You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2599 lines
78KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. /* WARNING: only correct for posititive numbers */
  37. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  38. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  39. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  40. /****************/
  41. #define HEADER_SIZE 4
  42. /* layer 3 "granule" */
  43. typedef struct GranuleDef {
  44. uint8_t scfsi;
  45. int part2_3_length;
  46. int big_values;
  47. int global_gain;
  48. int scalefac_compress;
  49. uint8_t block_type;
  50. uint8_t switch_point;
  51. int table_select[3];
  52. int subblock_gain[3];
  53. uint8_t scalefac_scale;
  54. uint8_t count1table_select;
  55. int region_size[3]; /* number of huffman codes in each region */
  56. int preflag;
  57. int short_start, long_end; /* long/short band indexes */
  58. uint8_t scale_factors[40];
  59. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  60. } GranuleDef;
  61. #include "mpegaudiodata.h"
  62. #include "mpegaudiodectab.h"
  63. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  64. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  65. /* vlc structure for decoding layer 3 huffman tables */
  66. static VLC huff_vlc[16];
  67. static VLC_TYPE huff_vlc_tables[
  68. 0+128+128+128+130+128+154+166+
  69. 142+204+190+170+542+460+662+414
  70. ][2];
  71. static const int huff_vlc_tables_sizes[16] = {
  72. 0, 128, 128, 128, 130, 128, 154, 166,
  73. 142, 204, 190, 170, 542, 460, 662, 414
  74. };
  75. static VLC huff_quad_vlc[2];
  76. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  77. static const int huff_quad_vlc_tables_sizes[2] = {
  78. 128, 16
  79. };
  80. /* computed from band_size_long */
  81. static uint16_t band_index_long[9][23];
  82. /* XXX: free when all decoders are closed */
  83. #define TABLE_4_3_SIZE (8191 + 16)*4
  84. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  85. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  86. static uint32_t exp_table[512];
  87. static uint32_t expval_table[512][16];
  88. /* intensity stereo coef table */
  89. static int32_t is_table[2][16];
  90. static int32_t is_table_lsf[2][2][16];
  91. static int32_t csa_table[8][4];
  92. static float csa_table_float[8][4];
  93. static int32_t mdct_win[8][36];
  94. /* lower 2 bits: modulo 3, higher bits: shift */
  95. static uint16_t scale_factor_modshift[64];
  96. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  97. static int32_t scale_factor_mult[15][3];
  98. /* mult table for layer 2 group quantization */
  99. #define SCALE_GEN(v) \
  100. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  101. static const int32_t scale_factor_mult2[3][3] = {
  102. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  103. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  104. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  105. };
  106. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  107. /**
  108. * Convert region offsets to region sizes and truncate
  109. * size to big_values.
  110. */
  111. void ff_region_offset2size(GranuleDef *g){
  112. int i, k, j=0;
  113. g->region_size[2] = (576 / 2);
  114. for(i=0;i<3;i++) {
  115. k = FFMIN(g->region_size[i], g->big_values);
  116. g->region_size[i] = k - j;
  117. j = k;
  118. }
  119. }
  120. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  121. if (g->block_type == 2)
  122. g->region_size[0] = (36 / 2);
  123. else {
  124. if (s->sample_rate_index <= 2)
  125. g->region_size[0] = (36 / 2);
  126. else if (s->sample_rate_index != 8)
  127. g->region_size[0] = (54 / 2);
  128. else
  129. g->region_size[0] = (108 / 2);
  130. }
  131. g->region_size[1] = (576 / 2);
  132. }
  133. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  134. int l;
  135. g->region_size[0] =
  136. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  137. /* should not overflow */
  138. l = FFMIN(ra1 + ra2 + 2, 22);
  139. g->region_size[1] =
  140. band_index_long[s->sample_rate_index][l] >> 1;
  141. }
  142. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  143. if (g->block_type == 2) {
  144. if (g->switch_point) {
  145. /* if switched mode, we handle the 36 first samples as
  146. long blocks. For 8000Hz, we handle the 48 first
  147. exponents as long blocks (XXX: check this!) */
  148. if (s->sample_rate_index <= 2)
  149. g->long_end = 8;
  150. else if (s->sample_rate_index != 8)
  151. g->long_end = 6;
  152. else
  153. g->long_end = 4; /* 8000 Hz */
  154. g->short_start = 2 + (s->sample_rate_index != 8);
  155. } else {
  156. g->long_end = 0;
  157. g->short_start = 0;
  158. }
  159. } else {
  160. g->short_start = 13;
  161. g->long_end = 22;
  162. }
  163. }
  164. /* layer 1 unscaling */
  165. /* n = number of bits of the mantissa minus 1 */
  166. static inline int l1_unscale(int n, int mant, int scale_factor)
  167. {
  168. int shift, mod;
  169. int64_t val;
  170. shift = scale_factor_modshift[scale_factor];
  171. mod = shift & 3;
  172. shift >>= 2;
  173. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  174. shift += n;
  175. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  176. return (int)((val + (1LL << (shift - 1))) >> shift);
  177. }
  178. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  179. {
  180. int shift, mod, val;
  181. shift = scale_factor_modshift[scale_factor];
  182. mod = shift & 3;
  183. shift >>= 2;
  184. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  185. /* NOTE: at this point, 0 <= shift <= 21 */
  186. if (shift > 0)
  187. val = (val + (1 << (shift - 1))) >> shift;
  188. return val;
  189. }
  190. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  191. static inline int l3_unscale(int value, int exponent)
  192. {
  193. unsigned int m;
  194. int e;
  195. e = table_4_3_exp [4*value + (exponent&3)];
  196. m = table_4_3_value[4*value + (exponent&3)];
  197. e -= (exponent >> 2);
  198. assert(e>=1);
  199. if (e > 31)
  200. return 0;
  201. m = (m + (1 << (e-1))) >> e;
  202. return m;
  203. }
  204. /* all integer n^(4/3) computation code */
  205. #define DEV_ORDER 13
  206. #define POW_FRAC_BITS 24
  207. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  208. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  209. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  210. static int dev_4_3_coefs[DEV_ORDER];
  211. #if 0 /* unused */
  212. static int pow_mult3[3] = {
  213. POW_FIX(1.0),
  214. POW_FIX(1.25992104989487316476),
  215. POW_FIX(1.58740105196819947474),
  216. };
  217. #endif
  218. static av_cold void int_pow_init(void)
  219. {
  220. int i, a;
  221. a = POW_FIX(1.0);
  222. for(i=0;i<DEV_ORDER;i++) {
  223. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  224. dev_4_3_coefs[i] = a;
  225. }
  226. }
  227. #if 0 /* unused, remove? */
  228. /* return the mantissa and the binary exponent */
  229. static int int_pow(int i, int *exp_ptr)
  230. {
  231. int e, er, eq, j;
  232. int a, a1;
  233. /* renormalize */
  234. a = i;
  235. e = POW_FRAC_BITS;
  236. while (a < (1 << (POW_FRAC_BITS - 1))) {
  237. a = a << 1;
  238. e--;
  239. }
  240. a -= (1 << POW_FRAC_BITS);
  241. a1 = 0;
  242. for(j = DEV_ORDER - 1; j >= 0; j--)
  243. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  244. a = (1 << POW_FRAC_BITS) + a1;
  245. /* exponent compute (exact) */
  246. e = e * 4;
  247. er = e % 3;
  248. eq = e / 3;
  249. a = POW_MULL(a, pow_mult3[er]);
  250. while (a >= 2 * POW_FRAC_ONE) {
  251. a = a >> 1;
  252. eq++;
  253. }
  254. /* convert to float */
  255. while (a < POW_FRAC_ONE) {
  256. a = a << 1;
  257. eq--;
  258. }
  259. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  260. #if POW_FRAC_BITS > FRAC_BITS
  261. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  262. /* correct overflow */
  263. if (a >= 2 * (1 << FRAC_BITS)) {
  264. a = a >> 1;
  265. eq++;
  266. }
  267. #endif
  268. *exp_ptr = eq;
  269. return a;
  270. }
  271. #endif
  272. static av_cold int decode_init(AVCodecContext * avctx)
  273. {
  274. MPADecodeContext *s = avctx->priv_data;
  275. static int init=0;
  276. int i, j, k;
  277. s->avctx = avctx;
  278. avctx->sample_fmt= OUT_FMT;
  279. s->error_recognition= avctx->error_recognition;
  280. if(avctx->antialias_algo != FF_AA_FLOAT)
  281. s->compute_antialias= compute_antialias_integer;
  282. else
  283. s->compute_antialias= compute_antialias_float;
  284. if (!init && !avctx->parse_only) {
  285. int offset;
  286. /* scale factors table for layer 1/2 */
  287. for(i=0;i<64;i++) {
  288. int shift, mod;
  289. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  290. shift = (i / 3);
  291. mod = i % 3;
  292. scale_factor_modshift[i] = mod | (shift << 2);
  293. }
  294. /* scale factor multiply for layer 1 */
  295. for(i=0;i<15;i++) {
  296. int n, norm;
  297. n = i + 2;
  298. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  299. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
  300. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
  301. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
  302. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  303. i, norm,
  304. scale_factor_mult[i][0],
  305. scale_factor_mult[i][1],
  306. scale_factor_mult[i][2]);
  307. }
  308. ff_mpa_synth_init(window);
  309. /* huffman decode tables */
  310. offset = 0;
  311. for(i=1;i<16;i++) {
  312. const HuffTable *h = &mpa_huff_tables[i];
  313. int xsize, x, y;
  314. uint8_t tmp_bits [512];
  315. uint16_t tmp_codes[512];
  316. memset(tmp_bits , 0, sizeof(tmp_bits ));
  317. memset(tmp_codes, 0, sizeof(tmp_codes));
  318. xsize = h->xsize;
  319. j = 0;
  320. for(x=0;x<xsize;x++) {
  321. for(y=0;y<xsize;y++){
  322. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  323. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  324. }
  325. }
  326. /* XXX: fail test */
  327. huff_vlc[i].table = huff_vlc_tables+offset;
  328. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  329. init_vlc(&huff_vlc[i], 7, 512,
  330. tmp_bits, 1, 1, tmp_codes, 2, 2,
  331. INIT_VLC_USE_NEW_STATIC);
  332. offset += huff_vlc_tables_sizes[i];
  333. }
  334. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  335. offset = 0;
  336. for(i=0;i<2;i++) {
  337. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  338. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  339. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  340. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  341. INIT_VLC_USE_NEW_STATIC);
  342. offset += huff_quad_vlc_tables_sizes[i];
  343. }
  344. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  345. for(i=0;i<9;i++) {
  346. k = 0;
  347. for(j=0;j<22;j++) {
  348. band_index_long[i][j] = k;
  349. k += band_size_long[i][j];
  350. }
  351. band_index_long[i][22] = k;
  352. }
  353. /* compute n ^ (4/3) and store it in mantissa/exp format */
  354. int_pow_init();
  355. for(i=1;i<TABLE_4_3_SIZE;i++) {
  356. double f, fm;
  357. int e, m;
  358. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  359. fm = frexp(f, &e);
  360. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  361. e+= FRAC_BITS - 31 + 5 - 100;
  362. /* normalized to FRAC_BITS */
  363. table_4_3_value[i] = m;
  364. table_4_3_exp[i] = -e;
  365. }
  366. for(i=0; i<512*16; i++){
  367. int exponent= (i>>4);
  368. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  369. expval_table[exponent][i&15]= llrint(f);
  370. if((i&15)==1)
  371. exp_table[exponent]= llrint(f);
  372. }
  373. for(i=0;i<7;i++) {
  374. float f;
  375. int v;
  376. if (i != 6) {
  377. f = tan((double)i * M_PI / 12.0);
  378. v = FIXR(f / (1.0 + f));
  379. } else {
  380. v = FIXR(1.0);
  381. }
  382. is_table[0][i] = v;
  383. is_table[1][6 - i] = v;
  384. }
  385. /* invalid values */
  386. for(i=7;i<16;i++)
  387. is_table[0][i] = is_table[1][i] = 0.0;
  388. for(i=0;i<16;i++) {
  389. double f;
  390. int e, k;
  391. for(j=0;j<2;j++) {
  392. e = -(j + 1) * ((i + 1) >> 1);
  393. f = pow(2.0, e / 4.0);
  394. k = i & 1;
  395. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  396. is_table_lsf[j][k][i] = FIXR(1.0);
  397. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  398. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  399. }
  400. }
  401. for(i=0;i<8;i++) {
  402. float ci, cs, ca;
  403. ci = ci_table[i];
  404. cs = 1.0 / sqrt(1.0 + ci * ci);
  405. ca = cs * ci;
  406. csa_table[i][0] = FIXHR(cs/4);
  407. csa_table[i][1] = FIXHR(ca/4);
  408. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  409. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  410. csa_table_float[i][0] = cs;
  411. csa_table_float[i][1] = ca;
  412. csa_table_float[i][2] = ca + cs;
  413. csa_table_float[i][3] = ca - cs;
  414. }
  415. /* compute mdct windows */
  416. for(i=0;i<36;i++) {
  417. for(j=0; j<4; j++){
  418. double d;
  419. if(j==2 && i%3 != 1)
  420. continue;
  421. d= sin(M_PI * (i + 0.5) / 36.0);
  422. if(j==1){
  423. if (i>=30) d= 0;
  424. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  425. else if(i>=18) d= 1;
  426. }else if(j==3){
  427. if (i< 6) d= 0;
  428. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  429. else if(i< 18) d= 1;
  430. }
  431. //merge last stage of imdct into the window coefficients
  432. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  433. if(j==2)
  434. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  435. else
  436. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  437. }
  438. }
  439. /* NOTE: we do frequency inversion adter the MDCT by changing
  440. the sign of the right window coefs */
  441. for(j=0;j<4;j++) {
  442. for(i=0;i<36;i+=2) {
  443. mdct_win[j + 4][i] = mdct_win[j][i];
  444. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  445. }
  446. }
  447. init = 1;
  448. }
  449. if (avctx->codec_id == CODEC_ID_MP3ADU)
  450. s->adu_mode = 1;
  451. return 0;
  452. }
  453. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  454. /* cos(i*pi/64) */
  455. #define COS0_0 FIXHR(0.50060299823519630134/2)
  456. #define COS0_1 FIXHR(0.50547095989754365998/2)
  457. #define COS0_2 FIXHR(0.51544730992262454697/2)
  458. #define COS0_3 FIXHR(0.53104259108978417447/2)
  459. #define COS0_4 FIXHR(0.55310389603444452782/2)
  460. #define COS0_5 FIXHR(0.58293496820613387367/2)
  461. #define COS0_6 FIXHR(0.62250412303566481615/2)
  462. #define COS0_7 FIXHR(0.67480834145500574602/2)
  463. #define COS0_8 FIXHR(0.74453627100229844977/2)
  464. #define COS0_9 FIXHR(0.83934964541552703873/2)
  465. #define COS0_10 FIXHR(0.97256823786196069369/2)
  466. #define COS0_11 FIXHR(1.16943993343288495515/4)
  467. #define COS0_12 FIXHR(1.48416461631416627724/4)
  468. #define COS0_13 FIXHR(2.05778100995341155085/8)
  469. #define COS0_14 FIXHR(3.40760841846871878570/8)
  470. #define COS0_15 FIXHR(10.19000812354805681150/32)
  471. #define COS1_0 FIXHR(0.50241928618815570551/2)
  472. #define COS1_1 FIXHR(0.52249861493968888062/2)
  473. #define COS1_2 FIXHR(0.56694403481635770368/2)
  474. #define COS1_3 FIXHR(0.64682178335999012954/2)
  475. #define COS1_4 FIXHR(0.78815462345125022473/2)
  476. #define COS1_5 FIXHR(1.06067768599034747134/4)
  477. #define COS1_6 FIXHR(1.72244709823833392782/4)
  478. #define COS1_7 FIXHR(5.10114861868916385802/16)
  479. #define COS2_0 FIXHR(0.50979557910415916894/2)
  480. #define COS2_1 FIXHR(0.60134488693504528054/2)
  481. #define COS2_2 FIXHR(0.89997622313641570463/2)
  482. #define COS2_3 FIXHR(2.56291544774150617881/8)
  483. #define COS3_0 FIXHR(0.54119610014619698439/2)
  484. #define COS3_1 FIXHR(1.30656296487637652785/4)
  485. #define COS4_0 FIXHR(0.70710678118654752439/2)
  486. /* butterfly operator */
  487. #define BF(a, b, c, s)\
  488. {\
  489. tmp0 = tab[a] + tab[b];\
  490. tmp1 = tab[a] - tab[b];\
  491. tab[a] = tmp0;\
  492. tab[b] = MULH(tmp1<<(s), c);\
  493. }
  494. #define BF1(a, b, c, d)\
  495. {\
  496. BF(a, b, COS4_0, 1);\
  497. BF(c, d,-COS4_0, 1);\
  498. tab[c] += tab[d];\
  499. }
  500. #define BF2(a, b, c, d)\
  501. {\
  502. BF(a, b, COS4_0, 1);\
  503. BF(c, d,-COS4_0, 1);\
  504. tab[c] += tab[d];\
  505. tab[a] += tab[c];\
  506. tab[c] += tab[b];\
  507. tab[b] += tab[d];\
  508. }
  509. #define ADD(a, b) tab[a] += tab[b]
  510. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  511. static void dct32(int32_t *out, int32_t *tab)
  512. {
  513. int tmp0, tmp1;
  514. /* pass 1 */
  515. BF( 0, 31, COS0_0 , 1);
  516. BF(15, 16, COS0_15, 5);
  517. /* pass 2 */
  518. BF( 0, 15, COS1_0 , 1);
  519. BF(16, 31,-COS1_0 , 1);
  520. /* pass 1 */
  521. BF( 7, 24, COS0_7 , 1);
  522. BF( 8, 23, COS0_8 , 1);
  523. /* pass 2 */
  524. BF( 7, 8, COS1_7 , 4);
  525. BF(23, 24,-COS1_7 , 4);
  526. /* pass 3 */
  527. BF( 0, 7, COS2_0 , 1);
  528. BF( 8, 15,-COS2_0 , 1);
  529. BF(16, 23, COS2_0 , 1);
  530. BF(24, 31,-COS2_0 , 1);
  531. /* pass 1 */
  532. BF( 3, 28, COS0_3 , 1);
  533. BF(12, 19, COS0_12, 2);
  534. /* pass 2 */
  535. BF( 3, 12, COS1_3 , 1);
  536. BF(19, 28,-COS1_3 , 1);
  537. /* pass 1 */
  538. BF( 4, 27, COS0_4 , 1);
  539. BF(11, 20, COS0_11, 2);
  540. /* pass 2 */
  541. BF( 4, 11, COS1_4 , 1);
  542. BF(20, 27,-COS1_4 , 1);
  543. /* pass 3 */
  544. BF( 3, 4, COS2_3 , 3);
  545. BF(11, 12,-COS2_3 , 3);
  546. BF(19, 20, COS2_3 , 3);
  547. BF(27, 28,-COS2_3 , 3);
  548. /* pass 4 */
  549. BF( 0, 3, COS3_0 , 1);
  550. BF( 4, 7,-COS3_0 , 1);
  551. BF( 8, 11, COS3_0 , 1);
  552. BF(12, 15,-COS3_0 , 1);
  553. BF(16, 19, COS3_0 , 1);
  554. BF(20, 23,-COS3_0 , 1);
  555. BF(24, 27, COS3_0 , 1);
  556. BF(28, 31,-COS3_0 , 1);
  557. /* pass 1 */
  558. BF( 1, 30, COS0_1 , 1);
  559. BF(14, 17, COS0_14, 3);
  560. /* pass 2 */
  561. BF( 1, 14, COS1_1 , 1);
  562. BF(17, 30,-COS1_1 , 1);
  563. /* pass 1 */
  564. BF( 6, 25, COS0_6 , 1);
  565. BF( 9, 22, COS0_9 , 1);
  566. /* pass 2 */
  567. BF( 6, 9, COS1_6 , 2);
  568. BF(22, 25,-COS1_6 , 2);
  569. /* pass 3 */
  570. BF( 1, 6, COS2_1 , 1);
  571. BF( 9, 14,-COS2_1 , 1);
  572. BF(17, 22, COS2_1 , 1);
  573. BF(25, 30,-COS2_1 , 1);
  574. /* pass 1 */
  575. BF( 2, 29, COS0_2 , 1);
  576. BF(13, 18, COS0_13, 3);
  577. /* pass 2 */
  578. BF( 2, 13, COS1_2 , 1);
  579. BF(18, 29,-COS1_2 , 1);
  580. /* pass 1 */
  581. BF( 5, 26, COS0_5 , 1);
  582. BF(10, 21, COS0_10, 1);
  583. /* pass 2 */
  584. BF( 5, 10, COS1_5 , 2);
  585. BF(21, 26,-COS1_5 , 2);
  586. /* pass 3 */
  587. BF( 2, 5, COS2_2 , 1);
  588. BF(10, 13,-COS2_2 , 1);
  589. BF(18, 21, COS2_2 , 1);
  590. BF(26, 29,-COS2_2 , 1);
  591. /* pass 4 */
  592. BF( 1, 2, COS3_1 , 2);
  593. BF( 5, 6,-COS3_1 , 2);
  594. BF( 9, 10, COS3_1 , 2);
  595. BF(13, 14,-COS3_1 , 2);
  596. BF(17, 18, COS3_1 , 2);
  597. BF(21, 22,-COS3_1 , 2);
  598. BF(25, 26, COS3_1 , 2);
  599. BF(29, 30,-COS3_1 , 2);
  600. /* pass 5 */
  601. BF1( 0, 1, 2, 3);
  602. BF2( 4, 5, 6, 7);
  603. BF1( 8, 9, 10, 11);
  604. BF2(12, 13, 14, 15);
  605. BF1(16, 17, 18, 19);
  606. BF2(20, 21, 22, 23);
  607. BF1(24, 25, 26, 27);
  608. BF2(28, 29, 30, 31);
  609. /* pass 6 */
  610. ADD( 8, 12);
  611. ADD(12, 10);
  612. ADD(10, 14);
  613. ADD(14, 9);
  614. ADD( 9, 13);
  615. ADD(13, 11);
  616. ADD(11, 15);
  617. out[ 0] = tab[0];
  618. out[16] = tab[1];
  619. out[ 8] = tab[2];
  620. out[24] = tab[3];
  621. out[ 4] = tab[4];
  622. out[20] = tab[5];
  623. out[12] = tab[6];
  624. out[28] = tab[7];
  625. out[ 2] = tab[8];
  626. out[18] = tab[9];
  627. out[10] = tab[10];
  628. out[26] = tab[11];
  629. out[ 6] = tab[12];
  630. out[22] = tab[13];
  631. out[14] = tab[14];
  632. out[30] = tab[15];
  633. ADD(24, 28);
  634. ADD(28, 26);
  635. ADD(26, 30);
  636. ADD(30, 25);
  637. ADD(25, 29);
  638. ADD(29, 27);
  639. ADD(27, 31);
  640. out[ 1] = tab[16] + tab[24];
  641. out[17] = tab[17] + tab[25];
  642. out[ 9] = tab[18] + tab[26];
  643. out[25] = tab[19] + tab[27];
  644. out[ 5] = tab[20] + tab[28];
  645. out[21] = tab[21] + tab[29];
  646. out[13] = tab[22] + tab[30];
  647. out[29] = tab[23] + tab[31];
  648. out[ 3] = tab[24] + tab[20];
  649. out[19] = tab[25] + tab[21];
  650. out[11] = tab[26] + tab[22];
  651. out[27] = tab[27] + tab[23];
  652. out[ 7] = tab[28] + tab[18];
  653. out[23] = tab[29] + tab[19];
  654. out[15] = tab[30] + tab[17];
  655. out[31] = tab[31];
  656. }
  657. #if FRAC_BITS <= 15
  658. static inline int round_sample(int *sum)
  659. {
  660. int sum1;
  661. sum1 = (*sum) >> OUT_SHIFT;
  662. *sum &= (1<<OUT_SHIFT)-1;
  663. return av_clip(sum1, OUT_MIN, OUT_MAX);
  664. }
  665. /* signed 16x16 -> 32 multiply add accumulate */
  666. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  667. /* signed 16x16 -> 32 multiply */
  668. #define MULS(ra, rb) MUL16(ra, rb)
  669. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  670. #else
  671. static inline int round_sample(int64_t *sum)
  672. {
  673. int sum1;
  674. sum1 = (int)((*sum) >> OUT_SHIFT);
  675. *sum &= (1<<OUT_SHIFT)-1;
  676. return av_clip(sum1, OUT_MIN, OUT_MAX);
  677. }
  678. # define MULS(ra, rb) MUL64(ra, rb)
  679. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  680. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  681. #endif
  682. #define SUM8(op, sum, w, p) \
  683. { \
  684. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  685. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  686. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  687. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  688. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  689. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  690. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  691. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  692. }
  693. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  694. { \
  695. int tmp;\
  696. tmp = p[0 * 64];\
  697. op1(sum1, (w1)[0 * 64], tmp);\
  698. op2(sum2, (w2)[0 * 64], tmp);\
  699. tmp = p[1 * 64];\
  700. op1(sum1, (w1)[1 * 64], tmp);\
  701. op2(sum2, (w2)[1 * 64], tmp);\
  702. tmp = p[2 * 64];\
  703. op1(sum1, (w1)[2 * 64], tmp);\
  704. op2(sum2, (w2)[2 * 64], tmp);\
  705. tmp = p[3 * 64];\
  706. op1(sum1, (w1)[3 * 64], tmp);\
  707. op2(sum2, (w2)[3 * 64], tmp);\
  708. tmp = p[4 * 64];\
  709. op1(sum1, (w1)[4 * 64], tmp);\
  710. op2(sum2, (w2)[4 * 64], tmp);\
  711. tmp = p[5 * 64];\
  712. op1(sum1, (w1)[5 * 64], tmp);\
  713. op2(sum2, (w2)[5 * 64], tmp);\
  714. tmp = p[6 * 64];\
  715. op1(sum1, (w1)[6 * 64], tmp);\
  716. op2(sum2, (w2)[6 * 64], tmp);\
  717. tmp = p[7 * 64];\
  718. op1(sum1, (w1)[7 * 64], tmp);\
  719. op2(sum2, (w2)[7 * 64], tmp);\
  720. }
  721. void av_cold ff_mpa_synth_init(MPA_INT *window)
  722. {
  723. int i;
  724. /* max = 18760, max sum over all 16 coefs : 44736 */
  725. for(i=0;i<257;i++) {
  726. int v;
  727. v = ff_mpa_enwindow[i];
  728. #if WFRAC_BITS < 16
  729. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  730. #endif
  731. window[i] = v;
  732. if ((i & 63) != 0)
  733. v = -v;
  734. if (i != 0)
  735. window[512 - i] = v;
  736. }
  737. }
  738. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  739. 32 samples. */
  740. /* XXX: optimize by avoiding ring buffer usage */
  741. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  742. MPA_INT *window, int *dither_state,
  743. OUT_INT *samples, int incr,
  744. int32_t sb_samples[SBLIMIT])
  745. {
  746. register MPA_INT *synth_buf;
  747. register const MPA_INT *w, *w2, *p;
  748. int j, offset;
  749. OUT_INT *samples2;
  750. #if FRAC_BITS <= 15
  751. int32_t tmp[32];
  752. int sum, sum2;
  753. #else
  754. int64_t sum, sum2;
  755. #endif
  756. offset = *synth_buf_offset;
  757. synth_buf = synth_buf_ptr + offset;
  758. #if FRAC_BITS <= 15
  759. dct32(tmp, sb_samples);
  760. for(j=0;j<32;j++) {
  761. /* NOTE: can cause a loss in precision if very high amplitude
  762. sound */
  763. synth_buf[j] = av_clip_int16(tmp[j]);
  764. }
  765. #else
  766. dct32(synth_buf, sb_samples);
  767. #endif
  768. /* copy to avoid wrap */
  769. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  770. samples2 = samples + 31 * incr;
  771. w = window;
  772. w2 = window + 31;
  773. sum = *dither_state;
  774. p = synth_buf + 16;
  775. SUM8(MACS, sum, w, p);
  776. p = synth_buf + 48;
  777. SUM8(MLSS, sum, w + 32, p);
  778. *samples = round_sample(&sum);
  779. samples += incr;
  780. w++;
  781. /* we calculate two samples at the same time to avoid one memory
  782. access per two sample */
  783. for(j=1;j<16;j++) {
  784. sum2 = 0;
  785. p = synth_buf + 16 + j;
  786. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  787. p = synth_buf + 48 - j;
  788. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  789. *samples = round_sample(&sum);
  790. samples += incr;
  791. sum += sum2;
  792. *samples2 = round_sample(&sum);
  793. samples2 -= incr;
  794. w++;
  795. w2--;
  796. }
  797. p = synth_buf + 32;
  798. SUM8(MLSS, sum, w + 32, p);
  799. *samples = round_sample(&sum);
  800. *dither_state= sum;
  801. offset = (offset - 32) & 511;
  802. *synth_buf_offset = offset;
  803. }
  804. #define C3 FIXHR(0.86602540378443864676/2)
  805. /* 0.5 / cos(pi*(2*i+1)/36) */
  806. static const int icos36[9] = {
  807. FIXR(0.50190991877167369479),
  808. FIXR(0.51763809020504152469), //0
  809. FIXR(0.55168895948124587824),
  810. FIXR(0.61038729438072803416),
  811. FIXR(0.70710678118654752439), //1
  812. FIXR(0.87172339781054900991),
  813. FIXR(1.18310079157624925896),
  814. FIXR(1.93185165257813657349), //2
  815. FIXR(5.73685662283492756461),
  816. };
  817. /* 0.5 / cos(pi*(2*i+1)/36) */
  818. static const int icos36h[9] = {
  819. FIXHR(0.50190991877167369479/2),
  820. FIXHR(0.51763809020504152469/2), //0
  821. FIXHR(0.55168895948124587824/2),
  822. FIXHR(0.61038729438072803416/2),
  823. FIXHR(0.70710678118654752439/2), //1
  824. FIXHR(0.87172339781054900991/2),
  825. FIXHR(1.18310079157624925896/4),
  826. FIXHR(1.93185165257813657349/4), //2
  827. // FIXHR(5.73685662283492756461),
  828. };
  829. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  830. cases. */
  831. static void imdct12(int *out, int *in)
  832. {
  833. int in0, in1, in2, in3, in4, in5, t1, t2;
  834. in0= in[0*3];
  835. in1= in[1*3] + in[0*3];
  836. in2= in[2*3] + in[1*3];
  837. in3= in[3*3] + in[2*3];
  838. in4= in[4*3] + in[3*3];
  839. in5= in[5*3] + in[4*3];
  840. in5 += in3;
  841. in3 += in1;
  842. in2= MULH(2*in2, C3);
  843. in3= MULH(4*in3, C3);
  844. t1 = in0 - in4;
  845. t2 = MULH(2*(in1 - in5), icos36h[4]);
  846. out[ 7]=
  847. out[10]= t1 + t2;
  848. out[ 1]=
  849. out[ 4]= t1 - t2;
  850. in0 += in4>>1;
  851. in4 = in0 + in2;
  852. in5 += 2*in1;
  853. in1 = MULH(in5 + in3, icos36h[1]);
  854. out[ 8]=
  855. out[ 9]= in4 + in1;
  856. out[ 2]=
  857. out[ 3]= in4 - in1;
  858. in0 -= in2;
  859. in5 = MULH(2*(in5 - in3), icos36h[7]);
  860. out[ 0]=
  861. out[ 5]= in0 - in5;
  862. out[ 6]=
  863. out[11]= in0 + in5;
  864. }
  865. /* cos(pi*i/18) */
  866. #define C1 FIXHR(0.98480775301220805936/2)
  867. #define C2 FIXHR(0.93969262078590838405/2)
  868. #define C3 FIXHR(0.86602540378443864676/2)
  869. #define C4 FIXHR(0.76604444311897803520/2)
  870. #define C5 FIXHR(0.64278760968653932632/2)
  871. #define C6 FIXHR(0.5/2)
  872. #define C7 FIXHR(0.34202014332566873304/2)
  873. #define C8 FIXHR(0.17364817766693034885/2)
  874. /* using Lee like decomposition followed by hand coded 9 points DCT */
  875. static void imdct36(int *out, int *buf, int *in, int *win)
  876. {
  877. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  878. int tmp[18], *tmp1, *in1;
  879. for(i=17;i>=1;i--)
  880. in[i] += in[i-1];
  881. for(i=17;i>=3;i-=2)
  882. in[i] += in[i-2];
  883. for(j=0;j<2;j++) {
  884. tmp1 = tmp + j;
  885. in1 = in + j;
  886. #if 0
  887. //more accurate but slower
  888. int64_t t0, t1, t2, t3;
  889. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  890. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  891. t1 = in1[2*0] - in1[2*6];
  892. tmp1[ 6] = t1 - (t2>>1);
  893. tmp1[16] = t1 + t2;
  894. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  895. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  896. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  897. tmp1[10] = (t3 - t0 - t2) >> 32;
  898. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  899. tmp1[14] = (t3 + t2 - t1) >> 32;
  900. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  901. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  902. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  903. t0 = MUL64(2*in1[2*3], C3);
  904. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  905. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  906. tmp1[12] = (t2 + t1 - t0) >> 32;
  907. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  908. #else
  909. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  910. t3 = in1[2*0] + (in1[2*6]>>1);
  911. t1 = in1[2*0] - in1[2*6];
  912. tmp1[ 6] = t1 - (t2>>1);
  913. tmp1[16] = t1 + t2;
  914. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  915. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  916. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  917. tmp1[10] = t3 - t0 - t2;
  918. tmp1[ 2] = t3 + t0 + t1;
  919. tmp1[14] = t3 + t2 - t1;
  920. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  921. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  922. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  923. t0 = MULH(2*in1[2*3], C3);
  924. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  925. tmp1[ 0] = t2 + t3 + t0;
  926. tmp1[12] = t2 + t1 - t0;
  927. tmp1[ 8] = t3 - t1 - t0;
  928. #endif
  929. }
  930. i = 0;
  931. for(j=0;j<4;j++) {
  932. t0 = tmp[i];
  933. t1 = tmp[i + 2];
  934. s0 = t1 + t0;
  935. s2 = t1 - t0;
  936. t2 = tmp[i + 1];
  937. t3 = tmp[i + 3];
  938. s1 = MULH(2*(t3 + t2), icos36h[j]);
  939. s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
  940. t0 = s0 + s1;
  941. t1 = s0 - s1;
  942. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  943. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  944. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  945. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  946. t0 = s2 + s3;
  947. t1 = s2 - s3;
  948. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  949. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  950. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  951. buf[ + j] = MULH(t0, win[18 + j]);
  952. i += 4;
  953. }
  954. s0 = tmp[16];
  955. s1 = MULH(2*tmp[17], icos36h[4]);
  956. t0 = s0 + s1;
  957. t1 = s0 - s1;
  958. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  959. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  960. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  961. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  962. }
  963. /* return the number of decoded frames */
  964. static int mp_decode_layer1(MPADecodeContext *s)
  965. {
  966. int bound, i, v, n, ch, j, mant;
  967. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  968. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  969. if (s->mode == MPA_JSTEREO)
  970. bound = (s->mode_ext + 1) * 4;
  971. else
  972. bound = SBLIMIT;
  973. /* allocation bits */
  974. for(i=0;i<bound;i++) {
  975. for(ch=0;ch<s->nb_channels;ch++) {
  976. allocation[ch][i] = get_bits(&s->gb, 4);
  977. }
  978. }
  979. for(i=bound;i<SBLIMIT;i++) {
  980. allocation[0][i] = get_bits(&s->gb, 4);
  981. }
  982. /* scale factors */
  983. for(i=0;i<bound;i++) {
  984. for(ch=0;ch<s->nb_channels;ch++) {
  985. if (allocation[ch][i])
  986. scale_factors[ch][i] = get_bits(&s->gb, 6);
  987. }
  988. }
  989. for(i=bound;i<SBLIMIT;i++) {
  990. if (allocation[0][i]) {
  991. scale_factors[0][i] = get_bits(&s->gb, 6);
  992. scale_factors[1][i] = get_bits(&s->gb, 6);
  993. }
  994. }
  995. /* compute samples */
  996. for(j=0;j<12;j++) {
  997. for(i=0;i<bound;i++) {
  998. for(ch=0;ch<s->nb_channels;ch++) {
  999. n = allocation[ch][i];
  1000. if (n) {
  1001. mant = get_bits(&s->gb, n + 1);
  1002. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1003. } else {
  1004. v = 0;
  1005. }
  1006. s->sb_samples[ch][j][i] = v;
  1007. }
  1008. }
  1009. for(i=bound;i<SBLIMIT;i++) {
  1010. n = allocation[0][i];
  1011. if (n) {
  1012. mant = get_bits(&s->gb, n + 1);
  1013. v = l1_unscale(n, mant, scale_factors[0][i]);
  1014. s->sb_samples[0][j][i] = v;
  1015. v = l1_unscale(n, mant, scale_factors[1][i]);
  1016. s->sb_samples[1][j][i] = v;
  1017. } else {
  1018. s->sb_samples[0][j][i] = 0;
  1019. s->sb_samples[1][j][i] = 0;
  1020. }
  1021. }
  1022. }
  1023. return 12;
  1024. }
  1025. static int mp_decode_layer2(MPADecodeContext *s)
  1026. {
  1027. int sblimit; /* number of used subbands */
  1028. const unsigned char *alloc_table;
  1029. int table, bit_alloc_bits, i, j, ch, bound, v;
  1030. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1031. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1032. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1033. int scale, qindex, bits, steps, k, l, m, b;
  1034. /* select decoding table */
  1035. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1036. s->sample_rate, s->lsf);
  1037. sblimit = ff_mpa_sblimit_table[table];
  1038. alloc_table = ff_mpa_alloc_tables[table];
  1039. if (s->mode == MPA_JSTEREO)
  1040. bound = (s->mode_ext + 1) * 4;
  1041. else
  1042. bound = sblimit;
  1043. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1044. /* sanity check */
  1045. if( bound > sblimit ) bound = sblimit;
  1046. /* parse bit allocation */
  1047. j = 0;
  1048. for(i=0;i<bound;i++) {
  1049. bit_alloc_bits = alloc_table[j];
  1050. for(ch=0;ch<s->nb_channels;ch++) {
  1051. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1052. }
  1053. j += 1 << bit_alloc_bits;
  1054. }
  1055. for(i=bound;i<sblimit;i++) {
  1056. bit_alloc_bits = alloc_table[j];
  1057. v = get_bits(&s->gb, bit_alloc_bits);
  1058. bit_alloc[0][i] = v;
  1059. bit_alloc[1][i] = v;
  1060. j += 1 << bit_alloc_bits;
  1061. }
  1062. /* scale codes */
  1063. for(i=0;i<sblimit;i++) {
  1064. for(ch=0;ch<s->nb_channels;ch++) {
  1065. if (bit_alloc[ch][i])
  1066. scale_code[ch][i] = get_bits(&s->gb, 2);
  1067. }
  1068. }
  1069. /* scale factors */
  1070. for(i=0;i<sblimit;i++) {
  1071. for(ch=0;ch<s->nb_channels;ch++) {
  1072. if (bit_alloc[ch][i]) {
  1073. sf = scale_factors[ch][i];
  1074. switch(scale_code[ch][i]) {
  1075. default:
  1076. case 0:
  1077. sf[0] = get_bits(&s->gb, 6);
  1078. sf[1] = get_bits(&s->gb, 6);
  1079. sf[2] = get_bits(&s->gb, 6);
  1080. break;
  1081. case 2:
  1082. sf[0] = get_bits(&s->gb, 6);
  1083. sf[1] = sf[0];
  1084. sf[2] = sf[0];
  1085. break;
  1086. case 1:
  1087. sf[0] = get_bits(&s->gb, 6);
  1088. sf[2] = get_bits(&s->gb, 6);
  1089. sf[1] = sf[0];
  1090. break;
  1091. case 3:
  1092. sf[0] = get_bits(&s->gb, 6);
  1093. sf[2] = get_bits(&s->gb, 6);
  1094. sf[1] = sf[2];
  1095. break;
  1096. }
  1097. }
  1098. }
  1099. }
  1100. /* samples */
  1101. for(k=0;k<3;k++) {
  1102. for(l=0;l<12;l+=3) {
  1103. j = 0;
  1104. for(i=0;i<bound;i++) {
  1105. bit_alloc_bits = alloc_table[j];
  1106. for(ch=0;ch<s->nb_channels;ch++) {
  1107. b = bit_alloc[ch][i];
  1108. if (b) {
  1109. scale = scale_factors[ch][i][k];
  1110. qindex = alloc_table[j+b];
  1111. bits = ff_mpa_quant_bits[qindex];
  1112. if (bits < 0) {
  1113. /* 3 values at the same time */
  1114. v = get_bits(&s->gb, -bits);
  1115. steps = ff_mpa_quant_steps[qindex];
  1116. s->sb_samples[ch][k * 12 + l + 0][i] =
  1117. l2_unscale_group(steps, v % steps, scale);
  1118. v = v / steps;
  1119. s->sb_samples[ch][k * 12 + l + 1][i] =
  1120. l2_unscale_group(steps, v % steps, scale);
  1121. v = v / steps;
  1122. s->sb_samples[ch][k * 12 + l + 2][i] =
  1123. l2_unscale_group(steps, v, scale);
  1124. } else {
  1125. for(m=0;m<3;m++) {
  1126. v = get_bits(&s->gb, bits);
  1127. v = l1_unscale(bits - 1, v, scale);
  1128. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1129. }
  1130. }
  1131. } else {
  1132. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1133. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1134. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1135. }
  1136. }
  1137. /* next subband in alloc table */
  1138. j += 1 << bit_alloc_bits;
  1139. }
  1140. /* XXX: find a way to avoid this duplication of code */
  1141. for(i=bound;i<sblimit;i++) {
  1142. bit_alloc_bits = alloc_table[j];
  1143. b = bit_alloc[0][i];
  1144. if (b) {
  1145. int mant, scale0, scale1;
  1146. scale0 = scale_factors[0][i][k];
  1147. scale1 = scale_factors[1][i][k];
  1148. qindex = alloc_table[j+b];
  1149. bits = ff_mpa_quant_bits[qindex];
  1150. if (bits < 0) {
  1151. /* 3 values at the same time */
  1152. v = get_bits(&s->gb, -bits);
  1153. steps = ff_mpa_quant_steps[qindex];
  1154. mant = v % steps;
  1155. v = v / steps;
  1156. s->sb_samples[0][k * 12 + l + 0][i] =
  1157. l2_unscale_group(steps, mant, scale0);
  1158. s->sb_samples[1][k * 12 + l + 0][i] =
  1159. l2_unscale_group(steps, mant, scale1);
  1160. mant = v % steps;
  1161. v = v / steps;
  1162. s->sb_samples[0][k * 12 + l + 1][i] =
  1163. l2_unscale_group(steps, mant, scale0);
  1164. s->sb_samples[1][k * 12 + l + 1][i] =
  1165. l2_unscale_group(steps, mant, scale1);
  1166. s->sb_samples[0][k * 12 + l + 2][i] =
  1167. l2_unscale_group(steps, v, scale0);
  1168. s->sb_samples[1][k * 12 + l + 2][i] =
  1169. l2_unscale_group(steps, v, scale1);
  1170. } else {
  1171. for(m=0;m<3;m++) {
  1172. mant = get_bits(&s->gb, bits);
  1173. s->sb_samples[0][k * 12 + l + m][i] =
  1174. l1_unscale(bits - 1, mant, scale0);
  1175. s->sb_samples[1][k * 12 + l + m][i] =
  1176. l1_unscale(bits - 1, mant, scale1);
  1177. }
  1178. }
  1179. } else {
  1180. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1181. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1182. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1183. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1184. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1185. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1186. }
  1187. /* next subband in alloc table */
  1188. j += 1 << bit_alloc_bits;
  1189. }
  1190. /* fill remaining samples to zero */
  1191. for(i=sblimit;i<SBLIMIT;i++) {
  1192. for(ch=0;ch<s->nb_channels;ch++) {
  1193. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1194. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1195. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1196. }
  1197. }
  1198. }
  1199. }
  1200. return 3 * 12;
  1201. }
  1202. static inline void lsf_sf_expand(int *slen,
  1203. int sf, int n1, int n2, int n3)
  1204. {
  1205. if (n3) {
  1206. slen[3] = sf % n3;
  1207. sf /= n3;
  1208. } else {
  1209. slen[3] = 0;
  1210. }
  1211. if (n2) {
  1212. slen[2] = sf % n2;
  1213. sf /= n2;
  1214. } else {
  1215. slen[2] = 0;
  1216. }
  1217. slen[1] = sf % n1;
  1218. sf /= n1;
  1219. slen[0] = sf;
  1220. }
  1221. static void exponents_from_scale_factors(MPADecodeContext *s,
  1222. GranuleDef *g,
  1223. int16_t *exponents)
  1224. {
  1225. const uint8_t *bstab, *pretab;
  1226. int len, i, j, k, l, v0, shift, gain, gains[3];
  1227. int16_t *exp_ptr;
  1228. exp_ptr = exponents;
  1229. gain = g->global_gain - 210;
  1230. shift = g->scalefac_scale + 1;
  1231. bstab = band_size_long[s->sample_rate_index];
  1232. pretab = mpa_pretab[g->preflag];
  1233. for(i=0;i<g->long_end;i++) {
  1234. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1235. len = bstab[i];
  1236. for(j=len;j>0;j--)
  1237. *exp_ptr++ = v0;
  1238. }
  1239. if (g->short_start < 13) {
  1240. bstab = band_size_short[s->sample_rate_index];
  1241. gains[0] = gain - (g->subblock_gain[0] << 3);
  1242. gains[1] = gain - (g->subblock_gain[1] << 3);
  1243. gains[2] = gain - (g->subblock_gain[2] << 3);
  1244. k = g->long_end;
  1245. for(i=g->short_start;i<13;i++) {
  1246. len = bstab[i];
  1247. for(l=0;l<3;l++) {
  1248. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1249. for(j=len;j>0;j--)
  1250. *exp_ptr++ = v0;
  1251. }
  1252. }
  1253. }
  1254. }
  1255. /* handle n = 0 too */
  1256. static inline int get_bitsz(GetBitContext *s, int n)
  1257. {
  1258. if (n == 0)
  1259. return 0;
  1260. else
  1261. return get_bits(s, n);
  1262. }
  1263. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1264. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1265. s->gb= s->in_gb;
  1266. s->in_gb.buffer=NULL;
  1267. assert((get_bits_count(&s->gb) & 7) == 0);
  1268. skip_bits_long(&s->gb, *pos - *end_pos);
  1269. *end_pos2=
  1270. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1271. *pos= get_bits_count(&s->gb);
  1272. }
  1273. }
  1274. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1275. int16_t *exponents, int end_pos2)
  1276. {
  1277. int s_index;
  1278. int i;
  1279. int last_pos, bits_left;
  1280. VLC *vlc;
  1281. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1282. /* low frequencies (called big values) */
  1283. s_index = 0;
  1284. for(i=0;i<3;i++) {
  1285. int j, k, l, linbits;
  1286. j = g->region_size[i];
  1287. if (j == 0)
  1288. continue;
  1289. /* select vlc table */
  1290. k = g->table_select[i];
  1291. l = mpa_huff_data[k][0];
  1292. linbits = mpa_huff_data[k][1];
  1293. vlc = &huff_vlc[l];
  1294. if(!l){
  1295. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1296. s_index += 2*j;
  1297. continue;
  1298. }
  1299. /* read huffcode and compute each couple */
  1300. for(;j>0;j--) {
  1301. int exponent, x, y, v;
  1302. int pos= get_bits_count(&s->gb);
  1303. if (pos >= end_pos){
  1304. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1305. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1306. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1307. if(pos >= end_pos)
  1308. break;
  1309. }
  1310. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1311. if(!y){
  1312. g->sb_hybrid[s_index ] =
  1313. g->sb_hybrid[s_index+1] = 0;
  1314. s_index += 2;
  1315. continue;
  1316. }
  1317. exponent= exponents[s_index];
  1318. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1319. i, g->region_size[i] - j, x, y, exponent);
  1320. if(y&16){
  1321. x = y >> 5;
  1322. y = y & 0x0f;
  1323. if (x < 15){
  1324. v = expval_table[ exponent ][ x ];
  1325. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1326. }else{
  1327. x += get_bitsz(&s->gb, linbits);
  1328. v = l3_unscale(x, exponent);
  1329. }
  1330. if (get_bits1(&s->gb))
  1331. v = -v;
  1332. g->sb_hybrid[s_index] = v;
  1333. if (y < 15){
  1334. v = expval_table[ exponent ][ y ];
  1335. }else{
  1336. y += get_bitsz(&s->gb, linbits);
  1337. v = l3_unscale(y, exponent);
  1338. }
  1339. if (get_bits1(&s->gb))
  1340. v = -v;
  1341. g->sb_hybrid[s_index+1] = v;
  1342. }else{
  1343. x = y >> 5;
  1344. y = y & 0x0f;
  1345. x += y;
  1346. if (x < 15){
  1347. v = expval_table[ exponent ][ x ];
  1348. }else{
  1349. x += get_bitsz(&s->gb, linbits);
  1350. v = l3_unscale(x, exponent);
  1351. }
  1352. if (get_bits1(&s->gb))
  1353. v = -v;
  1354. g->sb_hybrid[s_index+!!y] = v;
  1355. g->sb_hybrid[s_index+ !y] = 0;
  1356. }
  1357. s_index+=2;
  1358. }
  1359. }
  1360. /* high frequencies */
  1361. vlc = &huff_quad_vlc[g->count1table_select];
  1362. last_pos=0;
  1363. while (s_index <= 572) {
  1364. int pos, code;
  1365. pos = get_bits_count(&s->gb);
  1366. if (pos >= end_pos) {
  1367. if (pos > end_pos2 && last_pos){
  1368. /* some encoders generate an incorrect size for this
  1369. part. We must go back into the data */
  1370. s_index -= 4;
  1371. skip_bits_long(&s->gb, last_pos - pos);
  1372. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1373. if(s->error_recognition >= FF_ER_COMPLIANT)
  1374. s_index=0;
  1375. break;
  1376. }
  1377. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1378. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1379. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1380. if(pos >= end_pos)
  1381. break;
  1382. }
  1383. last_pos= pos;
  1384. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1385. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1386. g->sb_hybrid[s_index+0]=
  1387. g->sb_hybrid[s_index+1]=
  1388. g->sb_hybrid[s_index+2]=
  1389. g->sb_hybrid[s_index+3]= 0;
  1390. while(code){
  1391. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1392. int v;
  1393. int pos= s_index+idxtab[code];
  1394. code ^= 8>>idxtab[code];
  1395. v = exp_table[ exponents[pos] ];
  1396. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1397. if(get_bits1(&s->gb))
  1398. v = -v;
  1399. g->sb_hybrid[pos] = v;
  1400. }
  1401. s_index+=4;
  1402. }
  1403. /* skip extension bits */
  1404. bits_left = end_pos2 - get_bits_count(&s->gb);
  1405. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1406. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1407. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1408. s_index=0;
  1409. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1410. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1411. s_index=0;
  1412. }
  1413. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1414. skip_bits_long(&s->gb, bits_left);
  1415. i= get_bits_count(&s->gb);
  1416. switch_buffer(s, &i, &end_pos, &end_pos2);
  1417. return 0;
  1418. }
  1419. /* Reorder short blocks from bitstream order to interleaved order. It
  1420. would be faster to do it in parsing, but the code would be far more
  1421. complicated */
  1422. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1423. {
  1424. int i, j, len;
  1425. int32_t *ptr, *dst, *ptr1;
  1426. int32_t tmp[576];
  1427. if (g->block_type != 2)
  1428. return;
  1429. if (g->switch_point) {
  1430. if (s->sample_rate_index != 8) {
  1431. ptr = g->sb_hybrid + 36;
  1432. } else {
  1433. ptr = g->sb_hybrid + 48;
  1434. }
  1435. } else {
  1436. ptr = g->sb_hybrid;
  1437. }
  1438. for(i=g->short_start;i<13;i++) {
  1439. len = band_size_short[s->sample_rate_index][i];
  1440. ptr1 = ptr;
  1441. dst = tmp;
  1442. for(j=len;j>0;j--) {
  1443. *dst++ = ptr[0*len];
  1444. *dst++ = ptr[1*len];
  1445. *dst++ = ptr[2*len];
  1446. ptr++;
  1447. }
  1448. ptr+=2*len;
  1449. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1450. }
  1451. }
  1452. #define ISQRT2 FIXR(0.70710678118654752440)
  1453. static void compute_stereo(MPADecodeContext *s,
  1454. GranuleDef *g0, GranuleDef *g1)
  1455. {
  1456. int i, j, k, l;
  1457. int32_t v1, v2;
  1458. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1459. int32_t (*is_tab)[16];
  1460. int32_t *tab0, *tab1;
  1461. int non_zero_found_short[3];
  1462. /* intensity stereo */
  1463. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1464. if (!s->lsf) {
  1465. is_tab = is_table;
  1466. sf_max = 7;
  1467. } else {
  1468. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1469. sf_max = 16;
  1470. }
  1471. tab0 = g0->sb_hybrid + 576;
  1472. tab1 = g1->sb_hybrid + 576;
  1473. non_zero_found_short[0] = 0;
  1474. non_zero_found_short[1] = 0;
  1475. non_zero_found_short[2] = 0;
  1476. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1477. for(i = 12;i >= g1->short_start;i--) {
  1478. /* for last band, use previous scale factor */
  1479. if (i != 11)
  1480. k -= 3;
  1481. len = band_size_short[s->sample_rate_index][i];
  1482. for(l=2;l>=0;l--) {
  1483. tab0 -= len;
  1484. tab1 -= len;
  1485. if (!non_zero_found_short[l]) {
  1486. /* test if non zero band. if so, stop doing i-stereo */
  1487. for(j=0;j<len;j++) {
  1488. if (tab1[j] != 0) {
  1489. non_zero_found_short[l] = 1;
  1490. goto found1;
  1491. }
  1492. }
  1493. sf = g1->scale_factors[k + l];
  1494. if (sf >= sf_max)
  1495. goto found1;
  1496. v1 = is_tab[0][sf];
  1497. v2 = is_tab[1][sf];
  1498. for(j=0;j<len;j++) {
  1499. tmp0 = tab0[j];
  1500. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1501. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1502. }
  1503. } else {
  1504. found1:
  1505. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1506. /* lower part of the spectrum : do ms stereo
  1507. if enabled */
  1508. for(j=0;j<len;j++) {
  1509. tmp0 = tab0[j];
  1510. tmp1 = tab1[j];
  1511. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1512. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1513. }
  1514. }
  1515. }
  1516. }
  1517. }
  1518. non_zero_found = non_zero_found_short[0] |
  1519. non_zero_found_short[1] |
  1520. non_zero_found_short[2];
  1521. for(i = g1->long_end - 1;i >= 0;i--) {
  1522. len = band_size_long[s->sample_rate_index][i];
  1523. tab0 -= len;
  1524. tab1 -= len;
  1525. /* test if non zero band. if so, stop doing i-stereo */
  1526. if (!non_zero_found) {
  1527. for(j=0;j<len;j++) {
  1528. if (tab1[j] != 0) {
  1529. non_zero_found = 1;
  1530. goto found2;
  1531. }
  1532. }
  1533. /* for last band, use previous scale factor */
  1534. k = (i == 21) ? 20 : i;
  1535. sf = g1->scale_factors[k];
  1536. if (sf >= sf_max)
  1537. goto found2;
  1538. v1 = is_tab[0][sf];
  1539. v2 = is_tab[1][sf];
  1540. for(j=0;j<len;j++) {
  1541. tmp0 = tab0[j];
  1542. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1543. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1544. }
  1545. } else {
  1546. found2:
  1547. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1548. /* lower part of the spectrum : do ms stereo
  1549. if enabled */
  1550. for(j=0;j<len;j++) {
  1551. tmp0 = tab0[j];
  1552. tmp1 = tab1[j];
  1553. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1554. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1555. }
  1556. }
  1557. }
  1558. }
  1559. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1560. /* ms stereo ONLY */
  1561. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1562. global gain */
  1563. tab0 = g0->sb_hybrid;
  1564. tab1 = g1->sb_hybrid;
  1565. for(i=0;i<576;i++) {
  1566. tmp0 = tab0[i];
  1567. tmp1 = tab1[i];
  1568. tab0[i] = tmp0 + tmp1;
  1569. tab1[i] = tmp0 - tmp1;
  1570. }
  1571. }
  1572. }
  1573. static void compute_antialias_integer(MPADecodeContext *s,
  1574. GranuleDef *g)
  1575. {
  1576. int32_t *ptr, *csa;
  1577. int n, i;
  1578. /* we antialias only "long" bands */
  1579. if (g->block_type == 2) {
  1580. if (!g->switch_point)
  1581. return;
  1582. /* XXX: check this for 8000Hz case */
  1583. n = 1;
  1584. } else {
  1585. n = SBLIMIT - 1;
  1586. }
  1587. ptr = g->sb_hybrid + 18;
  1588. for(i = n;i > 0;i--) {
  1589. int tmp0, tmp1, tmp2;
  1590. csa = &csa_table[0][0];
  1591. #define INT_AA(j) \
  1592. tmp0 = ptr[-1-j];\
  1593. tmp1 = ptr[ j];\
  1594. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1595. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1596. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1597. INT_AA(0)
  1598. INT_AA(1)
  1599. INT_AA(2)
  1600. INT_AA(3)
  1601. INT_AA(4)
  1602. INT_AA(5)
  1603. INT_AA(6)
  1604. INT_AA(7)
  1605. ptr += 18;
  1606. }
  1607. }
  1608. static void compute_antialias_float(MPADecodeContext *s,
  1609. GranuleDef *g)
  1610. {
  1611. int32_t *ptr;
  1612. int n, i;
  1613. /* we antialias only "long" bands */
  1614. if (g->block_type == 2) {
  1615. if (!g->switch_point)
  1616. return;
  1617. /* XXX: check this for 8000Hz case */
  1618. n = 1;
  1619. } else {
  1620. n = SBLIMIT - 1;
  1621. }
  1622. ptr = g->sb_hybrid + 18;
  1623. for(i = n;i > 0;i--) {
  1624. float tmp0, tmp1;
  1625. float *csa = &csa_table_float[0][0];
  1626. #define FLOAT_AA(j)\
  1627. tmp0= ptr[-1-j];\
  1628. tmp1= ptr[ j];\
  1629. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1630. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1631. FLOAT_AA(0)
  1632. FLOAT_AA(1)
  1633. FLOAT_AA(2)
  1634. FLOAT_AA(3)
  1635. FLOAT_AA(4)
  1636. FLOAT_AA(5)
  1637. FLOAT_AA(6)
  1638. FLOAT_AA(7)
  1639. ptr += 18;
  1640. }
  1641. }
  1642. static void compute_imdct(MPADecodeContext *s,
  1643. GranuleDef *g,
  1644. int32_t *sb_samples,
  1645. int32_t *mdct_buf)
  1646. {
  1647. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1648. int32_t out2[12];
  1649. int i, j, mdct_long_end, v, sblimit;
  1650. /* find last non zero block */
  1651. ptr = g->sb_hybrid + 576;
  1652. ptr1 = g->sb_hybrid + 2 * 18;
  1653. while (ptr >= ptr1) {
  1654. ptr -= 6;
  1655. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1656. if (v != 0)
  1657. break;
  1658. }
  1659. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1660. if (g->block_type == 2) {
  1661. /* XXX: check for 8000 Hz */
  1662. if (g->switch_point)
  1663. mdct_long_end = 2;
  1664. else
  1665. mdct_long_end = 0;
  1666. } else {
  1667. mdct_long_end = sblimit;
  1668. }
  1669. buf = mdct_buf;
  1670. ptr = g->sb_hybrid;
  1671. for(j=0;j<mdct_long_end;j++) {
  1672. /* apply window & overlap with previous buffer */
  1673. out_ptr = sb_samples + j;
  1674. /* select window */
  1675. if (g->switch_point && j < 2)
  1676. win1 = mdct_win[0];
  1677. else
  1678. win1 = mdct_win[g->block_type];
  1679. /* select frequency inversion */
  1680. win = win1 + ((4 * 36) & -(j & 1));
  1681. imdct36(out_ptr, buf, ptr, win);
  1682. out_ptr += 18*SBLIMIT;
  1683. ptr += 18;
  1684. buf += 18;
  1685. }
  1686. for(j=mdct_long_end;j<sblimit;j++) {
  1687. /* select frequency inversion */
  1688. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1689. out_ptr = sb_samples + j;
  1690. for(i=0; i<6; i++){
  1691. *out_ptr = buf[i];
  1692. out_ptr += SBLIMIT;
  1693. }
  1694. imdct12(out2, ptr + 0);
  1695. for(i=0;i<6;i++) {
  1696. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1697. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1698. out_ptr += SBLIMIT;
  1699. }
  1700. imdct12(out2, ptr + 1);
  1701. for(i=0;i<6;i++) {
  1702. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1703. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1704. out_ptr += SBLIMIT;
  1705. }
  1706. imdct12(out2, ptr + 2);
  1707. for(i=0;i<6;i++) {
  1708. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1709. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1710. buf[i + 6*2] = 0;
  1711. }
  1712. ptr += 18;
  1713. buf += 18;
  1714. }
  1715. /* zero bands */
  1716. for(j=sblimit;j<SBLIMIT;j++) {
  1717. /* overlap */
  1718. out_ptr = sb_samples + j;
  1719. for(i=0;i<18;i++) {
  1720. *out_ptr = buf[i];
  1721. buf[i] = 0;
  1722. out_ptr += SBLIMIT;
  1723. }
  1724. buf += 18;
  1725. }
  1726. }
  1727. /* main layer3 decoding function */
  1728. static int mp_decode_layer3(MPADecodeContext *s)
  1729. {
  1730. int nb_granules, main_data_begin, private_bits;
  1731. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1732. GranuleDef granules[2][2], *g;
  1733. int16_t exponents[576];
  1734. /* read side info */
  1735. if (s->lsf) {
  1736. main_data_begin = get_bits(&s->gb, 8);
  1737. private_bits = get_bits(&s->gb, s->nb_channels);
  1738. nb_granules = 1;
  1739. } else {
  1740. main_data_begin = get_bits(&s->gb, 9);
  1741. if (s->nb_channels == 2)
  1742. private_bits = get_bits(&s->gb, 3);
  1743. else
  1744. private_bits = get_bits(&s->gb, 5);
  1745. nb_granules = 2;
  1746. for(ch=0;ch<s->nb_channels;ch++) {
  1747. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1748. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1749. }
  1750. }
  1751. for(gr=0;gr<nb_granules;gr++) {
  1752. for(ch=0;ch<s->nb_channels;ch++) {
  1753. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1754. g = &granules[ch][gr];
  1755. g->part2_3_length = get_bits(&s->gb, 12);
  1756. g->big_values = get_bits(&s->gb, 9);
  1757. if(g->big_values > 288){
  1758. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1759. return -1;
  1760. }
  1761. g->global_gain = get_bits(&s->gb, 8);
  1762. /* if MS stereo only is selected, we precompute the
  1763. 1/sqrt(2) renormalization factor */
  1764. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1765. MODE_EXT_MS_STEREO)
  1766. g->global_gain -= 2;
  1767. if (s->lsf)
  1768. g->scalefac_compress = get_bits(&s->gb, 9);
  1769. else
  1770. g->scalefac_compress = get_bits(&s->gb, 4);
  1771. blocksplit_flag = get_bits1(&s->gb);
  1772. if (blocksplit_flag) {
  1773. g->block_type = get_bits(&s->gb, 2);
  1774. if (g->block_type == 0){
  1775. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1776. return -1;
  1777. }
  1778. g->switch_point = get_bits1(&s->gb);
  1779. for(i=0;i<2;i++)
  1780. g->table_select[i] = get_bits(&s->gb, 5);
  1781. for(i=0;i<3;i++)
  1782. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1783. ff_init_short_region(s, g);
  1784. } else {
  1785. int region_address1, region_address2;
  1786. g->block_type = 0;
  1787. g->switch_point = 0;
  1788. for(i=0;i<3;i++)
  1789. g->table_select[i] = get_bits(&s->gb, 5);
  1790. /* compute huffman coded region sizes */
  1791. region_address1 = get_bits(&s->gb, 4);
  1792. region_address2 = get_bits(&s->gb, 3);
  1793. dprintf(s->avctx, "region1=%d region2=%d\n",
  1794. region_address1, region_address2);
  1795. ff_init_long_region(s, g, region_address1, region_address2);
  1796. }
  1797. ff_region_offset2size(g);
  1798. ff_compute_band_indexes(s, g);
  1799. g->preflag = 0;
  1800. if (!s->lsf)
  1801. g->preflag = get_bits1(&s->gb);
  1802. g->scalefac_scale = get_bits1(&s->gb);
  1803. g->count1table_select = get_bits1(&s->gb);
  1804. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1805. g->block_type, g->switch_point);
  1806. }
  1807. }
  1808. if (!s->adu_mode) {
  1809. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1810. assert((get_bits_count(&s->gb) & 7) == 0);
  1811. /* now we get bits from the main_data_begin offset */
  1812. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1813. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1814. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1815. s->in_gb= s->gb;
  1816. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1817. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1818. }
  1819. for(gr=0;gr<nb_granules;gr++) {
  1820. for(ch=0;ch<s->nb_channels;ch++) {
  1821. g = &granules[ch][gr];
  1822. if(get_bits_count(&s->gb)<0){
  1823. av_log(s->avctx, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1824. main_data_begin, s->last_buf_size, gr);
  1825. skip_bits_long(&s->gb, g->part2_3_length);
  1826. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1827. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1828. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1829. s->gb= s->in_gb;
  1830. s->in_gb.buffer=NULL;
  1831. }
  1832. continue;
  1833. }
  1834. bits_pos = get_bits_count(&s->gb);
  1835. if (!s->lsf) {
  1836. uint8_t *sc;
  1837. int slen, slen1, slen2;
  1838. /* MPEG1 scale factors */
  1839. slen1 = slen_table[0][g->scalefac_compress];
  1840. slen2 = slen_table[1][g->scalefac_compress];
  1841. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1842. if (g->block_type == 2) {
  1843. n = g->switch_point ? 17 : 18;
  1844. j = 0;
  1845. if(slen1){
  1846. for(i=0;i<n;i++)
  1847. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1848. }else{
  1849. for(i=0;i<n;i++)
  1850. g->scale_factors[j++] = 0;
  1851. }
  1852. if(slen2){
  1853. for(i=0;i<18;i++)
  1854. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1855. for(i=0;i<3;i++)
  1856. g->scale_factors[j++] = 0;
  1857. }else{
  1858. for(i=0;i<21;i++)
  1859. g->scale_factors[j++] = 0;
  1860. }
  1861. } else {
  1862. sc = granules[ch][0].scale_factors;
  1863. j = 0;
  1864. for(k=0;k<4;k++) {
  1865. n = (k == 0 ? 6 : 5);
  1866. if ((g->scfsi & (0x8 >> k)) == 0) {
  1867. slen = (k < 2) ? slen1 : slen2;
  1868. if(slen){
  1869. for(i=0;i<n;i++)
  1870. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1871. }else{
  1872. for(i=0;i<n;i++)
  1873. g->scale_factors[j++] = 0;
  1874. }
  1875. } else {
  1876. /* simply copy from last granule */
  1877. for(i=0;i<n;i++) {
  1878. g->scale_factors[j] = sc[j];
  1879. j++;
  1880. }
  1881. }
  1882. }
  1883. g->scale_factors[j++] = 0;
  1884. }
  1885. } else {
  1886. int tindex, tindex2, slen[4], sl, sf;
  1887. /* LSF scale factors */
  1888. if (g->block_type == 2) {
  1889. tindex = g->switch_point ? 2 : 1;
  1890. } else {
  1891. tindex = 0;
  1892. }
  1893. sf = g->scalefac_compress;
  1894. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1895. /* intensity stereo case */
  1896. sf >>= 1;
  1897. if (sf < 180) {
  1898. lsf_sf_expand(slen, sf, 6, 6, 0);
  1899. tindex2 = 3;
  1900. } else if (sf < 244) {
  1901. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1902. tindex2 = 4;
  1903. } else {
  1904. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1905. tindex2 = 5;
  1906. }
  1907. } else {
  1908. /* normal case */
  1909. if (sf < 400) {
  1910. lsf_sf_expand(slen, sf, 5, 4, 4);
  1911. tindex2 = 0;
  1912. } else if (sf < 500) {
  1913. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1914. tindex2 = 1;
  1915. } else {
  1916. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1917. tindex2 = 2;
  1918. g->preflag = 1;
  1919. }
  1920. }
  1921. j = 0;
  1922. for(k=0;k<4;k++) {
  1923. n = lsf_nsf_table[tindex2][tindex][k];
  1924. sl = slen[k];
  1925. if(sl){
  1926. for(i=0;i<n;i++)
  1927. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1928. }else{
  1929. for(i=0;i<n;i++)
  1930. g->scale_factors[j++] = 0;
  1931. }
  1932. }
  1933. /* XXX: should compute exact size */
  1934. for(;j<40;j++)
  1935. g->scale_factors[j] = 0;
  1936. }
  1937. exponents_from_scale_factors(s, g, exponents);
  1938. /* read Huffman coded residue */
  1939. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1940. } /* ch */
  1941. if (s->nb_channels == 2)
  1942. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  1943. for(ch=0;ch<s->nb_channels;ch++) {
  1944. g = &granules[ch][gr];
  1945. reorder_block(s, g);
  1946. s->compute_antialias(s, g);
  1947. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1948. }
  1949. } /* gr */
  1950. if(get_bits_count(&s->gb)<0)
  1951. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1952. return nb_granules * 18;
  1953. }
  1954. static int mp_decode_frame(MPADecodeContext *s,
  1955. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1956. {
  1957. int i, nb_frames, ch;
  1958. OUT_INT *samples_ptr;
  1959. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1960. /* skip error protection field */
  1961. if (s->error_protection)
  1962. skip_bits(&s->gb, 16);
  1963. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1964. switch(s->layer) {
  1965. case 1:
  1966. s->avctx->frame_size = 384;
  1967. nb_frames = mp_decode_layer1(s);
  1968. break;
  1969. case 2:
  1970. s->avctx->frame_size = 1152;
  1971. nb_frames = mp_decode_layer2(s);
  1972. break;
  1973. case 3:
  1974. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1975. default:
  1976. nb_frames = mp_decode_layer3(s);
  1977. s->last_buf_size=0;
  1978. if(s->in_gb.buffer){
  1979. align_get_bits(&s->gb);
  1980. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  1981. if(i >= 0 && i <= BACKSTEP_SIZE){
  1982. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1983. s->last_buf_size=i;
  1984. }else
  1985. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1986. s->gb= s->in_gb;
  1987. s->in_gb.buffer= NULL;
  1988. }
  1989. align_get_bits(&s->gb);
  1990. assert((get_bits_count(&s->gb) & 7) == 0);
  1991. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  1992. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1993. if(i<0)
  1994. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1995. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1996. }
  1997. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1998. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1999. s->last_buf_size += i;
  2000. break;
  2001. }
  2002. /* apply the synthesis filter */
  2003. for(ch=0;ch<s->nb_channels;ch++) {
  2004. samples_ptr = samples + ch;
  2005. for(i=0;i<nb_frames;i++) {
  2006. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2007. window, &s->dither_state,
  2008. samples_ptr, s->nb_channels,
  2009. s->sb_samples[ch][i]);
  2010. samples_ptr += 32 * s->nb_channels;
  2011. }
  2012. }
  2013. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2014. }
  2015. static int decode_frame(AVCodecContext * avctx,
  2016. void *data, int *data_size,
  2017. AVPacket *avpkt)
  2018. {
  2019. const uint8_t *buf = avpkt->data;
  2020. int buf_size = avpkt->size;
  2021. MPADecodeContext *s = avctx->priv_data;
  2022. uint32_t header;
  2023. int out_size;
  2024. OUT_INT *out_samples = data;
  2025. if(buf_size < HEADER_SIZE)
  2026. return -1;
  2027. header = AV_RB32(buf);
  2028. if(ff_mpa_check_header(header) < 0){
  2029. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  2030. return -1;
  2031. }
  2032. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  2033. /* free format: prepare to compute frame size */
  2034. s->frame_size = -1;
  2035. return -1;
  2036. }
  2037. /* update codec info */
  2038. avctx->channels = s->nb_channels;
  2039. avctx->bit_rate = s->bit_rate;
  2040. avctx->sub_id = s->layer;
  2041. if(s->frame_size<=0 || s->frame_size > buf_size){
  2042. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2043. return -1;
  2044. }else if(s->frame_size < buf_size){
  2045. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2046. buf_size= s->frame_size;
  2047. }
  2048. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2049. if(out_size>=0){
  2050. *data_size = out_size;
  2051. avctx->sample_rate = s->sample_rate;
  2052. //FIXME maybe move the other codec info stuff from above here too
  2053. }else
  2054. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2055. s->frame_size = 0;
  2056. return buf_size;
  2057. }
  2058. static void flush(AVCodecContext *avctx){
  2059. MPADecodeContext *s = avctx->priv_data;
  2060. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2061. s->last_buf_size= 0;
  2062. }
  2063. #if CONFIG_MP3ADU_DECODER
  2064. static int decode_frame_adu(AVCodecContext * avctx,
  2065. void *data, int *data_size,
  2066. AVPacket *avpkt)
  2067. {
  2068. const uint8_t *buf = avpkt->data;
  2069. int buf_size = avpkt->size;
  2070. MPADecodeContext *s = avctx->priv_data;
  2071. uint32_t header;
  2072. int len, out_size;
  2073. OUT_INT *out_samples = data;
  2074. len = buf_size;
  2075. // Discard too short frames
  2076. if (buf_size < HEADER_SIZE) {
  2077. *data_size = 0;
  2078. return buf_size;
  2079. }
  2080. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2081. len = MPA_MAX_CODED_FRAME_SIZE;
  2082. // Get header and restore sync word
  2083. header = AV_RB32(buf) | 0xffe00000;
  2084. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2085. *data_size = 0;
  2086. return buf_size;
  2087. }
  2088. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  2089. /* update codec info */
  2090. avctx->sample_rate = s->sample_rate;
  2091. avctx->channels = s->nb_channels;
  2092. avctx->bit_rate = s->bit_rate;
  2093. avctx->sub_id = s->layer;
  2094. s->frame_size = len;
  2095. if (avctx->parse_only) {
  2096. out_size = buf_size;
  2097. } else {
  2098. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2099. }
  2100. *data_size = out_size;
  2101. return buf_size;
  2102. }
  2103. #endif /* CONFIG_MP3ADU_DECODER */
  2104. #if CONFIG_MP3ON4_DECODER
  2105. /**
  2106. * Context for MP3On4 decoder
  2107. */
  2108. typedef struct MP3On4DecodeContext {
  2109. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2110. int syncword; ///< syncword patch
  2111. const uint8_t *coff; ///< channels offsets in output buffer
  2112. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2113. } MP3On4DecodeContext;
  2114. #include "mpeg4audio.h"
  2115. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2116. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2117. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2118. static const uint8_t chan_offset[8][5] = {
  2119. {0},
  2120. {0}, // C
  2121. {0}, // FLR
  2122. {2,0}, // C FLR
  2123. {2,0,3}, // C FLR BS
  2124. {4,0,2}, // C FLR BLRS
  2125. {4,0,2,5}, // C FLR BLRS LFE
  2126. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2127. };
  2128. static int decode_init_mp3on4(AVCodecContext * avctx)
  2129. {
  2130. MP3On4DecodeContext *s = avctx->priv_data;
  2131. MPEG4AudioConfig cfg;
  2132. int i;
  2133. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2134. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2135. return -1;
  2136. }
  2137. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2138. if (!cfg.chan_config || cfg.chan_config > 7) {
  2139. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2140. return -1;
  2141. }
  2142. s->frames = mp3Frames[cfg.chan_config];
  2143. s->coff = chan_offset[cfg.chan_config];
  2144. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2145. if (cfg.sample_rate < 16000)
  2146. s->syncword = 0xffe00000;
  2147. else
  2148. s->syncword = 0xfff00000;
  2149. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2150. * We replace avctx->priv_data with the context of the first decoder so that
  2151. * decode_init() does not have to be changed.
  2152. * Other decoders will be initialized here copying data from the first context
  2153. */
  2154. // Allocate zeroed memory for the first decoder context
  2155. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2156. // Put decoder context in place to make init_decode() happy
  2157. avctx->priv_data = s->mp3decctx[0];
  2158. decode_init(avctx);
  2159. // Restore mp3on4 context pointer
  2160. avctx->priv_data = s;
  2161. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2162. /* Create a separate codec/context for each frame (first is already ok).
  2163. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2164. */
  2165. for (i = 1; i < s->frames; i++) {
  2166. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2167. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2168. s->mp3decctx[i]->adu_mode = 1;
  2169. s->mp3decctx[i]->avctx = avctx;
  2170. }
  2171. return 0;
  2172. }
  2173. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  2174. {
  2175. MP3On4DecodeContext *s = avctx->priv_data;
  2176. int i;
  2177. for (i = 0; i < s->frames; i++)
  2178. if (s->mp3decctx[i])
  2179. av_free(s->mp3decctx[i]);
  2180. return 0;
  2181. }
  2182. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2183. void *data, int *data_size,
  2184. AVPacket *avpkt)
  2185. {
  2186. const uint8_t *buf = avpkt->data;
  2187. int buf_size = avpkt->size;
  2188. MP3On4DecodeContext *s = avctx->priv_data;
  2189. MPADecodeContext *m;
  2190. int fsize, len = buf_size, out_size = 0;
  2191. uint32_t header;
  2192. OUT_INT *out_samples = data;
  2193. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2194. OUT_INT *outptr, *bp;
  2195. int fr, j, n;
  2196. *data_size = 0;
  2197. // Discard too short frames
  2198. if (buf_size < HEADER_SIZE)
  2199. return -1;
  2200. // If only one decoder interleave is not needed
  2201. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2202. avctx->bit_rate = 0;
  2203. for (fr = 0; fr < s->frames; fr++) {
  2204. fsize = AV_RB16(buf) >> 4;
  2205. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2206. m = s->mp3decctx[fr];
  2207. assert (m != NULL);
  2208. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2209. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2210. break;
  2211. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  2212. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2213. buf += fsize;
  2214. len -= fsize;
  2215. if(s->frames > 1) {
  2216. n = m->avctx->frame_size*m->nb_channels;
  2217. /* interleave output data */
  2218. bp = out_samples + s->coff[fr];
  2219. if(m->nb_channels == 1) {
  2220. for(j = 0; j < n; j++) {
  2221. *bp = decoded_buf[j];
  2222. bp += avctx->channels;
  2223. }
  2224. } else {
  2225. for(j = 0; j < n; j++) {
  2226. bp[0] = decoded_buf[j++];
  2227. bp[1] = decoded_buf[j];
  2228. bp += avctx->channels;
  2229. }
  2230. }
  2231. }
  2232. avctx->bit_rate += m->bit_rate;
  2233. }
  2234. /* update codec info */
  2235. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2236. *data_size = out_size;
  2237. return buf_size;
  2238. }
  2239. #endif /* CONFIG_MP3ON4_DECODER */
  2240. #if CONFIG_MP1_DECODER
  2241. AVCodec mp1_decoder =
  2242. {
  2243. "mp1",
  2244. CODEC_TYPE_AUDIO,
  2245. CODEC_ID_MP1,
  2246. sizeof(MPADecodeContext),
  2247. decode_init,
  2248. NULL,
  2249. NULL,
  2250. decode_frame,
  2251. CODEC_CAP_PARSE_ONLY,
  2252. .flush= flush,
  2253. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2254. };
  2255. #endif
  2256. #if CONFIG_MP2_DECODER
  2257. AVCodec mp2_decoder =
  2258. {
  2259. "mp2",
  2260. CODEC_TYPE_AUDIO,
  2261. CODEC_ID_MP2,
  2262. sizeof(MPADecodeContext),
  2263. decode_init,
  2264. NULL,
  2265. NULL,
  2266. decode_frame,
  2267. CODEC_CAP_PARSE_ONLY,
  2268. .flush= flush,
  2269. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2270. };
  2271. #endif
  2272. #if CONFIG_MP3_DECODER
  2273. AVCodec mp3_decoder =
  2274. {
  2275. "mp3",
  2276. CODEC_TYPE_AUDIO,
  2277. CODEC_ID_MP3,
  2278. sizeof(MPADecodeContext),
  2279. decode_init,
  2280. NULL,
  2281. NULL,
  2282. decode_frame,
  2283. CODEC_CAP_PARSE_ONLY,
  2284. .flush= flush,
  2285. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2286. };
  2287. #endif
  2288. #if CONFIG_MP3ADU_DECODER
  2289. AVCodec mp3adu_decoder =
  2290. {
  2291. "mp3adu",
  2292. CODEC_TYPE_AUDIO,
  2293. CODEC_ID_MP3ADU,
  2294. sizeof(MPADecodeContext),
  2295. decode_init,
  2296. NULL,
  2297. NULL,
  2298. decode_frame_adu,
  2299. CODEC_CAP_PARSE_ONLY,
  2300. .flush= flush,
  2301. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2302. };
  2303. #endif
  2304. #if CONFIG_MP3ON4_DECODER
  2305. AVCodec mp3on4_decoder =
  2306. {
  2307. "mp3on4",
  2308. CODEC_TYPE_AUDIO,
  2309. CODEC_ID_MP3ON4,
  2310. sizeof(MP3On4DecodeContext),
  2311. decode_init_mp3on4,
  2312. NULL,
  2313. decode_close_mp3on4,
  2314. decode_frame_mp3on4,
  2315. .flush= flush,
  2316. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2317. };
  2318. #endif