|
- /*
- * AAC encoder psychoacoustic model
- * Copyright (C) 2008 Konstantin Shishkov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file libavcodec/aacpsy.c
- * AAC encoder psychoacoustic model
- */
-
- #include "avcodec.h"
- #include "aactab.h"
- #include "psymodel.h"
-
- /***********************************
- * TODOs:
- * thresholds linearization after their modifications for attaining given bitrate
- * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
- * control quality for quality-based output
- **********************************/
-
- /**
- * constants for 3GPP AAC psychoacoustic model
- * @{
- */
- #define PSY_3GPP_SPREAD_LOW 1.5f // spreading factor for ascending threshold spreading (15 dB/Bark)
- #define PSY_3GPP_SPREAD_HI 3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
-
- #define PSY_3GPP_RPEMIN 0.01f
- #define PSY_3GPP_RPELEV 2.0f
- /**
- * @}
- */
-
- /**
- * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
- */
- typedef struct Psy3gppBand{
- float energy; ///< band energy
- float ffac; ///< form factor
- float thr; ///< energy threshold
- float min_snr; ///< minimal SNR
- float thr_quiet; ///< threshold in quiet
- }Psy3gppBand;
-
- /**
- * single/pair channel context for psychoacoustic model
- */
- typedef struct Psy3gppChannel{
- Psy3gppBand band[128]; ///< bands information
- Psy3gppBand prev_band[128]; ///< bands information from the previous frame
-
- float win_energy; ///< sliding average of channel energy
- float iir_state[2]; ///< hi-pass IIR filter state
- uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
- enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
- }Psy3gppChannel;
-
- /**
- * psychoacoustic model frame type-dependent coefficients
- */
- typedef struct Psy3gppCoeffs{
- float ath [64]; ///< absolute threshold of hearing per bands
- float barks [64]; ///< Bark value for each spectral band in long frame
- float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame
- float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame
- }Psy3gppCoeffs;
-
- /**
- * 3GPP TS26.403-inspired psychoacoustic model specific data
- */
- typedef struct Psy3gppContext{
- Psy3gppCoeffs psy_coef[2];
- Psy3gppChannel *ch;
- }Psy3gppContext;
-
- /**
- * Calculate Bark value for given line.
- */
- static av_cold float calc_bark(float f)
- {
- return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
- }
-
- #define ATH_ADD 4
- /**
- * Calculate ATH value for given frequency.
- * Borrowed from Lame.
- */
- static av_cold float ath(float f, float add)
- {
- f /= 1000.0f;
- return 3.64 * pow(f, -0.8)
- - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
- + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
- + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
- }
-
- static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
- Psy3gppContext *pctx;
- float barks[1024];
- int i, j, g, start;
- float prev, minscale, minath;
-
- ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
- pctx = (Psy3gppContext*) ctx->model_priv_data;
-
- for (i = 0; i < 1024; i++)
- barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
- minath = ath(3410, ATH_ADD);
- for (j = 0; j < 2; j++) {
- Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
- i = 0;
- prev = 0.0;
- for (g = 0; g < ctx->num_bands[j]; g++) {
- i += ctx->bands[j][g];
- coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
- prev = barks[i - 1];
- }
- for (g = 0; g < ctx->num_bands[j] - 1; g++) {
- coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
- coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
- }
- start = 0;
- for (g = 0; g < ctx->num_bands[j]; g++) {
- minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
- for (i = 1; i < ctx->bands[j][g]; i++)
- minscale = FFMIN(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
- coeffs->ath[g] = minscale - minath;
- start += ctx->bands[j][g];
- }
- }
-
- pctx->ch = av_mallocz(sizeof(Psy3gppChannel) * ctx->avctx->channels);
- return 0;
- }
-
- /**
- * IIR filter used in block switching decision
- */
- static float iir_filter(int in, float state[2])
- {
- float ret;
-
- ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
- state[0] = in;
- state[1] = ret;
- return ret;
- }
-
- /**
- * window grouping information stored as bits (0 - new group, 1 - group continues)
- */
- static const uint8_t window_grouping[9] = {
- 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
- };
-
- /**
- * Tell encoder which window types to use.
- * @see 3GPP TS26.403 5.4.1 "Blockswitching"
- */
- static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
- const int16_t *audio, const int16_t *la,
- int channel, int prev_type)
- {
- int i, j;
- int br = ctx->avctx->bit_rate / ctx->avctx->channels;
- int attack_ratio = br <= 16000 ? 18 : 10;
- Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
- Psy3gppChannel *pch = &pctx->ch[channel];
- uint8_t grouping = 0;
- FFPsyWindowInfo wi;
-
- memset(&wi, 0, sizeof(wi));
- if (la) {
- float s[8], v;
- int switch_to_eight = 0;
- float sum = 0.0, sum2 = 0.0;
- int attack_n = 0;
- for (i = 0; i < 8; i++) {
- for (j = 0; j < 128; j++) {
- v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
- sum += v*v;
- }
- s[i] = sum;
- sum2 += sum;
- }
- for (i = 0; i < 8; i++) {
- if (s[i] > pch->win_energy * attack_ratio) {
- attack_n = i + 1;
- switch_to_eight = 1;
- break;
- }
- }
- pch->win_energy = pch->win_energy*7/8 + sum2/64;
-
- wi.window_type[1] = prev_type;
- switch (prev_type) {
- case ONLY_LONG_SEQUENCE:
- wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
- break;
- case LONG_START_SEQUENCE:
- wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
- grouping = pch->next_grouping;
- break;
- case LONG_STOP_SEQUENCE:
- wi.window_type[0] = ONLY_LONG_SEQUENCE;
- break;
- case EIGHT_SHORT_SEQUENCE:
- wi.window_type[0] = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- grouping = switch_to_eight ? pch->next_grouping : 0;
- break;
- }
- pch->next_grouping = window_grouping[attack_n];
- } else {
- for (i = 0; i < 3; i++)
- wi.window_type[i] = prev_type;
- grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
- }
-
- wi.window_shape = 1;
- if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
- wi.num_windows = 1;
- wi.grouping[0] = 1;
- } else {
- int lastgrp = 0;
- wi.num_windows = 8;
- for (i = 0; i < 8; i++) {
- if (!((grouping >> i) & 1))
- lastgrp = i;
- wi.grouping[lastgrp]++;
- }
- }
-
- return wi;
- }
-
- /**
- * Calculate band thresholds as suggested in 3GPP TS26.403
- */
- static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
- const float *coefs, FFPsyWindowInfo *wi)
- {
- Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
- Psy3gppChannel *pch = &pctx->ch[channel];
- int start = 0;
- int i, w, g;
- const int num_bands = ctx->num_bands[wi->num_windows == 8];
- const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
- Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
-
- //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
- for (w = 0; w < wi->num_windows*16; w += 16) {
- for (g = 0; g < num_bands; g++) {
- Psy3gppBand *band = &pch->band[w+g];
- band->energy = 0.0f;
- for (i = 0; i < band_sizes[g]; i++)
- band->energy += coefs[start+i] * coefs[start+i];
- band->energy *= 1.0f / (512*512);
- band->thr = band->energy * 0.001258925f;
- start += band_sizes[g];
-
- ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
- }
- }
- //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
- for (w = 0; w < wi->num_windows*16; w += 16) {
- Psy3gppBand *band = &pch->band[w];
- for (g = 1; g < num_bands; g++)
- band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
- for (g = num_bands - 2; g >= 0; g--)
- band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
- for (g = 0; g < num_bands; g++) {
- band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
- if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE)
- band[g].thr_quiet = FFMAX(PSY_3GPP_RPEMIN*band[g].thr_quiet,
- FFMIN(band[g].thr_quiet,
- PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
- band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25);
-
- ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
- }
- }
- memcpy(pch->prev_band, pch->band, sizeof(pch->band));
- }
-
- static av_cold void psy_3gpp_end(FFPsyContext *apc)
- {
- Psy3gppContext *pctx = (Psy3gppContext*) apc->model_priv_data;
- av_freep(&pctx->ch);
- av_freep(&apc->model_priv_data);
- }
-
-
- const FFPsyModel ff_aac_psy_model =
- {
- .name = "3GPP TS 26.403-inspired model",
- .init = psy_3gpp_init,
- .window = psy_3gpp_window,
- .analyze = psy_3gpp_analyze,
- .end = psy_3gpp_end,
- };
|