You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1508 lines
48KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file libavcodec/huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #define VLC_BITS 11
  34. #if HAVE_BIGENDIAN
  35. #define B 3
  36. #define G 2
  37. #define R 1
  38. #else
  39. #define B 0
  40. #define G 1
  41. #define R 2
  42. #endif
  43. typedef enum Predictor{
  44. LEFT= 0,
  45. PLANE,
  46. MEDIAN,
  47. } Predictor;
  48. typedef struct HYuvContext{
  49. AVCodecContext *avctx;
  50. Predictor predictor;
  51. GetBitContext gb;
  52. PutBitContext pb;
  53. int interlaced;
  54. int decorrelate;
  55. int bitstream_bpp;
  56. int version;
  57. int yuy2; //use yuy2 instead of 422P
  58. int bgr32; //use bgr32 instead of bgr24
  59. int width, height;
  60. int flags;
  61. int context;
  62. int picture_number;
  63. int last_slice_end;
  64. uint8_t *temp[3];
  65. uint64_t stats[3][256];
  66. uint8_t len[3][256];
  67. uint32_t bits[3][256];
  68. uint32_t pix_bgr_map[1<<VLC_BITS];
  69. VLC vlc[6]; //Y,U,V,YY,YU,YV
  70. AVFrame picture;
  71. uint8_t *bitstream_buffer;
  72. unsigned int bitstream_buffer_size;
  73. DSPContext dsp;
  74. }HYuvContext;
  75. static const unsigned char classic_shift_luma[] = {
  76. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  77. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  78. 69,68, 0
  79. };
  80. static const unsigned char classic_shift_chroma[] = {
  81. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  82. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  83. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  84. };
  85. static const unsigned char classic_add_luma[256] = {
  86. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  87. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  88. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  89. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  90. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  91. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  92. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  93. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  94. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  95. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  96. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  97. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  98. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  99. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  100. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  101. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  102. };
  103. static const unsigned char classic_add_chroma[256] = {
  104. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  105. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  106. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  107. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  108. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  109. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  110. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  111. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  112. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  113. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  114. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  115. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  116. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  117. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  118. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  119. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  120. };
  121. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  122. int i;
  123. for(i=0; i<w-1; i++){
  124. acc+= src[i];
  125. dst[i]= acc;
  126. i++;
  127. acc+= src[i];
  128. dst[i]= acc;
  129. }
  130. for(; i<w; i++){
  131. acc+= src[i];
  132. dst[i]= acc;
  133. }
  134. return acc;
  135. }
  136. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  137. int i;
  138. int r,g,b;
  139. r= *red;
  140. g= *green;
  141. b= *blue;
  142. for(i=0; i<w; i++){
  143. b+= src[4*i+B];
  144. g+= src[4*i+G];
  145. r+= src[4*i+R];
  146. dst[4*i+B]= b;
  147. dst[4*i+G]= g;
  148. dst[4*i+R]= r;
  149. }
  150. *red= r;
  151. *green= g;
  152. *blue= b;
  153. }
  154. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  155. int i;
  156. if(w<32){
  157. for(i=0; i<w; i++){
  158. const int temp= src[i];
  159. dst[i]= temp - left;
  160. left= temp;
  161. }
  162. return left;
  163. }else{
  164. for(i=0; i<16; i++){
  165. const int temp= src[i];
  166. dst[i]= temp - left;
  167. left= temp;
  168. }
  169. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  170. return src[w-1];
  171. }
  172. }
  173. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  174. int i;
  175. int r,g,b;
  176. r= *red;
  177. g= *green;
  178. b= *blue;
  179. for(i=0; i<FFMIN(w,4); i++){
  180. const int rt= src[i*4+R];
  181. const int gt= src[i*4+G];
  182. const int bt= src[i*4+B];
  183. dst[i*4+R]= rt - r;
  184. dst[i*4+G]= gt - g;
  185. dst[i*4+B]= bt - b;
  186. r = rt;
  187. g = gt;
  188. b = bt;
  189. }
  190. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  191. *red= src[(w-1)*4+R];
  192. *green= src[(w-1)*4+G];
  193. *blue= src[(w-1)*4+B];
  194. }
  195. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  196. int i, val, repeat;
  197. for(i=0; i<256;){
  198. repeat= get_bits(gb, 3);
  199. val = get_bits(gb, 5);
  200. if(repeat==0)
  201. repeat= get_bits(gb, 8);
  202. //printf("%d %d\n", val, repeat);
  203. if(i+repeat > 256) {
  204. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  205. return -1;
  206. }
  207. while (repeat--)
  208. dst[i++] = val;
  209. }
  210. return 0;
  211. }
  212. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  213. int len, index;
  214. uint32_t bits=0;
  215. for(len=32; len>0; len--){
  216. for(index=0; index<256; index++){
  217. if(len_table[index]==len)
  218. dst[index]= bits++;
  219. }
  220. if(bits & 1){
  221. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  222. return -1;
  223. }
  224. bits >>= 1;
  225. }
  226. return 0;
  227. }
  228. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  229. typedef struct {
  230. uint64_t val;
  231. int name;
  232. } HeapElem;
  233. static void heap_sift(HeapElem *h, int root, int size)
  234. {
  235. while(root*2+1 < size) {
  236. int child = root*2+1;
  237. if(child < size-1 && h[child].val > h[child+1].val)
  238. child++;
  239. if(h[root].val > h[child].val) {
  240. FFSWAP(HeapElem, h[root], h[child]);
  241. root = child;
  242. } else
  243. break;
  244. }
  245. }
  246. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  247. HeapElem h[size];
  248. int up[2*size];
  249. int len[2*size];
  250. int offset, i, next;
  251. for(offset=1; ; offset<<=1){
  252. for(i=0; i<size; i++){
  253. h[i].name = i;
  254. h[i].val = (stats[i] << 8) + offset;
  255. }
  256. for(i=size/2-1; i>=0; i--)
  257. heap_sift(h, i, size);
  258. for(next=size; next<size*2-1; next++){
  259. // merge the two smallest entries, and put it back in the heap
  260. uint64_t min1v = h[0].val;
  261. up[h[0].name] = next;
  262. h[0].val = INT64_MAX;
  263. heap_sift(h, 0, size);
  264. up[h[0].name] = next;
  265. h[0].name = next;
  266. h[0].val += min1v;
  267. heap_sift(h, 0, size);
  268. }
  269. len[2*size-2] = 0;
  270. for(i=2*size-3; i>=size; i--)
  271. len[i] = len[up[i]] + 1;
  272. for(i=0; i<size; i++) {
  273. dst[i] = len[up[i]] + 1;
  274. if(dst[i] >= 32) break;
  275. }
  276. if(i==size) break;
  277. }
  278. }
  279. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  280. static void generate_joint_tables(HYuvContext *s){
  281. uint16_t symbols[1<<VLC_BITS];
  282. uint16_t bits[1<<VLC_BITS];
  283. uint8_t len[1<<VLC_BITS];
  284. if(s->bitstream_bpp < 24){
  285. int p, i, y, u;
  286. for(p=0; p<3; p++){
  287. for(i=y=0; y<256; y++){
  288. int len0 = s->len[0][y];
  289. int limit = VLC_BITS - len0;
  290. if(limit <= 0)
  291. continue;
  292. for(u=0; u<256; u++){
  293. int len1 = s->len[p][u];
  294. if(len1 > limit)
  295. continue;
  296. len[i] = len0 + len1;
  297. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  298. symbols[i] = (y<<8) + u;
  299. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  300. i++;
  301. }
  302. }
  303. free_vlc(&s->vlc[3+p]);
  304. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  305. }
  306. }else{
  307. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  308. int i, b, g, r, code;
  309. int p0 = s->decorrelate;
  310. int p1 = !s->decorrelate;
  311. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  312. // cover all the combinations that fit in 11 bits total, and it doesn't
  313. // matter if we miss a few rare codes.
  314. for(i=0, g=-16; g<16; g++){
  315. int len0 = s->len[p0][g&255];
  316. int limit0 = VLC_BITS - len0;
  317. if(limit0 < 2)
  318. continue;
  319. for(b=-16; b<16; b++){
  320. int len1 = s->len[p1][b&255];
  321. int limit1 = limit0 - len1;
  322. if(limit1 < 1)
  323. continue;
  324. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  325. for(r=-16; r<16; r++){
  326. int len2 = s->len[2][r&255];
  327. if(len2 > limit1)
  328. continue;
  329. len[i] = len0 + len1 + len2;
  330. bits[i] = (code << len2) + s->bits[2][r&255];
  331. if(s->decorrelate){
  332. map[i][G] = g;
  333. map[i][B] = g+b;
  334. map[i][R] = g+r;
  335. }else{
  336. map[i][B] = g;
  337. map[i][G] = b;
  338. map[i][R] = r;
  339. }
  340. i++;
  341. }
  342. }
  343. }
  344. free_vlc(&s->vlc[3]);
  345. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  346. }
  347. }
  348. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  349. GetBitContext gb;
  350. int i;
  351. init_get_bits(&gb, src, length*8);
  352. for(i=0; i<3; i++){
  353. if(read_len_table(s->len[i], &gb)<0)
  354. return -1;
  355. if(generate_bits_table(s->bits[i], s->len[i])<0){
  356. return -1;
  357. }
  358. #if 0
  359. for(j=0; j<256; j++){
  360. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  361. }
  362. #endif
  363. free_vlc(&s->vlc[i]);
  364. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  365. }
  366. generate_joint_tables(s);
  367. return (get_bits_count(&gb)+7)/8;
  368. }
  369. static int read_old_huffman_tables(HYuvContext *s){
  370. #if 1
  371. GetBitContext gb;
  372. int i;
  373. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  374. if(read_len_table(s->len[0], &gb)<0)
  375. return -1;
  376. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  377. if(read_len_table(s->len[1], &gb)<0)
  378. return -1;
  379. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  380. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  381. if(s->bitstream_bpp >= 24){
  382. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  383. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  384. }
  385. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  386. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  387. for(i=0; i<3; i++){
  388. free_vlc(&s->vlc[i]);
  389. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  390. }
  391. generate_joint_tables(s);
  392. return 0;
  393. #else
  394. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  395. return -1;
  396. #endif
  397. }
  398. static av_cold void alloc_temp(HYuvContext *s){
  399. int i;
  400. if(s->bitstream_bpp<24){
  401. for(i=0; i<3; i++){
  402. s->temp[i]= av_malloc(s->width + 16);
  403. }
  404. }else{
  405. for(i=0; i<2; i++){
  406. s->temp[i]= av_malloc(4*s->width + 16);
  407. }
  408. }
  409. }
  410. static av_cold int common_init(AVCodecContext *avctx){
  411. HYuvContext *s = avctx->priv_data;
  412. s->avctx= avctx;
  413. s->flags= avctx->flags;
  414. dsputil_init(&s->dsp, avctx);
  415. s->width= avctx->width;
  416. s->height= avctx->height;
  417. assert(s->width>0 && s->height>0);
  418. return 0;
  419. }
  420. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  421. static av_cold int decode_init(AVCodecContext *avctx)
  422. {
  423. HYuvContext *s = avctx->priv_data;
  424. common_init(avctx);
  425. memset(s->vlc, 0, 3*sizeof(VLC));
  426. avctx->coded_frame= &s->picture;
  427. s->interlaced= s->height > 288;
  428. s->bgr32=1;
  429. //if(avctx->extradata)
  430. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  431. if(avctx->extradata_size){
  432. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  433. s->version=1; // do such files exist at all?
  434. else
  435. s->version=2;
  436. }else
  437. s->version=0;
  438. if(s->version==2){
  439. int method, interlace;
  440. method= ((uint8_t*)avctx->extradata)[0];
  441. s->decorrelate= method&64 ? 1 : 0;
  442. s->predictor= method&63;
  443. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  444. if(s->bitstream_bpp==0)
  445. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  446. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  447. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  448. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  449. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  450. return -1;
  451. }else{
  452. switch(avctx->bits_per_coded_sample&7){
  453. case 1:
  454. s->predictor= LEFT;
  455. s->decorrelate= 0;
  456. break;
  457. case 2:
  458. s->predictor= LEFT;
  459. s->decorrelate= 1;
  460. break;
  461. case 3:
  462. s->predictor= PLANE;
  463. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  464. break;
  465. case 4:
  466. s->predictor= MEDIAN;
  467. s->decorrelate= 0;
  468. break;
  469. default:
  470. s->predictor= LEFT; //OLD
  471. s->decorrelate= 0;
  472. break;
  473. }
  474. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  475. s->context= 0;
  476. if(read_old_huffman_tables(s) < 0)
  477. return -1;
  478. }
  479. switch(s->bitstream_bpp){
  480. case 12:
  481. avctx->pix_fmt = PIX_FMT_YUV420P;
  482. break;
  483. case 16:
  484. if(s->yuy2){
  485. avctx->pix_fmt = PIX_FMT_YUYV422;
  486. }else{
  487. avctx->pix_fmt = PIX_FMT_YUV422P;
  488. }
  489. break;
  490. case 24:
  491. case 32:
  492. if(s->bgr32){
  493. avctx->pix_fmt = PIX_FMT_RGB32;
  494. }else{
  495. avctx->pix_fmt = PIX_FMT_BGR24;
  496. }
  497. break;
  498. default:
  499. assert(0);
  500. }
  501. alloc_temp(s);
  502. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  503. return 0;
  504. }
  505. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  506. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  507. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  508. int i;
  509. int index= 0;
  510. for(i=0; i<256;){
  511. int val= len[i];
  512. int repeat=0;
  513. for(; i<256 && len[i]==val && repeat<255; i++)
  514. repeat++;
  515. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  516. if(repeat>7){
  517. buf[index++]= val;
  518. buf[index++]= repeat;
  519. }else{
  520. buf[index++]= val | (repeat<<5);
  521. }
  522. }
  523. return index;
  524. }
  525. static av_cold int encode_init(AVCodecContext *avctx)
  526. {
  527. HYuvContext *s = avctx->priv_data;
  528. int i, j;
  529. common_init(avctx);
  530. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  531. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  532. s->version=2;
  533. avctx->coded_frame= &s->picture;
  534. switch(avctx->pix_fmt){
  535. case PIX_FMT_YUV420P:
  536. s->bitstream_bpp= 12;
  537. break;
  538. case PIX_FMT_YUV422P:
  539. s->bitstream_bpp= 16;
  540. break;
  541. case PIX_FMT_RGB32:
  542. s->bitstream_bpp= 24;
  543. break;
  544. default:
  545. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  546. return -1;
  547. }
  548. avctx->bits_per_coded_sample= s->bitstream_bpp;
  549. s->decorrelate= s->bitstream_bpp >= 24;
  550. s->predictor= avctx->prediction_method;
  551. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  552. if(avctx->context_model==1){
  553. s->context= avctx->context_model;
  554. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  555. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  556. return -1;
  557. }
  558. }else s->context= 0;
  559. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  560. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  561. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  562. return -1;
  563. }
  564. if(avctx->context_model){
  565. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  566. return -1;
  567. }
  568. if(s->interlaced != ( s->height > 288 ))
  569. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  570. }
  571. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  572. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  573. return -1;
  574. }
  575. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  576. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  577. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  578. if(s->context)
  579. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  580. ((uint8_t*)avctx->extradata)[3]= 0;
  581. s->avctx->extradata_size= 4;
  582. if(avctx->stats_in){
  583. char *p= avctx->stats_in;
  584. for(i=0; i<3; i++)
  585. for(j=0; j<256; j++)
  586. s->stats[i][j]= 1;
  587. for(;;){
  588. for(i=0; i<3; i++){
  589. char *next;
  590. for(j=0; j<256; j++){
  591. s->stats[i][j]+= strtol(p, &next, 0);
  592. if(next==p) return -1;
  593. p=next;
  594. }
  595. }
  596. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  597. }
  598. }else{
  599. for(i=0; i<3; i++)
  600. for(j=0; j<256; j++){
  601. int d= FFMIN(j, 256-j);
  602. s->stats[i][j]= 100000000/(d+1);
  603. }
  604. }
  605. for(i=0; i<3; i++){
  606. generate_len_table(s->len[i], s->stats[i], 256);
  607. if(generate_bits_table(s->bits[i], s->len[i])<0){
  608. return -1;
  609. }
  610. s->avctx->extradata_size+=
  611. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  612. }
  613. if(s->context){
  614. for(i=0; i<3; i++){
  615. int pels = s->width*s->height / (i?40:10);
  616. for(j=0; j<256; j++){
  617. int d= FFMIN(j, 256-j);
  618. s->stats[i][j]= pels/(d+1);
  619. }
  620. }
  621. }else{
  622. for(i=0; i<3; i++)
  623. for(j=0; j<256; j++)
  624. s->stats[i][j]= 0;
  625. }
  626. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  627. alloc_temp(s);
  628. s->picture_number=0;
  629. return 0;
  630. }
  631. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  632. /* TODO instead of restarting the read when the code isn't in the first level
  633. * of the joint table, jump into the 2nd level of the individual table. */
  634. #define READ_2PIX(dst0, dst1, plane1){\
  635. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  636. if(code != 0xffff){\
  637. dst0 = code>>8;\
  638. dst1 = code;\
  639. }else{\
  640. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  641. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  642. }\
  643. }
  644. static void decode_422_bitstream(HYuvContext *s, int count){
  645. int i;
  646. count/=2;
  647. if(count >= (s->gb.size_in_bits - get_bits_count(&s->gb))/(31*4)){
  648. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  649. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  650. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  651. }
  652. }else{
  653. for(i=0; i<count; i++){
  654. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  655. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  656. }
  657. }
  658. }
  659. static void decode_gray_bitstream(HYuvContext *s, int count){
  660. int i;
  661. count/=2;
  662. if(count >= (s->gb.size_in_bits - get_bits_count(&s->gb))/(31*2)){
  663. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  664. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  665. }
  666. }else{
  667. for(i=0; i<count; i++){
  668. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  669. }
  670. }
  671. }
  672. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  673. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  674. int i;
  675. const uint8_t *y = s->temp[0] + offset;
  676. const uint8_t *u = s->temp[1] + offset/2;
  677. const uint8_t *v = s->temp[2] + offset/2;
  678. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  679. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  680. return -1;
  681. }
  682. #define LOAD4\
  683. int y0 = y[2*i];\
  684. int y1 = y[2*i+1];\
  685. int u0 = u[i];\
  686. int v0 = v[i];
  687. count/=2;
  688. if(s->flags&CODEC_FLAG_PASS1){
  689. for(i=0; i<count; i++){
  690. LOAD4;
  691. s->stats[0][y0]++;
  692. s->stats[1][u0]++;
  693. s->stats[0][y1]++;
  694. s->stats[2][v0]++;
  695. }
  696. }
  697. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  698. return 0;
  699. if(s->context){
  700. for(i=0; i<count; i++){
  701. LOAD4;
  702. s->stats[0][y0]++;
  703. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  704. s->stats[1][u0]++;
  705. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  706. s->stats[0][y1]++;
  707. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  708. s->stats[2][v0]++;
  709. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  710. }
  711. }else{
  712. for(i=0; i<count; i++){
  713. LOAD4;
  714. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  715. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  716. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  717. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  718. }
  719. }
  720. return 0;
  721. }
  722. static int encode_gray_bitstream(HYuvContext *s, int count){
  723. int i;
  724. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  725. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  726. return -1;
  727. }
  728. #define LOAD2\
  729. int y0 = s->temp[0][2*i];\
  730. int y1 = s->temp[0][2*i+1];
  731. #define STAT2\
  732. s->stats[0][y0]++;\
  733. s->stats[0][y1]++;
  734. #define WRITE2\
  735. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  736. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  737. count/=2;
  738. if(s->flags&CODEC_FLAG_PASS1){
  739. for(i=0; i<count; i++){
  740. LOAD2;
  741. STAT2;
  742. }
  743. }
  744. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  745. return 0;
  746. if(s->context){
  747. for(i=0; i<count; i++){
  748. LOAD2;
  749. STAT2;
  750. WRITE2;
  751. }
  752. }else{
  753. for(i=0; i<count; i++){
  754. LOAD2;
  755. WRITE2;
  756. }
  757. }
  758. return 0;
  759. }
  760. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  761. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  762. int i;
  763. for(i=0; i<count; i++){
  764. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  765. if(code != -1){
  766. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  767. }else if(decorrelate){
  768. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  769. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  770. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  771. }else{
  772. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  773. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  774. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  775. }
  776. if(alpha)
  777. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  778. }
  779. }
  780. static void decode_bgr_bitstream(HYuvContext *s, int count){
  781. if(s->decorrelate){
  782. if(s->bitstream_bpp==24)
  783. decode_bgr_1(s, count, 1, 0);
  784. else
  785. decode_bgr_1(s, count, 1, 1);
  786. }else{
  787. if(s->bitstream_bpp==24)
  788. decode_bgr_1(s, count, 0, 0);
  789. else
  790. decode_bgr_1(s, count, 0, 1);
  791. }
  792. }
  793. static int encode_bgr_bitstream(HYuvContext *s, int count){
  794. int i;
  795. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  796. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  797. return -1;
  798. }
  799. #define LOAD3\
  800. int g= s->temp[0][4*i+G];\
  801. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  802. int r= (s->temp[0][4*i+R] - g) & 0xff;
  803. #define STAT3\
  804. s->stats[0][b]++;\
  805. s->stats[1][g]++;\
  806. s->stats[2][r]++;
  807. #define WRITE3\
  808. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  809. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  810. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  811. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  812. for(i=0; i<count; i++){
  813. LOAD3;
  814. STAT3;
  815. }
  816. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  817. for(i=0; i<count; i++){
  818. LOAD3;
  819. STAT3;
  820. WRITE3;
  821. }
  822. }else{
  823. for(i=0; i<count; i++){
  824. LOAD3;
  825. WRITE3;
  826. }
  827. }
  828. return 0;
  829. }
  830. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  831. static void draw_slice(HYuvContext *s, int y){
  832. int h, cy;
  833. int offset[4];
  834. if(s->avctx->draw_horiz_band==NULL)
  835. return;
  836. h= y - s->last_slice_end;
  837. y -= h;
  838. if(s->bitstream_bpp==12){
  839. cy= y>>1;
  840. }else{
  841. cy= y;
  842. }
  843. offset[0] = s->picture.linesize[0]*y;
  844. offset[1] = s->picture.linesize[1]*cy;
  845. offset[2] = s->picture.linesize[2]*cy;
  846. offset[3] = 0;
  847. emms_c();
  848. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  849. s->last_slice_end= y + h;
  850. }
  851. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  852. const uint8_t *buf = avpkt->data;
  853. int buf_size = avpkt->size;
  854. HYuvContext *s = avctx->priv_data;
  855. const int width= s->width;
  856. const int width2= s->width>>1;
  857. const int height= s->height;
  858. int fake_ystride, fake_ustride, fake_vstride;
  859. AVFrame * const p= &s->picture;
  860. int table_size= 0;
  861. AVFrame *picture = data;
  862. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  863. if (!s->bitstream_buffer)
  864. return AVERROR(ENOMEM);
  865. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  866. if(p->data[0])
  867. avctx->release_buffer(avctx, p);
  868. p->reference= 0;
  869. if(avctx->get_buffer(avctx, p) < 0){
  870. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  871. return -1;
  872. }
  873. if(s->context){
  874. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  875. if(table_size < 0)
  876. return -1;
  877. }
  878. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  879. return -1;
  880. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  881. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  882. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  883. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  884. s->last_slice_end= 0;
  885. if(s->bitstream_bpp<24){
  886. int y, cy;
  887. int lefty, leftu, leftv;
  888. int lefttopy, lefttopu, lefttopv;
  889. if(s->yuy2){
  890. p->data[0][3]= get_bits(&s->gb, 8);
  891. p->data[0][2]= get_bits(&s->gb, 8);
  892. p->data[0][1]= get_bits(&s->gb, 8);
  893. p->data[0][0]= get_bits(&s->gb, 8);
  894. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  895. return -1;
  896. }else{
  897. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  898. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  899. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  900. p->data[0][0]= get_bits(&s->gb, 8);
  901. switch(s->predictor){
  902. case LEFT:
  903. case PLANE:
  904. decode_422_bitstream(s, width-2);
  905. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  906. if(!(s->flags&CODEC_FLAG_GRAY)){
  907. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  908. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  909. }
  910. for(cy=y=1; y<s->height; y++,cy++){
  911. uint8_t *ydst, *udst, *vdst;
  912. if(s->bitstream_bpp==12){
  913. decode_gray_bitstream(s, width);
  914. ydst= p->data[0] + p->linesize[0]*y;
  915. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  916. if(s->predictor == PLANE){
  917. if(y>s->interlaced)
  918. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  919. }
  920. y++;
  921. if(y>=s->height) break;
  922. }
  923. draw_slice(s, y);
  924. ydst= p->data[0] + p->linesize[0]*y;
  925. udst= p->data[1] + p->linesize[1]*cy;
  926. vdst= p->data[2] + p->linesize[2]*cy;
  927. decode_422_bitstream(s, width);
  928. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  929. if(!(s->flags&CODEC_FLAG_GRAY)){
  930. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  931. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  932. }
  933. if(s->predictor == PLANE){
  934. if(cy>s->interlaced){
  935. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  936. if(!(s->flags&CODEC_FLAG_GRAY)){
  937. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  938. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  939. }
  940. }
  941. }
  942. }
  943. draw_slice(s, height);
  944. break;
  945. case MEDIAN:
  946. /* first line except first 2 pixels is left predicted */
  947. decode_422_bitstream(s, width-2);
  948. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  949. if(!(s->flags&CODEC_FLAG_GRAY)){
  950. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  951. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  952. }
  953. cy=y=1;
  954. /* second line is left predicted for interlaced case */
  955. if(s->interlaced){
  956. decode_422_bitstream(s, width);
  957. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  958. if(!(s->flags&CODEC_FLAG_GRAY)){
  959. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  960. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  961. }
  962. y++; cy++;
  963. }
  964. /* next 4 pixels are left predicted too */
  965. decode_422_bitstream(s, 4);
  966. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  967. if(!(s->flags&CODEC_FLAG_GRAY)){
  968. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  969. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  970. }
  971. /* next line except the first 4 pixels is median predicted */
  972. lefttopy= p->data[0][3];
  973. decode_422_bitstream(s, width-4);
  974. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  975. if(!(s->flags&CODEC_FLAG_GRAY)){
  976. lefttopu= p->data[1][1];
  977. lefttopv= p->data[2][1];
  978. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  979. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  980. }
  981. y++; cy++;
  982. for(; y<height; y++,cy++){
  983. uint8_t *ydst, *udst, *vdst;
  984. if(s->bitstream_bpp==12){
  985. while(2*cy > y){
  986. decode_gray_bitstream(s, width);
  987. ydst= p->data[0] + p->linesize[0]*y;
  988. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  989. y++;
  990. }
  991. if(y>=height) break;
  992. }
  993. draw_slice(s, y);
  994. decode_422_bitstream(s, width);
  995. ydst= p->data[0] + p->linesize[0]*y;
  996. udst= p->data[1] + p->linesize[1]*cy;
  997. vdst= p->data[2] + p->linesize[2]*cy;
  998. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  999. if(!(s->flags&CODEC_FLAG_GRAY)){
  1000. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1001. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1002. }
  1003. }
  1004. draw_slice(s, height);
  1005. break;
  1006. }
  1007. }
  1008. }else{
  1009. int y;
  1010. int leftr, leftg, leftb;
  1011. const int last_line= (height-1)*p->linesize[0];
  1012. if(s->bitstream_bpp==32){
  1013. skip_bits(&s->gb, 8);
  1014. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1015. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1016. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1017. }else{
  1018. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1019. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1020. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1021. skip_bits(&s->gb, 8);
  1022. }
  1023. if(s->bgr32){
  1024. switch(s->predictor){
  1025. case LEFT:
  1026. case PLANE:
  1027. decode_bgr_bitstream(s, width-1);
  1028. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  1029. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1030. decode_bgr_bitstream(s, width);
  1031. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  1032. if(s->predictor == PLANE){
  1033. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1034. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1035. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1036. }
  1037. }
  1038. }
  1039. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1040. break;
  1041. default:
  1042. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1043. }
  1044. }else{
  1045. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1046. return -1;
  1047. }
  1048. }
  1049. emms_c();
  1050. *picture= *p;
  1051. *data_size = sizeof(AVFrame);
  1052. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1053. }
  1054. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1055. static int common_end(HYuvContext *s){
  1056. int i;
  1057. for(i=0; i<3; i++){
  1058. av_freep(&s->temp[i]);
  1059. }
  1060. return 0;
  1061. }
  1062. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1063. static av_cold int decode_end(AVCodecContext *avctx)
  1064. {
  1065. HYuvContext *s = avctx->priv_data;
  1066. int i;
  1067. common_end(s);
  1068. av_freep(&s->bitstream_buffer);
  1069. for(i=0; i<6; i++){
  1070. free_vlc(&s->vlc[i]);
  1071. }
  1072. return 0;
  1073. }
  1074. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1075. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1076. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1077. HYuvContext *s = avctx->priv_data;
  1078. AVFrame *pict = data;
  1079. const int width= s->width;
  1080. const int width2= s->width>>1;
  1081. const int height= s->height;
  1082. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1083. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1084. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1085. AVFrame * const p= &s->picture;
  1086. int i, j, size=0;
  1087. *p = *pict;
  1088. p->pict_type= FF_I_TYPE;
  1089. p->key_frame= 1;
  1090. if(s->context){
  1091. for(i=0; i<3; i++){
  1092. generate_len_table(s->len[i], s->stats[i], 256);
  1093. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1094. return -1;
  1095. size+= store_table(s, s->len[i], &buf[size]);
  1096. }
  1097. for(i=0; i<3; i++)
  1098. for(j=0; j<256; j++)
  1099. s->stats[i][j] >>= 1;
  1100. }
  1101. init_put_bits(&s->pb, buf+size, buf_size-size);
  1102. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1103. int lefty, leftu, leftv, y, cy;
  1104. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1105. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1106. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1107. put_bits(&s->pb, 8, p->data[0][0]);
  1108. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1109. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1110. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1111. encode_422_bitstream(s, 2, width-2);
  1112. if(s->predictor==MEDIAN){
  1113. int lefttopy, lefttopu, lefttopv;
  1114. cy=y=1;
  1115. if(s->interlaced){
  1116. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1117. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1118. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1119. encode_422_bitstream(s, 0, width);
  1120. y++; cy++;
  1121. }
  1122. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1123. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1124. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1125. encode_422_bitstream(s, 0, 4);
  1126. lefttopy= p->data[0][3];
  1127. lefttopu= p->data[1][1];
  1128. lefttopv= p->data[2][1];
  1129. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1130. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1131. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1132. encode_422_bitstream(s, 0, width-4);
  1133. y++; cy++;
  1134. for(; y<height; y++,cy++){
  1135. uint8_t *ydst, *udst, *vdst;
  1136. if(s->bitstream_bpp==12){
  1137. while(2*cy > y){
  1138. ydst= p->data[0] + p->linesize[0]*y;
  1139. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1140. encode_gray_bitstream(s, width);
  1141. y++;
  1142. }
  1143. if(y>=height) break;
  1144. }
  1145. ydst= p->data[0] + p->linesize[0]*y;
  1146. udst= p->data[1] + p->linesize[1]*cy;
  1147. vdst= p->data[2] + p->linesize[2]*cy;
  1148. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1149. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1150. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1151. encode_422_bitstream(s, 0, width);
  1152. }
  1153. }else{
  1154. for(cy=y=1; y<height; y++,cy++){
  1155. uint8_t *ydst, *udst, *vdst;
  1156. /* encode a luma only line & y++ */
  1157. if(s->bitstream_bpp==12){
  1158. ydst= p->data[0] + p->linesize[0]*y;
  1159. if(s->predictor == PLANE && s->interlaced < y){
  1160. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1161. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1162. }else{
  1163. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1164. }
  1165. encode_gray_bitstream(s, width);
  1166. y++;
  1167. if(y>=height) break;
  1168. }
  1169. ydst= p->data[0] + p->linesize[0]*y;
  1170. udst= p->data[1] + p->linesize[1]*cy;
  1171. vdst= p->data[2] + p->linesize[2]*cy;
  1172. if(s->predictor == PLANE && s->interlaced < cy){
  1173. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1174. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1175. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1176. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1177. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1178. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1179. }else{
  1180. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1181. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1182. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1183. }
  1184. encode_422_bitstream(s, 0, width);
  1185. }
  1186. }
  1187. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1188. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1189. const int stride = -p->linesize[0];
  1190. const int fake_stride = -fake_ystride;
  1191. int y;
  1192. int leftr, leftg, leftb;
  1193. put_bits(&s->pb, 8, leftr= data[R]);
  1194. put_bits(&s->pb, 8, leftg= data[G]);
  1195. put_bits(&s->pb, 8, leftb= data[B]);
  1196. put_bits(&s->pb, 8, 0);
  1197. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1198. encode_bgr_bitstream(s, width-1);
  1199. for(y=1; y<s->height; y++){
  1200. uint8_t *dst = data + y*stride;
  1201. if(s->predictor == PLANE && s->interlaced < y){
  1202. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1203. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1204. }else{
  1205. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1206. }
  1207. encode_bgr_bitstream(s, width);
  1208. }
  1209. }else{
  1210. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1211. }
  1212. emms_c();
  1213. size+= (put_bits_count(&s->pb)+31)/8;
  1214. put_bits(&s->pb, 16, 0);
  1215. put_bits(&s->pb, 15, 0);
  1216. size/= 4;
  1217. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1218. int j;
  1219. char *p= avctx->stats_out;
  1220. char *end= p + 1024*30;
  1221. for(i=0; i<3; i++){
  1222. for(j=0; j<256; j++){
  1223. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1224. p+= strlen(p);
  1225. s->stats[i][j]= 0;
  1226. }
  1227. snprintf(p, end-p, "\n");
  1228. p++;
  1229. }
  1230. } else
  1231. avctx->stats_out[0] = '\0';
  1232. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1233. flush_put_bits(&s->pb);
  1234. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1235. }
  1236. s->picture_number++;
  1237. return size*4;
  1238. }
  1239. static av_cold int encode_end(AVCodecContext *avctx)
  1240. {
  1241. HYuvContext *s = avctx->priv_data;
  1242. common_end(s);
  1243. av_freep(&avctx->extradata);
  1244. av_freep(&avctx->stats_out);
  1245. return 0;
  1246. }
  1247. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1248. #if CONFIG_HUFFYUV_DECODER
  1249. AVCodec huffyuv_decoder = {
  1250. "huffyuv",
  1251. CODEC_TYPE_VIDEO,
  1252. CODEC_ID_HUFFYUV,
  1253. sizeof(HYuvContext),
  1254. decode_init,
  1255. NULL,
  1256. decode_end,
  1257. decode_frame,
  1258. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1259. NULL,
  1260. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1261. };
  1262. #endif
  1263. #if CONFIG_FFVHUFF_DECODER
  1264. AVCodec ffvhuff_decoder = {
  1265. "ffvhuff",
  1266. CODEC_TYPE_VIDEO,
  1267. CODEC_ID_FFVHUFF,
  1268. sizeof(HYuvContext),
  1269. decode_init,
  1270. NULL,
  1271. decode_end,
  1272. decode_frame,
  1273. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1274. NULL,
  1275. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1276. };
  1277. #endif
  1278. #if CONFIG_HUFFYUV_ENCODER
  1279. AVCodec huffyuv_encoder = {
  1280. "huffyuv",
  1281. CODEC_TYPE_VIDEO,
  1282. CODEC_ID_HUFFYUV,
  1283. sizeof(HYuvContext),
  1284. encode_init,
  1285. encode_frame,
  1286. encode_end,
  1287. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1288. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1289. };
  1290. #endif
  1291. #if CONFIG_FFVHUFF_ENCODER
  1292. AVCodec ffvhuff_encoder = {
  1293. "ffvhuff",
  1294. CODEC_TYPE_VIDEO,
  1295. CODEC_ID_FFVHUFF,
  1296. sizeof(HYuvContext),
  1297. encode_init,
  1298. encode_frame,
  1299. encode_end,
  1300. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1301. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1302. };
  1303. #endif