You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

771 lines
29KB

  1. /*
  2. * Copyright (c) 2012 Clément Bœsch
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. */
  20. /**
  21. * @file
  22. * EBU R.128 implementation
  23. * @see http://tech.ebu.ch/loudness
  24. * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
  25. * @todo True Peak
  26. * @todo implement start/stop/reset through filter command injection
  27. * @todo support other frequencies to avoid resampling
  28. */
  29. #include <math.h>
  30. #include "libavutil/avassert.h"
  31. #include "libavutil/avstring.h"
  32. #include "libavutil/channel_layout.h"
  33. #include "libavutil/xga_font_data.h"
  34. #include "libavutil/opt.h"
  35. #include "libavutil/timestamp.h"
  36. #include "audio.h"
  37. #include "avfilter.h"
  38. #include "formats.h"
  39. #include "internal.h"
  40. #define MAX_CHANNELS 63
  41. /* pre-filter coefficients */
  42. #define PRE_B0 1.53512485958697
  43. #define PRE_B1 -2.69169618940638
  44. #define PRE_B2 1.19839281085285
  45. #define PRE_A1 -1.69065929318241
  46. #define PRE_A2 0.73248077421585
  47. /* RLB-filter coefficients */
  48. #define RLB_B0 1.0
  49. #define RLB_B1 -2.0
  50. #define RLB_B2 1.0
  51. #define RLB_A1 -1.99004745483398
  52. #define RLB_A2 0.99007225036621
  53. #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
  54. #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
  55. #define HIST_GRAIN 100 ///< defines histogram precision
  56. #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
  57. /**
  58. * An histogram is an array of HIST_SIZE hist_entry storing all the energies
  59. * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
  60. * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
  61. * This fixed-size system avoids the need of a list of energies growing
  62. * infinitely over the time and is thus more scalable.
  63. */
  64. struct hist_entry {
  65. int count; ///< how many times the corresponding value occurred
  66. double energy; ///< E = 10^((L + 0.691) / 10)
  67. double loudness; ///< L = -0.691 + 10 * log10(E)
  68. };
  69. struct integrator {
  70. double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
  71. int cache_pos; ///< focus on the last added bin in the cache array
  72. double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
  73. int filled; ///< 1 if the cache is completely filled, 0 otherwise
  74. double rel_threshold; ///< relative threshold
  75. double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
  76. int nb_kept_powers; ///< number of sum above absolute threshold
  77. struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
  78. };
  79. struct rect { int x, y, w, h; };
  80. typedef struct {
  81. const AVClass *class; ///< AVClass context for log and options purpose
  82. /* video */
  83. int do_video; ///< 1 if video output enabled, 0 otherwise
  84. int w, h; ///< size of the video output
  85. struct rect text; ///< rectangle for the LU legend on the left
  86. struct rect graph; ///< rectangle for the main graph in the center
  87. struct rect gauge; ///< rectangle for the gauge on the right
  88. AVFrame *outpicref; ///< output picture reference, updated regularly
  89. int meter; ///< select a EBU mode between +9 and +18
  90. int scale_range; ///< the range of LU values according to the meter
  91. int y_zero_lu; ///< the y value (pixel position) for 0 LU
  92. int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
  93. /* audio */
  94. int nb_channels; ///< number of channels in the input
  95. double *ch_weighting; ///< channel weighting mapping
  96. int sample_count; ///< sample count used for refresh frequency, reset at refresh
  97. /* Filter caches.
  98. * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
  99. double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
  100. double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
  101. double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
  102. #define I400_BINS (48000 * 4 / 10)
  103. #define I3000_BINS (48000 * 3)
  104. struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
  105. struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
  106. /* I and LRA specific */
  107. double integrated_loudness; ///< integrated loudness in LUFS (I)
  108. double loudness_range; ///< loudness range in LU (LRA)
  109. double lra_low, lra_high; ///< low and high LRA values
  110. /* misc */
  111. int loglevel; ///< log level for frame logging
  112. } EBUR128Context;
  113. #define OFFSET(x) offsetof(EBUR128Context, x)
  114. #define A AV_OPT_FLAG_AUDIO_PARAM
  115. #define V AV_OPT_FLAG_VIDEO_PARAM
  116. #define F AV_OPT_FLAG_FILTERING_PARAM
  117. static const AVOption ebur128_options[] = {
  118. { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
  119. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
  120. { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
  121. { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
  122. { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
  123. { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
  124. { NULL },
  125. };
  126. AVFILTER_DEFINE_CLASS(ebur128);
  127. static const uint8_t graph_colors[] = {
  128. 0xdd, 0x66, 0x66, // value above 0LU non reached
  129. 0x66, 0x66, 0xdd, // value below 0LU non reached
  130. 0x96, 0x33, 0x33, // value above 0LU reached
  131. 0x33, 0x33, 0x96, // value below 0LU reached
  132. 0xdd, 0x96, 0x96, // value above 0LU line non reached
  133. 0x96, 0x96, 0xdd, // value below 0LU line non reached
  134. 0xdd, 0x33, 0x33, // value above 0LU line reached
  135. 0x33, 0x33, 0xdd, // value below 0LU line reached
  136. };
  137. static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
  138. {
  139. const int below0 = y > ebur128->y_zero_lu;
  140. const int reached = y >= v;
  141. const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
  142. const int colorid = 4*line + 2*reached + below0;
  143. return graph_colors + 3*colorid;
  144. }
  145. static inline int lu_to_y(const EBUR128Context *ebur128, double v)
  146. {
  147. v += 2 * ebur128->meter; // make it in range [0;...]
  148. v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
  149. v = ebur128->scale_range - v; // invert value (y=0 is on top)
  150. return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
  151. }
  152. #define FONT8 0
  153. #define FONT16 1
  154. static const uint8_t font_colors[] = {
  155. 0xdd, 0xdd, 0x00,
  156. 0x00, 0x96, 0x96,
  157. };
  158. static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
  159. {
  160. int i;
  161. char buf[128] = {0};
  162. const uint8_t *font;
  163. int font_height;
  164. va_list vl;
  165. if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
  166. else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
  167. else return;
  168. va_start(vl, fmt);
  169. vsnprintf(buf, sizeof(buf), fmt, vl);
  170. va_end(vl);
  171. for (i = 0; buf[i]; i++) {
  172. int char_y, mask;
  173. uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
  174. for (char_y = 0; char_y < font_height; char_y++) {
  175. for (mask = 0x80; mask; mask >>= 1) {
  176. if (font[buf[i] * font_height + char_y] & mask)
  177. memcpy(p, color, 3);
  178. else
  179. memcpy(p, "\x00\x00\x00", 3);
  180. p += 3;
  181. }
  182. p += pic->linesize[0] - 8*3;
  183. }
  184. }
  185. }
  186. static void drawline(AVFrame *pic, int x, int y, int len, int step)
  187. {
  188. int i;
  189. uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
  190. for (i = 0; i < len; i++) {
  191. memcpy(p, "\x00\xff\x00", 3);
  192. p += step;
  193. }
  194. }
  195. static int config_video_output(AVFilterLink *outlink)
  196. {
  197. int i, x, y;
  198. uint8_t *p;
  199. AVFilterContext *ctx = outlink->src;
  200. EBUR128Context *ebur128 = ctx->priv;
  201. AVFrame *outpicref;
  202. /* check if there is enough space to represent everything decently */
  203. if (ebur128->w < 640 || ebur128->h < 480) {
  204. av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
  205. "minimum size is 640x480\n", ebur128->w, ebur128->h);
  206. return AVERROR(EINVAL);
  207. }
  208. outlink->w = ebur128->w;
  209. outlink->h = ebur128->h;
  210. #define PAD 8
  211. /* configure text area position and size */
  212. ebur128->text.x = PAD;
  213. ebur128->text.y = 40;
  214. ebur128->text.w = 3 * 8; // 3 characters
  215. ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
  216. /* configure gauge position and size */
  217. ebur128->gauge.w = 20;
  218. ebur128->gauge.h = ebur128->text.h;
  219. ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
  220. ebur128->gauge.y = ebur128->text.y;
  221. /* configure graph position and size */
  222. ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
  223. ebur128->graph.y = ebur128->gauge.y;
  224. ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
  225. ebur128->graph.h = ebur128->gauge.h;
  226. /* graph and gauge share the LU-to-pixel code */
  227. av_assert0(ebur128->graph.h == ebur128->gauge.h);
  228. /* prepare the initial picref buffer */
  229. av_frame_free(&ebur128->outpicref);
  230. ebur128->outpicref = outpicref =
  231. ff_get_video_buffer(outlink, outlink->w, outlink->h);
  232. if (!outpicref)
  233. return AVERROR(ENOMEM);
  234. outlink->sample_aspect_ratio = (AVRational){1,1};
  235. /* init y references values (to draw LU lines) */
  236. ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
  237. if (!ebur128->y_line_ref)
  238. return AVERROR(ENOMEM);
  239. /* black background */
  240. memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
  241. /* draw LU legends */
  242. drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
  243. for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
  244. y = lu_to_y(ebur128, i);
  245. x = PAD + (i < 10 && i > -10) * 8;
  246. ebur128->y_line_ref[y] = i;
  247. y -= 4; // -4 to center vertically
  248. drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
  249. "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
  250. }
  251. /* draw graph */
  252. ebur128->y_zero_lu = lu_to_y(ebur128, 0);
  253. p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
  254. + ebur128->graph.x * 3;
  255. for (y = 0; y < ebur128->graph.h; y++) {
  256. const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
  257. for (x = 0; x < ebur128->graph.w; x++)
  258. memcpy(p + x*3, c, 3);
  259. p += outpicref->linesize[0];
  260. }
  261. /* draw fancy rectangles around the graph and the gauge */
  262. #define DRAW_RECT(r) do { \
  263. drawline(outpicref, r.x, r.y - 1, r.w, 3); \
  264. drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
  265. drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
  266. drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
  267. } while (0)
  268. DRAW_RECT(ebur128->graph);
  269. DRAW_RECT(ebur128->gauge);
  270. return 0;
  271. }
  272. static int config_audio_output(AVFilterLink *outlink)
  273. {
  274. int i;
  275. int idx_bitposn = 0;
  276. AVFilterContext *ctx = outlink->src;
  277. EBUR128Context *ebur128 = ctx->priv;
  278. const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
  279. #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
  280. AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
  281. AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
  282. AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
  283. ebur128->nb_channels = nb_channels;
  284. ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
  285. if (!ebur128->ch_weighting)
  286. return AVERROR(ENOMEM);
  287. for (i = 0; i < nb_channels; i++) {
  288. /* find the next bit that is set starting from the right */
  289. while ((outlink->channel_layout & 1ULL<<idx_bitposn) == 0 && idx_bitposn < 63)
  290. idx_bitposn++;
  291. /* channel weighting */
  292. if ((1ULL<<idx_bitposn & AV_CH_LOW_FREQUENCY) ||
  293. (1ULL<<idx_bitposn & AV_CH_LOW_FREQUENCY_2)) {
  294. ebur128->ch_weighting[i] = 0;
  295. } else if (1ULL<<idx_bitposn & BACK_MASK) {
  296. ebur128->ch_weighting[i] = 1.41;
  297. } else {
  298. ebur128->ch_weighting[i] = 1.0;
  299. }
  300. idx_bitposn++;
  301. if (!ebur128->ch_weighting[i])
  302. continue;
  303. /* bins buffer for the two integration window (400ms and 3s) */
  304. ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0]));
  305. ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
  306. if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
  307. return AVERROR(ENOMEM);
  308. }
  309. return 0;
  310. }
  311. #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
  312. #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
  313. static struct hist_entry *get_histogram(void)
  314. {
  315. int i;
  316. struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
  317. if (!h)
  318. return NULL;
  319. for (i = 0; i < HIST_SIZE; i++) {
  320. h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
  321. h[i].energy = ENERGY(h[i].loudness);
  322. }
  323. return h;
  324. }
  325. static av_cold int init(AVFilterContext *ctx, const char *args)
  326. {
  327. int ret;
  328. EBUR128Context *ebur128 = ctx->priv;
  329. AVFilterPad pad;
  330. ebur128->class = &ebur128_class;
  331. av_opt_set_defaults(ebur128);
  332. if ((ret = av_set_options_string(ebur128, args, "=", ":")) < 0)
  333. return ret;
  334. if (ebur128->loglevel != AV_LOG_INFO &&
  335. ebur128->loglevel != AV_LOG_VERBOSE) {
  336. if (ebur128->do_video)
  337. ebur128->loglevel = AV_LOG_VERBOSE;
  338. else
  339. ebur128->loglevel = AV_LOG_INFO;
  340. }
  341. // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
  342. // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
  343. ebur128->scale_range = 3 * ebur128->meter;
  344. ebur128->i400.histogram = get_histogram();
  345. ebur128->i3000.histogram = get_histogram();
  346. if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
  347. return AVERROR(ENOMEM);
  348. ebur128->integrated_loudness = ABS_THRES;
  349. ebur128->loudness_range = 0;
  350. /* insert output pads */
  351. if (ebur128->do_video) {
  352. pad = (AVFilterPad){
  353. .name = av_strdup("out0"),
  354. .type = AVMEDIA_TYPE_VIDEO,
  355. .config_props = config_video_output,
  356. };
  357. if (!pad.name)
  358. return AVERROR(ENOMEM);
  359. ff_insert_outpad(ctx, 0, &pad);
  360. }
  361. pad = (AVFilterPad){
  362. .name = av_asprintf("out%d", ebur128->do_video),
  363. .type = AVMEDIA_TYPE_AUDIO,
  364. .config_props = config_audio_output,
  365. };
  366. if (!pad.name)
  367. return AVERROR(ENOMEM);
  368. ff_insert_outpad(ctx, ebur128->do_video, &pad);
  369. /* summary */
  370. av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
  371. return 0;
  372. }
  373. #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
  374. /* loudness and power should be set such as loudness = -0.691 +
  375. * 10*log10(power), we just avoid doing that calculus two times */
  376. static int gate_update(struct integrator *integ, double power,
  377. double loudness, int gate_thres)
  378. {
  379. int ipower;
  380. double relative_threshold;
  381. int gate_hist_pos;
  382. /* update powers histograms by incrementing current power count */
  383. ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
  384. integ->histogram[ipower].count++;
  385. /* compute relative threshold and get its position in the histogram */
  386. integ->sum_kept_powers += power;
  387. integ->nb_kept_powers++;
  388. relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
  389. if (!relative_threshold)
  390. relative_threshold = 1e-12;
  391. integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
  392. gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
  393. return gate_hist_pos;
  394. }
  395. static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
  396. {
  397. int i, ch, idx_insample;
  398. AVFilterContext *ctx = inlink->dst;
  399. EBUR128Context *ebur128 = ctx->priv;
  400. const int nb_channels = ebur128->nb_channels;
  401. const int nb_samples = insamples->nb_samples;
  402. const double *samples = (double *)insamples->data[0];
  403. AVFrame *pic = ebur128->outpicref;
  404. for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
  405. const int bin_id_400 = ebur128->i400.cache_pos;
  406. const int bin_id_3000 = ebur128->i3000.cache_pos;
  407. #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
  408. ebur128->i##time.cache_pos++; \
  409. if (ebur128->i##time.cache_pos == I##time##_BINS) { \
  410. ebur128->i##time.filled = 1; \
  411. ebur128->i##time.cache_pos = 0; \
  412. } \
  413. } while (0)
  414. MOVE_TO_NEXT_CACHED_ENTRY(400);
  415. MOVE_TO_NEXT_CACHED_ENTRY(3000);
  416. for (ch = 0; ch < nb_channels; ch++) {
  417. double bin;
  418. ebur128->x[ch * 3] = *samples++; // set X[i]
  419. if (!ebur128->ch_weighting[ch])
  420. continue;
  421. /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
  422. #define FILTER(Y, X, name) do { \
  423. double *dst = ebur128->Y + ch*3; \
  424. double *src = ebur128->X + ch*3; \
  425. dst[2] = dst[1]; \
  426. dst[1] = dst[0]; \
  427. dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
  428. - dst[1]*name##_A1 - dst[2]*name##_A2; \
  429. } while (0)
  430. // TODO: merge both filters in one?
  431. FILTER(y, x, PRE); // apply pre-filter
  432. ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
  433. ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
  434. FILTER(z, y, RLB); // apply RLB-filter
  435. bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
  436. /* add the new value, and limit the sum to the cache size (400ms or 3s)
  437. * by removing the oldest one */
  438. ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
  439. ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
  440. /* override old cache entry with the new value */
  441. ebur128->i400.cache [ch][bin_id_400 ] = bin;
  442. ebur128->i3000.cache[ch][bin_id_3000] = bin;
  443. }
  444. /* For integrated loudness, gating blocks are 400ms long with 75%
  445. * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
  446. * (4800 samples at 48kHz). */
  447. if (++ebur128->sample_count == 4800) {
  448. double loudness_400, loudness_3000;
  449. double power_400 = 1e-12, power_3000 = 1e-12;
  450. AVFilterLink *outlink = ctx->outputs[0];
  451. const int64_t pts = insamples->pts +
  452. av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
  453. outlink->time_base);
  454. ebur128->sample_count = 0;
  455. #define COMPUTE_LOUDNESS(m, time) do { \
  456. if (ebur128->i##time.filled) { \
  457. /* weighting sum of the last <time> ms */ \
  458. for (ch = 0; ch < nb_channels; ch++) \
  459. power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
  460. power_##time /= I##time##_BINS; \
  461. } \
  462. loudness_##time = LOUDNESS(power_##time); \
  463. } while (0)
  464. COMPUTE_LOUDNESS(M, 400);
  465. COMPUTE_LOUDNESS(S, 3000);
  466. /* Integrated loudness */
  467. #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
  468. if (loudness_400 >= ABS_THRES) {
  469. double integrated_sum = 0;
  470. int nb_integrated = 0;
  471. int gate_hist_pos = gate_update(&ebur128->i400, power_400,
  472. loudness_400, I_GATE_THRES);
  473. /* compute integrated loudness by summing the histogram values
  474. * above the relative threshold */
  475. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  476. const int nb_v = ebur128->i400.histogram[i].count;
  477. nb_integrated += nb_v;
  478. integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
  479. }
  480. if (nb_integrated)
  481. ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
  482. }
  483. /* LRA */
  484. #define LRA_GATE_THRES -20
  485. #define LRA_LOWER_PRC 10
  486. #define LRA_HIGHER_PRC 95
  487. /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
  488. * specs is ">" */
  489. if (loudness_3000 >= ABS_THRES) {
  490. int nb_powers = 0;
  491. int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
  492. loudness_3000, LRA_GATE_THRES);
  493. for (i = gate_hist_pos; i < HIST_SIZE; i++)
  494. nb_powers += ebur128->i3000.histogram[i].count;
  495. if (nb_powers) {
  496. int n, nb_pow;
  497. /* get lower loudness to consider */
  498. n = 0;
  499. nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
  500. for (i = gate_hist_pos; i < HIST_SIZE; i++) {
  501. n += ebur128->i3000.histogram[i].count;
  502. if (n >= nb_pow) {
  503. ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
  504. break;
  505. }
  506. }
  507. /* get higher loudness to consider */
  508. n = nb_powers;
  509. nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
  510. for (i = HIST_SIZE - 1; i >= 0; i--) {
  511. n -= ebur128->i3000.histogram[i].count;
  512. if (n < nb_pow) {
  513. ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
  514. break;
  515. }
  516. }
  517. // XXX: show low & high on the graph?
  518. ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
  519. }
  520. }
  521. #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
  522. /* push one video frame */
  523. if (ebur128->do_video) {
  524. int x, y, ret;
  525. uint8_t *p;
  526. const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
  527. const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23);
  528. /* draw the graph using the short-term loudness */
  529. p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
  530. for (y = 0; y < ebur128->graph.h; y++) {
  531. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
  532. memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
  533. memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
  534. p += pic->linesize[0];
  535. }
  536. /* draw the gauge using the momentary loudness */
  537. p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
  538. for (y = 0; y < ebur128->gauge.h; y++) {
  539. const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
  540. for (x = 0; x < ebur128->gauge.w; x++)
  541. memcpy(p + x*3, c, 3);
  542. p += pic->linesize[0];
  543. }
  544. /* draw textual info */
  545. drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
  546. LOG_FMT " ", // padding to erase trailing characters
  547. loudness_400, loudness_3000,
  548. ebur128->integrated_loudness, ebur128->loudness_range);
  549. /* set pts and push frame */
  550. pic->pts = pts;
  551. ret = ff_filter_frame(outlink, av_frame_clone(pic));
  552. if (ret < 0)
  553. return ret;
  554. }
  555. av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT "\n",
  556. av_ts2timestr(pts, &outlink->time_base),
  557. loudness_400, loudness_3000,
  558. ebur128->integrated_loudness, ebur128->loudness_range);
  559. }
  560. }
  561. return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
  562. }
  563. static int query_formats(AVFilterContext *ctx)
  564. {
  565. EBUR128Context *ebur128 = ctx->priv;
  566. AVFilterFormats *formats;
  567. AVFilterChannelLayouts *layouts;
  568. AVFilterLink *inlink = ctx->inputs[0];
  569. AVFilterLink *outlink = ctx->outputs[0];
  570. static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
  571. static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
  572. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
  573. /* set optional output video format */
  574. if (ebur128->do_video) {
  575. formats = ff_make_format_list(pix_fmts);
  576. if (!formats)
  577. return AVERROR(ENOMEM);
  578. ff_formats_ref(formats, &outlink->in_formats);
  579. outlink = ctx->outputs[1];
  580. }
  581. /* set input and output audio formats
  582. * Note: ff_set_common_* functions are not used because they affect all the
  583. * links, and thus break the video format negociation */
  584. formats = ff_make_format_list(sample_fmts);
  585. if (!formats)
  586. return AVERROR(ENOMEM);
  587. ff_formats_ref(formats, &inlink->out_formats);
  588. ff_formats_ref(formats, &outlink->in_formats);
  589. layouts = ff_all_channel_layouts();
  590. if (!layouts)
  591. return AVERROR(ENOMEM);
  592. ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
  593. ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
  594. formats = ff_make_format_list(input_srate);
  595. if (!formats)
  596. return AVERROR(ENOMEM);
  597. ff_formats_ref(formats, &inlink->out_samplerates);
  598. ff_formats_ref(formats, &outlink->in_samplerates);
  599. return 0;
  600. }
  601. static av_cold void uninit(AVFilterContext *ctx)
  602. {
  603. int i;
  604. EBUR128Context *ebur128 = ctx->priv;
  605. av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
  606. " Integrated loudness:\n"
  607. " I: %5.1f LUFS\n"
  608. " Threshold: %5.1f LUFS\n\n"
  609. " Loudness range:\n"
  610. " LRA: %5.1f LU\n"
  611. " Threshold: %5.1f LUFS\n"
  612. " LRA low: %5.1f LUFS\n"
  613. " LRA high: %5.1f LUFS\n",
  614. ebur128->integrated_loudness, ebur128->i400.rel_threshold,
  615. ebur128->loudness_range, ebur128->i3000.rel_threshold,
  616. ebur128->lra_low, ebur128->lra_high);
  617. av_freep(&ebur128->y_line_ref);
  618. av_freep(&ebur128->ch_weighting);
  619. av_freep(&ebur128->i400.histogram);
  620. av_freep(&ebur128->i3000.histogram);
  621. for (i = 0; i < ebur128->nb_channels; i++) {
  622. av_freep(&ebur128->i400.cache[i]);
  623. av_freep(&ebur128->i3000.cache[i]);
  624. }
  625. for (i = 0; i < ctx->nb_outputs; i++)
  626. av_freep(&ctx->output_pads[i].name);
  627. av_frame_free(&ebur128->outpicref);
  628. }
  629. static const AVFilterPad ebur128_inputs[] = {
  630. {
  631. .name = "default",
  632. .type = AVMEDIA_TYPE_AUDIO,
  633. .get_audio_buffer = ff_null_get_audio_buffer,
  634. .filter_frame = filter_frame,
  635. },
  636. { NULL }
  637. };
  638. AVFilter avfilter_af_ebur128 = {
  639. .name = "ebur128",
  640. .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
  641. .priv_size = sizeof(EBUR128Context),
  642. .init = init,
  643. .uninit = uninit,
  644. .query_formats = query_formats,
  645. .inputs = ebur128_inputs,
  646. .outputs = NULL,
  647. .priv_class = &ebur128_class,
  648. };