You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
4.7KB

  1. /*
  2. * LSP routines for ACELP-based codecs
  3. *
  4. * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5. * Copyright (c) 2008 Vladimir Voroshilov
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <inttypes.h>
  24. #include "avcodec.h"
  25. #define FRAC_BITS 14
  26. #include "mathops.h"
  27. #include "lsp.h"
  28. #include "celp_math.h"
  29. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  30. {
  31. int i, j;
  32. /* sort lsfq in ascending order. float bubble agorithm,
  33. O(n) if data already sorted, O(n^2) - otherwise */
  34. for(i=0; i<lp_order-1; i++)
  35. for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  36. FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  37. for(i=0; i<lp_order; i++)
  38. {
  39. lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  40. lsfq_min = lsfq[i] + lsfq_min_distance;
  41. }
  42. lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  43. }
  44. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  45. {
  46. int i;
  47. /* Convert LSF to LSP, lsp=cos(lsf) */
  48. for(i=0; i<lp_order; i++)
  49. // 20861 = 2.0 / PI in (0.15)
  50. lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  51. }
  52. /**
  53. * \brief decodes polynomial coefficients from LSP
  54. * \param f [out] decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  55. * \param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  56. */
  57. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  58. {
  59. int i, j;
  60. f[0] = 0x400000; // 1.0 in (3.22)
  61. f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
  62. for(i=2; i<=lp_half_order; i++)
  63. {
  64. f[i] = f[i-2];
  65. for(j=i; j>1; j--)
  66. f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  67. f[1] -= lsp[2*i-2] << 8;
  68. }
  69. }
  70. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  71. {
  72. int i;
  73. int f1[lp_half_order+1]; // (3.22)
  74. int f2[lp_half_order+1]; // (3.22)
  75. lsp2poly(f1, lsp , lp_half_order);
  76. lsp2poly(f2, lsp+1, lp_half_order);
  77. /* 3.2.6 of G.729, Equations 25 and 26*/
  78. lp[0] = 4096;
  79. for(i=1; i<lp_half_order+1; i++)
  80. {
  81. int ff1 = f1[i] + f1[i-1]; // (3.22)
  82. int ff2 = f2[i] - f2[i-1]; // (3.22)
  83. ff1 += 1 << 10; // for rounding
  84. lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  85. lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  86. }
  87. }
  88. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  89. {
  90. int16_t lsp_1st[lp_order]; // (0.15)
  91. int i;
  92. /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  93. for(i=0; i<lp_order; i++)
  94. #ifdef G729_BITEXACT
  95. lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
  96. #else
  97. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  98. #endif
  99. ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  100. /* LSP values for second subframe (3.2.5 of G.729)*/
  101. ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  102. }
  103. /**
  104. * Computes the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients
  105. * needed for LSP to LPC conversion.
  106. * We only need to calculate the 6 first elements of the polynomial.
  107. *
  108. * @param lsp line spectral pairs in cosine domain
  109. * @param f [out] polynomial input/output as a vector
  110. *
  111. * TIA/EIA/IS-733 2.4.3.3.5-1/2
  112. */
  113. static void lsp2polyf(const double *lsp, double *f, int lp_half_order)
  114. {
  115. int i, j;
  116. f[0] = 1.0;
  117. f[1] = -2 * lsp[0];
  118. lsp -= 2;
  119. for(i=2; i<=lp_half_order; i++)
  120. {
  121. double val = -2 * lsp[2*i];
  122. f[i] = val * f[i-1] + 2*f[i-2];
  123. for(j=i-1; j>1; j--)
  124. f[j] += f[j-1] * val + f[j-2];
  125. f[1] += val;
  126. }
  127. }
  128. void ff_acelp_lspd2lpc(const double *lsp, float *lpc)
  129. {
  130. double pa[6], qa[6];
  131. int i;
  132. lsp2polyf(lsp, pa, 5);
  133. lsp2polyf(lsp + 1, qa, 5);
  134. for (i=4; i>=0; i--)
  135. {
  136. double paf = pa[i+1] + pa[i];
  137. double qaf = qa[i+1] - qa[i];
  138. lpc[i ] = 0.5*(paf+qaf);
  139. lpc[9-i] = 0.5*(paf-qaf);
  140. }
  141. }