_s/2; i++) {
  221. float cos_i = tctx->cos_tabs[0][i];
  222. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  223. lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  224. }
  225. }
  226. static void interpolate(float *out, float v1, float v2, int size)
  227. {
  228. int i;
  229. float step = (v1 - v2)/(size + 1);
  230. for (i=0; i < size; i++) {
  231. v2 += step;
  232. out[i] = v2;
  233. }
  234. }
  235. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  236. {
  237. return part ? -cos_tab[size - idx - 1] :
  238. cos_tab[ idx ];
  239. }
  240. /**
  241. * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs.
  242. * Probably for speed reasons, the coefficients are evaluated as
  243. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  244. * where s is an evaluated value, i is a value interpolated from the others
  245. * and b might be either calculated or interpolated, depending on an
  246. * unexplained condition.
  247. *
  248. * @param step the size of a block "siiiibiiii"
  249. * @param in the cosinus of the LSP data
  250. * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
  251. (negative cossinus values)
  252. * @param size the size of the whole output
  253. */
  254. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  255. enum FrameType ftype,
  256. float *out, const float *in,
  257. int size, int step, int part)
  258. {
  259. int i;
  260. const ModeTab *mtab = tctx->mtab;
  261. const float *cos_tab = tctx->cos_tabs[ftype];
  262. // Fill the 's'
  263. for (i=0; i < size; i += step)
  264. out[i] =
  265. eval_lpc_spectrum(in,
  266. get_cos(i, part, cos_tab, size),
  267. mtab->n_lsp);
  268. // Fill the 'iiiibiiii'
  269. for (i=step; i <= size - 2*step; i += step) {
  270. if (out[i + step] + out[i - step] > 1.95*out[i] ||
  271. out[i + step] >= out[i - step]) {
  272. interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
  273. } else {
  274. out[i - step/2] =
  275. eval_lpc_spectrum(in,
  276. get_cos(i-step/2, part, cos_tab, size),
  277. mtab->n_lsp);
  278. interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
  279. interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
  280. }
  281. }
  282. interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
  283. }
  284. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  285. const float *buf, float *lpc,
  286. int size, int step)
  287. {
  288. eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
  289. eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
  290. interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
  291. memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
  292. }
  293. /**
  294. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  295. * bitstream, sum the corresponding vectors and write the result to *out
  296. * after permutation.
  297. */
  298. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  299. enum FrameType ftype,
  300. const int16_t *cb0, const int16_t *cb1, int cb_len)
  301. {
  302. int pos = 0;
  303. int i, j;
  304. for (i=0; i < tctx->n_div[ftype]; i++) {
  305. int tmp0, tmp1;
  306. int sign0 = 1;
  307. int sign1 = 1;
  308. const int16_t *tab0, *tab1;
  309. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  310. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  311. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  312. if (bits == 7) {
  313. if (get_bits1(gb))
  314. sign0 = -1;
  315. bits = 6;
  316. }
  317. tmp0 = get_bits(gb, bits);
  318. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  319. if (bits == 7) {
  320. if (get_bits1(gb))
  321. sign1 = -1;
  322. bits = 6;
  323. }
  324. tmp1 = get_bits(gb, bits);
  325. tab0 = cb0 + tmp0*cb_len;
  326. tab1 = cb1 + tmp1*cb_len;
  327. for (j=0; j < length; j++)
  328. out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
  329. pos += length;
  330. }
  331. }
  332. static inline float mulawinv(float y, float clip, float mu)
  333. {
  334. y = av_clipf(y/clip, -1, 1);
  335. return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
  336. }
  337. /**
  338. * Evaluate a*b/400 rounded to the nearest integer. When, for example,
  339. * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
  340. * the following broken float-based implementation used by the binary decoder:
  341. *
  342. * \code
  343. * static int very_broken_op(int a, int b)
  344. * {
  345. * static float test; // Ugh, force gcc to do the division first...
  346. *
  347. * test = a/400.;
  348. * return b * test + 0.5;
  349. * }
  350. * \endcode
  351. *
  352. * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
  353. * between the original file (before encoding with Yamaha encoder) and the
  354. * decoded output increases, which leads one to believe that the encoder expects
  355. * exactly this broken calculation.
  356. */
  357. static int very_broken_op(int a, int b)
  358. {
  359. int x = a*b + 200;
  360. int size;
  361. const uint8_t *rtab;
  362. if (x%400 || b%5)
  363. return x/400;
  364. x /= 400;
  365. size = tabs[b/5].size;
  366. rtab = tabs[b/5].tab;
  367. return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
  368. }
  369. /**
  370. * Sum to data a periodic peak of a given period, width and shape.
  371. *
  372. * @param period the period of the peak divised by 400.0
  373. */
  374. static void add_peak(int period, int width, const float *shape,
  375. float ppc_gain, float *speech, int len)
  376. {
  377. int i, j;
  378. const float *shape_end = shape + len;
  379. int center;
  380. // First peak centered around zero
  381. for (i=0; i < width/2; i++)
  382. speech[i] += ppc_gain * *shape++;
  383. for (i=1; i < ROUNDED_DIV(len,width) ; i++) {
  384. center = very_broken_op(period, i);
  385. for (j=-width/2; j < (width+1)/2; j++)
  386. speech[j+center] += ppc_gain * *shape++;
  387. }
  388. // For the last block, be careful not to go beyond the end of the buffer
  389. center = very_broken_op(period, i);
  390. for (j=-width/2; j < (width + 1)/2 && shape < shape_end; j++)
  391. speech[j+center] += ppc_gain * *shape++;
  392. }
  393. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  394. float ppc_gain, float *speech)
  395. {
  396. const ModeTab *mtab = tctx->mtab;
  397. int isampf = tctx->avctx->sample_rate/1000;
  398. int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
  399. int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
  400. int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
  401. int period_range = max_period - min_period;
  402. // This is actually the period multiplied by 400. It is just linearly coded
  403. // between its maximum and minimum value.
  404. int period = min_period +
  405. ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
  406. int width;
  407. if (isampf == 22 && ibps == 32) {
  408. // For some unknown reason, NTT decided to code this case differently...
  409. width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
  410. } else
  411. width = (period )* mtab->peak_per2wid/(400*mtab->size);
  412. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  413. }
  414. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  415. float *out)
  416. {
  417. const ModeTab *mtab = tctx->mtab;
  418. int i, j;
  419. int sub = mtab->fmode[ftype].sub;
  420. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  421. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  422. if (ftype == FT_LONG) {
  423. for (i=0; i < tctx->avctx->channels; i++)
  424. out[i] = (1./(1<<13)) *
  425. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  426. AMP_MAX, MULAW_MU);
  427. } else {
  428. for (i=0; i < tctx->avctx->channels; i++) {
  429. float val = (1./(1<<23)) *
  430. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  431. AMP_MAX, MULAW_MU);
  432. for (j=0; j < sub; j++) {
  433. out[i*sub + j] =
  434. val*mulawinv(sub_step* 0.5 +
  435. sub_step* get_bits(gb, SUB_GAIN_BITS),
  436. SUB_AMP_MAX, MULAW_MU);
  437. }
  438. }
  439. }
  440. }
  441. /**
  442. * Rearrange the LSP coefficients so that they have a minimum distance of
  443. * min_dist. This function does it exactly as described in section of 3.2.4
  444. * of the G.729 specification (but interestingly is different from what the
  445. * reference decoder actually does).
  446. */
  447. static void rearrange_lsp(int order, float *lsp, float min_dist)
  448. {
  449. int i;
  450. float min_dist2 = min_dist * 0.5;
  451. for (i=1; i < order; i++)
  452. if (lsp[i] - lsp[i-1] < min_dist) {
  453. float avg = (lsp[i] + lsp[i-1]) * 0.5;
  454. lsp[i-1] = avg - min_dist2;
  455. lsp[i ] = avg + min_dist2;
  456. }
  457. }
  458. static void bubblesort(float *lsp, int lp_order)
  459. {
  460. int i,j;
  461. /* sort lsp in ascending order. float bubble agorithm,
  462. O(n) if data already sorted, O(n^2) - otherwise */
  463. for (i=0; i < lp_order - 1; i++)
  464. for (j=i; j >= 0 && lsp[j] > lsp[j+1]; j--)
  465. FFSWAP(float, lsp[j], lsp[j+1]);
  466. }
  467. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  468. int lpc_hist_idx, float *lsp, float *hist)
  469. {
  470. const ModeTab *mtab = tctx->mtab;
  471. int i, j;
  472. const float *cb = mtab->lspcodebook;
  473. const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
  474. const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
  475. const int8_t funny_rounding[4] = {
  476. -2,
  477. mtab->lsp_split == 4 ? -2 : 1,
  478. mtab->lsp_split == 4 ? -2 : 1,
  479. 0
  480. };
  481. j=0;
  482. for (i=0; i < mtab->lsp_split; i++) {
  483. int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
  484. for (; j < chunk_end; j++)
  485. lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
  486. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  487. }
  488. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  489. for (i=0; i < mtab->n_lsp; i++) {
  490. float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
  491. float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
  492. hist[i] = lsp[i];
  493. lsp[i] = lsp[i] * tmp1 + tmp2;
  494. }
  495. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  496. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  497. bubblesort(lsp, mtab->n_lsp);
  498. }
  499. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  500. enum FrameType ftype, float *lpc)
  501. {
  502. int i;
  503. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  504. for (i=0; i < tctx->mtab->n_lsp; i++)
  505. lsp[i] = 2*cos(lsp[i]);
  506. switch (ftype) {
  507. case FT_LONG:
  508. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  509. break;
  510. case FT_MEDIUM:
  511. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  512. break;
  513. case FT_SHORT:
  514. eval_lpcenv(tctx, lsp, lpc);
  515. break;
  516. }
  517. }
  518. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  519. float *in, float *prev, int ch)
  520. {
  521. const ModeTab *mtab = tctx->mtab;
  522. int bsize = mtab->size / mtab->fmode[ftype].sub;
  523. int size = mtab->size;
  524. float *buf1 = tctx->tmp_buf;
  525. int j;
  526. int wsize; // Window size
  527. float *out = tctx->curr_frame + 2*ch*mtab->size;
  528. float *out2 = out;
  529. float *prev_buf;
  530. int first_wsize;
  531. static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
  532. int types_sizes[] = {
  533. mtab->size / mtab->fmode[FT_LONG ].sub,
  534. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  535. mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
  536. };
  537. wsize = types_sizes[wtype_to_wsize[wtype]];
  538. first_wsize = wsize;
  539. prev_buf = prev + (size - bsize)/2;
  540. for (j=0; j < mtab->fmode[ftype].sub; j++) {
  541. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  542. if (!j && wtype == 4)
  543. sub_wtype = 4;
  544. else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
  545. sub_wtype = 7;
  546. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  547. ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j);
  548. tctx->dsp.vector_fmul_window(out2,
  549. prev_buf + (bsize-wsize)/2,
  550. buf1 + bsize*j,
  551. ff_sine_windows[av_log2(wsize) - 7],
  552. 0.0,
  553. wsize/2);
  554. out2 += wsize;
  555. memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
  556. out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
  557. prev_buf = buf1 + bsize*j + bsize/2;
  558. }
  559. tctx->last_block_pos[ch] = (size + first_wsize)/2;
  560. }
  561. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  562. float *out)
  563. {
  564. const ModeTab *mtab = tctx->mtab;
  565. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  566. int i, j;
  567. for (i=0; i < tctx->avctx->channels; i++) {
  568. imdct_and_window(tctx, ftype, wtype,
  569. tctx->spectrum + i*mtab->size,
  570. prev_buf + 2*i*mtab->size,
  571. i);
  572. }
  573. if (tctx->avctx->channels == 2) {
  574. for (i=0; i < mtab->size - tctx->last_block_pos[0]; i++) {
  575. float f1 = prev_buf[ i];
  576. float f2 = prev_buf[2*mtab->size + i];
  577. out[2*i ] = f1 + f2;
  578. out[2*i + 1] = f1 - f2;
  579. }
  580. for (j=0; i < mtab->size; j++,i++) {
  581. float f1 = tctx->curr_frame[ j];
  582. float f2 = tctx->curr_frame[2*mtab->size + j];
  583. out[2*i ] = f1 + f2;
  584. out[2*i + 1] = f1 - f2;
  585. }
  586. } else {
  587. memcpy(out, prev_buf,
  588. (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
  589. out += mtab->size - tctx->last_block_pos[0];
  590. memcpy(out, tctx->curr_frame,
  591. (tctx->last_block_pos[0]) * sizeof(*out));
  592. }
  593. }
  594. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  595. int ch, float *out, float gain, enum FrameType ftype)
  596. {
  597. const ModeTab *mtab = tctx->mtab;
  598. int i,j;
  599. float *hist = tctx->bark_hist[ftype][ch];
  600. float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
  601. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  602. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  603. int idx = 0;
  604. for (i=0; i < fw_cb_len; i++)
  605. for (j=0; j < bark_n_coef; j++, idx++) {
  606. float tmp2 =
  607. mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
  608. float st = use_hist ?
  609. (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
  610. hist[idx] = tmp2;
  611. if (st < -1.) st = 1.;
  612. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  613. out += mtab->fmode[ftype].bark_tab[idx];
  614. }
  615. }
  616. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  617. float *out, enum FrameType ftype)
  618. {
  619. const ModeTab *mtab = tctx->mtab;
  620. int channels = tctx->avctx->channels;
  621. int sub = mtab->fmode[ftype].sub;
  622. int block_size = mtab->size / sub;
  623. float gain[channels*sub];
  624. float ppc_shape[mtab->ppc_shape_len * channels * 4];
  625. uint8_t bark1[channels][sub][mtab->fmode[ftype].bark_n_coef];
  626. uint8_t bark_use_hist[channels][sub];
  627. uint8_t lpc_idx1[channels];
  628. uint8_t lpc_idx2[channels][tctx->mtab->lsp_split];
  629. uint8_t lpc_hist_idx[channels];
  630. int i, j, k;
  631. dequant(tctx, gb, out, ftype,
  632. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  633. mtab->fmode[ftype].cb_len_read);
  634. for (i=0; i < channels; i++)
  635. for (j=0; j < sub; j++)
  636. for (k=0; k < mtab->fmode[ftype].bark_n_coef; k++)
  637. bark1[i][j][k] =
  638. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  639. for (i=0; i < channels; i++)
  640. for (j=0; j < sub; j++)
  641. bark_use_hist[i][j] = get_bits1(gb);
  642. dec_gain(tctx, gb, ftype, gain);
  643. for (i=0; i < channels; i++) {
  644. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  645. lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
  646. for (j=0; j < tctx->mtab->lsp_split; j++)
  647. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  648. }
  649. if (ftype == FT_LONG) {
  650. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
  651. tctx->n_div[3];
  652. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  653. mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
  654. }
  655. for (i=0; i < channels; i++) {
  656. float *chunk = out + mtab->size * i;
  657. float lsp[tctx->mtab->n_lsp];
  658. for (j=0; j < sub; j++) {
  659. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  660. tctx->tmp_buf, gain[sub*i+j], ftype);
  661. tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf,
  662. block_size);
  663. }
  664. if (ftype == FT_LONG) {
  665. float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
  666. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  667. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  668. float v = 1./8192*
  669. mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
  670. decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
  671. chunk);
  672. }
  673. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  674. tctx->lsp_hist[i]);
  675. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  676. for (j=0; j < mtab->fmode[ftype].sub; j++) {
  677. tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size);
  678. chunk += block_size;
  679. }
  680. }
  681. }
  682. static int twin_decode_frame(AVCodecContext * avctx, void *data,
  683. int *data_size, AVPacket *avpkt)
  684. {
  685. const uint8_t *buf = avpkt->data;
  686. int buf_size = avpkt->size;
  687. TwinContext *tctx = avctx->priv_data;
  688. GetBitContext gb;
  689. const ModeTab *mtab = tctx->mtab;
  690. float *out = data;
  691. enum FrameType ftype;
  692. int window_type;
  693. int i;
  694. static const enum FrameType wtype_to_ftype_table[] = {
  695. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  696. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  697. };
  698. if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
  699. av_log(avctx, AV_LOG_ERROR,
  700. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  701. *data_size = 0;
  702. return buf_size;
  703. }
  704. init_get_bits(&gb, buf, buf_size * 8);
  705. skip_bits(&gb, get_bits(&gb, 8));
  706. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  707. if (window_type > 8) {
  708. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  709. return -1;
  710. }
  711. ftype = wtype_to_ftype_table[window_type];
  712. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  713. imdct_output(tctx, ftype, window_type, out);
  714. FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
  715. if (tctx->avctx->frame_number < 2) {
  716. *data_size=0;
  717. return buf_size;
  718. }
  719. for (i=0; i < avctx->channels * mtab->size; i++)
  720. out[i] = av_clipf(out[i], -32700./(1<<15), 32700./(1<<15));
  721. *data_size = mtab->size*avctx->channels*4;
  722. return buf_size;
  723. }
  724. /**
  725. * Init IMDCT and windowing tables
  726. */
  727. static av_cold void init_mdct_win(TwinContext *tctx)
  728. {
  729. int i,j;
  730. const ModeTab *mtab = tctx->mtab;
  731. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  732. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  733. int channels = tctx->avctx->channels;
  734. float norm = channels == 1 ? 2. : 1.;
  735. for (i=0; i < 3; i++) {
  736. int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
  737. ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  738. -sqrt(norm/bsize) / (1<<15));
  739. }
  740. tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
  741. tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float));
  742. tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  743. tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  744. for(i=0; i < 3; i++) {
  745. int m = 4*mtab->size/mtab->fmode[i].sub;
  746. double freq = 2*M_PI/m;
  747. tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
  748. for (j=0; j <= m/8; j++)
  749. tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
  750. for (j=1; j < m/8; j++)
  751. tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
  752. }
  753. ff_sine_window_init(ff_sine_windows[av_log2(size_m) - 7], size_m );
  754. ff_sine_window_init(ff_sine_windows[av_log2(size_s/2) - 7], size_s/2);
  755. ff_sine_window_init(ff_sine_windows[av_log2(mtab->size) - 7], mtab->size);
  756. }
  757. /**
  758. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  759. * each line do a cyclic permutation, i.e.
  760. * abcdefghijklm -> defghijklmabc
  761. * where the amount to be shifted is evaluated depending on the column.
  762. */
  763. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  764. int block_size,
  765. const uint8_t line_len[2], int length_div,
  766. enum FrameType ftype)
  767. {
  768. int i,j;
  769. for (i=0; i < line_len[0]; i++) {
  770. int shift;
  771. if (num_blocks == 1 ||
  772. (ftype == FT_LONG && num_vect % num_blocks) ||
  773. (ftype != FT_LONG && num_vect & 1 ) ||
  774. i == line_len[1]) {
  775. shift = 0;
  776. } else if (ftype == FT_LONG) {
  777. shift = i;
  778. } else
  779. shift = i*i;
  780. for (j=0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
  781. tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
  782. }
  783. }
  784. /**
  785. * Interpret the input data as in the following table:
  786. *
  787. * \verbatim
  788. *
  789. * abcdefgh
  790. * ijklmnop
  791. * qrstuvw
  792. * x123456
  793. *
  794. * \endverbatim
  795. *
  796. * and transpose it, giving the output
  797. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  798. */
  799. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  800. const uint8_t line_len[2], int length_div)
  801. {
  802. int i,j;
  803. int cont= 0;
  804. for (i=0; i < num_vect; i++)
  805. for (j=0; j < line_len[i >= length_div]; j++)
  806. out[cont++] = in[j*num_vect + i];
  807. }
  808. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  809. {
  810. int block_size = size/n_blocks;
  811. int i;
  812. for (i=0; i < size; i++)
  813. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  814. }
  815. static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
  816. {
  817. int block_size;
  818. const ModeTab *mtab = tctx->mtab;
  819. int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
  820. int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
  821. if (ftype == FT_PPC) {
  822. size = tctx->avctx->channels;
  823. block_size = mtab->ppc_shape_len;
  824. } else
  825. block_size = mtab->size / mtab->fmode[ftype].sub;
  826. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  827. block_size, tctx->length[ftype],
  828. tctx->length_change[ftype], ftype);
  829. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  830. tctx->length[ftype], tctx->length_change[ftype]);
  831. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  832. size*block_size);
  833. }
  834. static av_cold void init_bitstream_params(TwinContext *tctx)
  835. {
  836. const ModeTab *mtab = tctx->mtab;
  837. int n_ch = tctx->avctx->channels;
  838. int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
  839. tctx->avctx->sample_rate;
  840. int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
  841. mtab->lsp_split*mtab->lsp_bit2);
  842. int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
  843. mtab->ppc_period_bit);
  844. int bsize_no_main_cb[3];
  845. int bse_bits[3];
  846. int i;
  847. for (i=0; i < 3; i++)
  848. // +1 for history usage switch
  849. bse_bits[i] = n_ch *
  850. (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
  851. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  852. WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
  853. for (i=0; i < 2; i++)
  854. bsize_no_main_cb[i] =
  855. lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
  856. mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
  857. // The remaining bits are all used for the main spectrum coefficients
  858. for (i=0; i < 4; i++) {
  859. int bit_size;
  860. int vect_size;
  861. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  862. if (i == 3) {
  863. bit_size = n_ch * mtab->ppc_shape_bit;
  864. vect_size = n_ch * mtab->ppc_shape_len;
  865. } else {
  866. bit_size = total_fr_bits - bsize_no_main_cb[i];
  867. vect_size = n_ch * mtab->size;
  868. }
  869. tctx->n_div[i] = (bit_size + 13) / 14;
  870. rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  871. rounded_down = (bit_size )/tctx->n_div[i];
  872. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  873. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  874. tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
  875. tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
  876. tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
  877. tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
  878. tctx->bits_main_spec_change[i] = num_rounded_up;
  879. rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  880. rounded_down = (vect_size )/tctx->n_div[i];
  881. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  882. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  883. tctx->length[i][0] = rounded_up;
  884. tctx->length[i][1] = rounded_down;
  885. tctx->length_change[i] = num_rounded_up;
  886. }
  887. for (i=0; i < 4; i++)
  888. construct_perm_table(tctx, i);
  889. }
  890. static av_cold int twin_decode_init(AVCodecContext *avctx)
  891. {
  892. TwinContext *tctx = avctx->priv_data;
  893. int isampf = avctx->sample_rate/1000;
  894. int ibps = avctx->bit_rate/(1000 * avctx->channels);
  895. tctx->avctx = avctx;
  896. avctx->sample_fmt = SAMPLE_FMT_FLT;
  897. if (avctx->channels > 2) {
  898. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  899. avctx->channels);
  900. return -1;
  901. }
  902. switch ((isampf << 8) + ibps) {
  903. case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
  904. case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
  905. case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
  906. case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
  907. case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
  908. case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
  909. case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
  910. case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
  911. case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
  912. default:
  913. av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
  914. return -1;
  915. }
  916. dsputil_init(&tctx->dsp, avctx);
  917. init_mdct_win(tctx);
  918. init_bitstream_params(tctx);
  919. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  920. return 0;
  921. }
  922. static av_cold int twin_decode_close(AVCodecContext *avctx)
  923. {
  924. TwinContext *tctx = avctx->priv_data;
  925. int i;
  926. for (i=0; i < 3; i++) {
  927. ff_mdct_end(&tctx->mdct_ctx[i]);
  928. av_free(tctx->cos_tabs[i]);
  929. }
  930. av_free(tctx->curr_frame);
  931. av_free(tctx->spectrum);
  932. av_free(tctx->prev_frame);
  933. av_free(tctx->tmp_buf);
  934. return 0;
  935. }
  936. AVCodec twinvq_decoder =
  937. {
  938. "twinvq",
  939. CODEC_TYPE_AUDIO,
  940. CODEC_ID_TWINVQ,
  941. sizeof(TwinContext),
  942. twin_decode_init,
  943. NULL,
  944. twin_decode_close,
  945. twin_decode_frame,
  946. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  947. };